Read the Docs Template

Documentation
Release v3.3.1

Read the Docs

Dec 12, 2019

Contents

1 Get Started

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14
1.15

Introduction
What You Need

Guides

Setup Toolchain
Get ESP-IDF
Setup Path to ESP-IDF
Install the Required Python Packages
Start a Project
Connect
Configure
Build and Flash
Monitor

Updating ESP-IDF
Related Documents

2 Get Started (CMake)

2.1
2.2
2.3
24
25
2.6
2.7
2.8
29
2.10
2.11
2.12
2.13
2.14
2.15
2.16

Introduction
What You Need
Installation Step by Step
Development Board Guides
Set up Toolchain

Step 1.
Step 2.
Step 3.
Step 4.
Step 5.
Step 6.
Step 7.
Step 8.
Step 9.

Get ESP-IDF

Set Environment Variables
Install the Required Python Packages

Start a Project

Connect the Device
Configure
Build the Project
Flash to a Device
Step 10. Monitor
Updating ESP-IDF
Related Documents

3 API Reference

3.1

Bluetooth API

3.2 Networking APIS o . e e e e e e e
3.3 Peripherals APL. e e e e e
3.4 Application Protocols L e e e e e e e
3.5 Provisioning APL
3.6 Storage APL L e e e
3.7 System APL. . . o . e
3.8 Configuration OptonS v v vt i e
39 Error Codes Reference e
ESP32 Hardware Reference

4.1 ESP32Modules and Boards e e e e e e e
4.2 Previous Versions of ESP32 Modulesand Boards,
API Guides

5.1 General Notes About ESP-IDF Programming,
5.2 Build System e e e e e e e
5.3 Build System (CMake) o o e e e e e e e
54 ErrorHandling e
5.5 Fatal Brrors oL e e
5.6 Deep Sleep Wake Stubs L e e e e e
5.7 ESP32Core Dump e e e e e e e
5.8 FlashEncryption e e
5.9 ESP-IDF FreeRTOS SMP Changes
5.10 Thread Local Storage e e e e
5.11 High-Level Interrupts o ot e e e e e e e e e e e e e e e
5.12 JTAG Debugging o o i e e e e e e e e e
5.13 Bootloader e e
5.14 Partition Tables L L e e e e e
5.15 Secure Boot L L e
5.16 ULP coprocessor programming v v v v v v v v v v e e e e e e e e e e e e e e
5.17 ULP coprocessor programming (CMake) i it
5.18 Unit Testingin ESP32 e
5.19 Unit Testing in ESP32 (CMake) 0 i e e e e
520 Console e e e e e e e
521 ESP32ROMCOnSOIE . . . v v v i e
522 RFecalibration e e
523 Wi-FiDriver o . e
524 ESP-MESH e
525 BIuFi e
5.26 Support forexternal RAM
5.27 Linker Script GENeration v v v i i e
Contributions Guide

6.1 HowtoContribute e e e e e e e e e e e
6.2 Before Contributing L e e e e e e e e e
6.3 Pull Request Process i i e e e e e e e
6.4 LegalPart. e e e e e
6.5 Related Documents L e e e
ESP-IDF Versions

7.1 Releases o o e e e e e
7.2 Which Version Should I Start With?
7.3 Versioning Scheme e e
7.4 Support Periods e e e e e e e e e e e
7.5 Checking The Current VErsion v v vt vt i e et e e e e e e e e e

7.6 GitWorkflow o e e e e e e e
7.7 Updating ESP-IDF e e e e e e

8 Resources

9 Copyrights and Licenses
9.1 Software Copyrights

9.2 ROM Source Code Copyrights o e

9.3 Xtensalibhal MIT License o i it ettt e e e e

9.4 TinyBasic Plus MIT License o o v i it e e e e e e e e e e

9.5 TIpgDec License o i i e e e e e e e e e e
10 About

11 Switch Between Languages/

Index

Read the Docs Template Documentation, Release v3.3.1

[l

This is the documentation for Espressif IoT Development Framework (esp-idf). ESP-IDF is the official development
framework for the ESP32 chip.

Get Started API Reference H/W Reference

API Guides Contribute Resources

Contents 1

../../zh_CN/v3.3.1/index.html
https://github.com/espressif/esp-idf
https://espressif.com/en/products/hardware/esp32/overview
get-started/index.html
api-reference/index.html
hw-reference/index.html
get-started/index.html
api-reference/index.html
hw-reference/index.html
api-guides/index.html
contribute/index.html
resources.html
api-guides/index.html
contribute/index.html
resources.html

Read the Docs Template Documentation, Release v3.3.1

2 Contents

CHAPTER 1

Get Started

[l

This document is intended to help users set up the software environment for development of applications using
hardware based on the Espressif ESP32. Through a simple example we would like to illustrate how to use ESP-
IDF (Espressif IoT Development Framework), including the menu based configuration, compiling the ESP-IDF and
firmware download to ESP32 boards.

Note: This is documentation for stable version v3.3.1 of ESP-IDF. Other ESP-IDF Versions are also available.

1.1 Introduction

ESP32 integrates Wi-Fi (2.4 GHz band) and Bluetooth 4.2 solutions on a single chip, along with dual high performance
cores, Ultra Low Power co-processor and several peripherals. Powered by 40 nm technology, ESP32 provides a robust,
highly integrated platform to meet the continuous demands for efficient power usage, compact design, security, high
performance, and reliability.

Espressif provides the basic hardware and software resources that help application developers to build their ideas
around the ESP32 series hardware. The software development framework by Espressif is intended for rapidly de-
veloping Internet-of-Things (IoT) applications, with Wi-Fi, Bluetooth, power management and several other system
features.

1.2 What You Need

To develop applications for ESP32 you need:
* PC loaded with either Windows, Linux or Mac operating system
* Toolchain to build the Application for ESP32
« ESP-IDF that essentially contains API for ESP32 and scripts to operate the Toolchain

../../../zh_CN/v3.3.1/get-started/index.html

Read the Docs Template Documentation, Release v3.3.1

* A text editor to write programs (Projects) in C, e.g. Eclipse

¢ The ESP32 board itself and a USB cable to connect it to the PC

ESP-IDF make [Eclipse

Toolchain

Application

: o
UPLOAD 3= s
C o
H H
5 u
[o
o o
= =
[a
[a
H H
[[
= 5
H H
[[
=] o
H 2t @
|
.
B ol B i) —_— == J
/. ST _‘.-=-._-\ e ____._-_-.'"__?"

Fig. 1: Development of applications for ESP32

Preparation of development environment consists of three steps:
1. Setup of Toolchain
2. Getting of ESP-IDF from GitHub
3. Installation and configuration of Eclipse

You may skip the last step, if you prefer to use different editor.

Having environment set up, you are ready to start the most interesting part - the application development. This process
may be summarized in four steps:

1. Configuration of a Project and writing the code

2. Compilation of the Project and linking it to build an Application
3. Flashing (uploading) of the Application to ESP32

4. Monitoring / debugging of the Application

See instructions below that will walk you through these steps.

1.3 Guides

If you have one of ESP32 development boards listed below, click on provided links to get you up and running.

4 Chapter 1. Get Started

https://www.eclipse.org/

Read the Docs Template Documentation, Release v3.3.1

1.3.1 ESP32-DevKitC V4 Getting Started Guide

[l

This user guide shows how to get started with ESP32-DevKitC V4 development board. For description of other
versions of the ESP32-DevKitC check ESP32 Hardware Reference.

What You Need

e 1 x ESP32-DevKitC V4 board
e 1 x USB A/ micro USB B cable
¢ 1 x PC loaded with Windows, Linux or Mac OS

Overview

ESP32-DevKitC V4 is a small-sized ESP32-based development board produced by Espressif. Most of the I/O pins
are broken out to the female pin headers on both sides for easy interfacing. Developers can connect these pins to
peripherals as needed. Standard female headers also make development easy and convenient when using Dupont
wires.

The board supports various ESP32 modules, including £SP32-WROOM-32, ESP32-WROOM-32U, ESP32-WROOM-
32D, ESP32-SOLO-1, and ESP32-WROVER series.

Note: Espressif also provides several variants of ESP32-DevKitC that come with specific ESP32 module and female
or male pin headers, supporting different requirements of different users. For details please refer to Espressif Product
Ordering Information.

Functional Description

The following list and figure below describe key components, interfaces and controls of ESP32-DevKitC V4 board.
ESP32-WROOM-32D ESP32-WROOM-32D soldered to the ESP32-DevKitC V4 board.

Optional Space for ESP32-WROVER Longer ESP32-WROVER modules may be soldered instead of the ESP32-
WROOM-32.

USB-to-UART Bridge A single chip USB-to-UART bridge provides up to 3 Mbps transfers rates.

Boot Button Download button: holding down the Boot button and pressing the EN button initiates the firmware
download mode. Then user can download firmware through the serial port.

EN Button Reset button: pressing this button resets the system.

Micro USB Port USB interface. It functions as the power supply for the board and the communication interface
between PC and the ESP module.

Power On LED Turns on when the power supply is applied to the board. For details see schematic in Related Docu-
ments.

I/0 Connector Most of the pins on the ESP module are broken out to the female pin headers on the board. Users can
program ESP32 to enable multiple functions such as PWM, ADC, DAC, 12C, 128, SPI, etc.

Note: Some of broken out pins are used internally by the ESP32-WROOM-32, ESP32-WROOM-32D/U and
ESP32-SOLO-1 modules to communicate with SPI memory. They are grouped on one side of the board besides

1.3. Guides 5

../../../zh_CN/v3.3.1/get-started/get-started-devkitc.html
https://espressif.com
https://www.espressif.com/sites/default/files/documentation/espressif_products_ordering_information_en.pdf
https://www.espressif.com/sites/default/files/documentation/espressif_products_ordering_information_en.pdf

Read the Docs Template Documentation, Release v3.3.1

the USB connector and labeled CLK, DO, D1, D2, D3 and CMD (GPIO6 - GPIO11). In general these pins
should be left unconnected, otherwise access to the SPI flash memory / SPI RAM may be disturbed.

Power On LED /O Connector

EN Button
K]
+
Micro USB Port——— 5l ESP32-WROOM-32D
o 1 4 Ly,
Boot Button : !_:ﬂ |HH

akpaRtiz A2 AN T W

na N

USB-to-UART Bridge Optional Space for ESP32-WROVER

Fig. 2: ESP32-DevKitC V4 with ESP32-WROOM-32D module soldered

Power Supply Options

There following options are available to provide power supply to this board:
1. Micro USB port, this is default power supply connection
2. 5V / GND header pins
3. 3V3/ GND header pins

Warning: Above options are mutually exclusive, i.e. the power supply may be provided using only one of the
above options. Attempt to power the board using more than one connection at a time may damage the board and/or
the power supply source.

Note on C15

The C15, on the board of earlier batches of V4, may bring two issues:
1. The board may boot into download mode;
2. If users output clock on GPIOO0, C15 may impact the clock output.

As a result, if users believe that C15 will impact their use of the board, they can remove it completely (please refer
to the screenshot below for the precise location of C15 that is colored in yellow). Otherwise, users do not need to
concern about C15.

6 Chapter 1. Get Started

Read the Docs Template Documentation, Release v3.3.1

ST Ta ed 1

Fig. 3: Location of C15 (colored yellow) on ESP32-DevKitC V4 board

Start Application Development
Before powering up the ESP32-DevKitC, please make sure that the board has been received in good condition with no
obvious signs of damage.
To start development of applications, proceed to section Get Started, that will walk you through the following steps:
* Setup Toolchain in your PC to develop applications for ESP32 in C language
* Connect the module to the PC and verify if it is accessible
* Build and Flash an example application to the ESP32

* Monitor instantly what the application is doing

Board Dimensions

Related Documents

¢ ESP32-DevKitC V4 schematic (PDF)
e ESP32 Datasheet (PDF)
ESP32-WROOM-32 Datasheet (PDF)

ESP32-WROOM-32D/U Datasheet (PDF)

* Espressif Product Ordering Information (PDF)

ESP32-DevKitC V2 Getting Started Guide

This user guide shows how to get started with ESP32-DevKitC development board.

What You Need

e 1 x ESP32-DevKitC V2 board

1.3. Guides 7

https://dl.espressif.com/dl/schematics/esp32_devkitc_v4-sch-20180607a.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32d_esp32-wroom-32u_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/espressif_products_ordering_information_en.pdf

Read the Docs Template Documentation, Release v3.3.1

27.9 mm

AS OW) €0 20 ET ONO ZT YT LZ 97 ST €€ ZE SE WE NA dA N3 EAE

9299090900090 PO IGWIGS

|‘ 54.4 mm

Fig. 4: ESP32-DevKitC board dimensions - back

e 1 x USB A/ micro USB B cable
¢ 1 x PC loaded with Windows, Linux or Mac OS

Overview

ESP32-DevKitC is a small-sized ESP32-based development board produced by Espressif. Most of the I/O pins are
broken out to the pin headers on both sides for easy interfacing. Developers can connect these pins to peripherals as
needed. Standard headers also make development easy and convenient when using a breadboard.

Functional Description

The following list and figure below describe key components, interfaces and controls of ESP32-DevKitC board.
ESP-WROOM-32 Standard ESP-WROOM-32 module soldered to the ESP32-DevKitC board.
EN Reset button: pressing this button resets the system.

Boot Download button: holding down the Boot button and pressing the EN button initiates the firmware download
mode. Then user can download firmware through the serial port.

USB USB interface. It functions as the power supply for the board and the communication interface between PC and
ESP-WROOM-32.

I/0 Most of the pins on the ESP-WROOM-32 are broken out to the pin headers on the board. Users can program
ESP32 to enable multiple functions such as PWM, ADC, DAC, 12C, 128, SPI, etc.

8 Chapter 1. Get Started

https://espressif.com
https://www.espressif.com/sites/default/files/documentation/esp-wroom-32_datasheet_en.pdf

Read the Docs Template Documentation, Release v3.3.1

ESP-WROOM-32

0000000000000

OND 6101 BIOI SOI LIO1 3101 +O0 DO

Fig. 5: ESP32-DevKitC V2 board layout

Power Supply Options

There following options are available to provide power supply to this board:
1. Micro USB port, this is default power supply connection
2. 5V / GND header pins
3. 3V3/ GND header pins

Warning: Above options are mutually exclusive, i.e. the power supply may be provided using only one of the
above options. Attempt to power the board using more than one connection at a time may damage the board and/or
the power supply source.

Start Application Development

Before powering up the ESP32-DevKitC, please make sure that the board has been received in good condition with no
obvious signs of damage.

To start development of applications, proceed to section Get Started, that will walk you through the following steps:
* Setup Toolchain in your PC to develop applications for ESP32 in C language
e Connect the module to the PC and verify if it is accessible
* Build and Flash an example application to the ESP32

* Monitor instantly what the application is doing

1.3. Guides 9

Read the Docs Template Documentation, Release v3.3.1

Related Documents

e ESP32-DevKitC schematic (PDF)
e ESP32 Datasheet (PDF)
¢ ESP-WROOM-32 Datasheet (PDF)

1.3.2 ESP-WROVER-KIT V4.1 Getting Started Guide

[l

This user guide shows how to get started with the ESP-WROVER-KIT V4.1 development board including description
of its functionality and configuration options. For descriptions of other versions of the ESP-WROVER-KIT check
ESP32 Hardware Reference.

If you would like to start using this board right now, go directly to the Start Application Development section.

What You Need

e 1 x ESP-WROVER-KIT V4.1 board
* 1 x Micro USB 2.0 Cable, Type A to Micro B
¢ 1 x PC loaded with Windows, Linux or Mac OS

Overview

The ESP-WROVER-KIT is a development board built around the ESP32 and produced by Espressif. This board
is compatible with multiple ESP32 modules, including the ESP32-WROOM-32, ESP32-WROVER and ESP32-
WROVER-B. The ESP-WROVER-KIT features support for an LCD and a MicroSD card. The I/O pins have been
broken out from the ESP32 module for easy extension. The board carries an advanced multi-protocol USB bridge
(the FTDI FT2232HL), enabling developers to use JTAG directly to debug the ESP32 through the USB interface. The
development board makes secondary development easy and cost-effective.

Functionality Overview

The block diagram below illustrates the ESP-WROVER-KIT’s main components and their interconnections.

Functional Description

The following lists and figures describe the key components, interfaces, and controls of ESP-WROVER-KIT board.

32.768 kHz An external precision 32.768 kHz crystal oscillator provides a low-power consumption clock used during
Deep-Sleep mode.

FT2232 The FT2232 chip is a multi-protocol USB-to-serial bridge. Users can control and program the FT2232 chip
through the USB interface to establish communication with ESP32. The FT2232 chip also features USB-to-
JTAG interface. USB-to-JTAG is available on channel A of the FT2232, whilst USB-to-serial is on channel B.
The embedded FT2232 chip is one of the distinguishing features of the ESP-WROVER-KIT. It enhances users’
convenience in terms of application development and debugging. In addition, users need not purchase a JTAG
debugger separately, which reduces the development cost, see ESP-WROVER-KIT V4.1 schematic.

OR A zero Ohm resistor intended as a placeholder for a current shunt. May be desoldered or replaced with a current
shunt to facilitate measurement of current required by ESP32 module depending on power mode.

10 Chapter 1. Get Started

https://dl.espressif.com/dl/schematics/ESP32-Core-Board-V2_sch.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://espressif.com/sites/default/files/documentation/esp-wroom-32_datasheet_en.pdf
../../../zh_CN/v3.3.1/get-started/get-started-wrover-kit.html
https://espressif.com
https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_V4_1.pdf

Read the Docs Template Documentation, Release v3.3.1

32.768KHz

crystal

110 expand

ChannelA LCD.

uUsBe 3.2inch
Connector
chennan [Somer
1 MicroSD
USB_5Y
= LDO:
EXT_5V o | +5V->43.3V . - RGB LED
g [en] |Kee|

Fig. 6: ESP-WROVER-KIT block diagram

ESP32-WROVER This version of ESP-WROVER-KIT board has ESP-WROVER-B module installed that integrates
64-Mbit PSRAM for flexible extended storage and data processing capabilities. The board can accommodate
other versions of ESP modules described under WROOM, SOLO and WROVER Modules.

Note: GPIO16 and GPIO17 are used as the CS and clock signal for PSRAM. To ensure reliable performance,
the two GPIOs are not broken out.

Diagnostic LEDs Four red LEDs connected to GPIO pins of the FT2232 chip. Intended for future use.

UART Serial port: the serial TX/RX signals on the FT2232HL and the ESP32 are broken out to each side of JP2. By
default, the two signals are connected with jumpers. To use the ESP32 module serial interface only, the jumpers
may be removed and the module can be connected to another external serial device.

SPI SPI interface used by ESP32 to access flash and PSRAM memories inside the module. Please note that the
voltage level on this interface depends on the module used.

CTS/RTS Serial port flow control signals: the pins are not connected to the circuitry by default. To enable them,
respective pins of JP14 must be shorted with jumpers.

JTAG JTAG interface: the JTAG signals on FT2232HL and ESP32 are broken out to the two sides of JP2. By default,
the two signals are disconnected. To enable JTAG, shorting jumpers are required on the signals as shown in
section Setup Options.

USB Port USB interface. It functions as the power supply for the board and the communication interface between
PC and ESP32 module.

EN Button Reset button: pressing this button resets the system.

Boot Button Download button: holding down the Boot button and pressing the EN button initiates the firmware
download mode. Then user can download firmware through the serial port.

Power Switch Power on/off button: toggling to the right powers the board on; toggling to the left powers the board
off.

1.3. Guides 1

Read the Docs Template Documentation, Release v3.3.1

Power Selector Power supply selection interface: the ESP-WROVER-KIT can be powered through the USB interface
or the 5V Input interface. The user can select the power supply with a jumper. More details can be found in
section Setup Options, jumper header JP7.

5V Input The 5V power supply interface is used as a backup power supply in case of full-load operation.

5V Power On LED This red LED indicates that a power supply (either from USB or 5V Input) is applied to the
board.

LDO NCPI1117(1A). 5V-t0-3.3V LDO. (There is an alternative pin-compatible LDO — LM317DCY, with an output
current of up to 1.5A). NCP1117 can provide a maximum current of 1A. The LDO solutions are available with
both fixed output voltage and variable output voltage. For details please refer to ESP-WROVER-KIT V4.1
schematic.

Camera Connector Camera interface: a standard OV7670 camera module is supported.

RGB LED Red, green and blue (RGB) light emitting diodes (LEDs), which may be controlled by pulse width modu-
lation (PWM).

I/0 Connector All the pins on the ESP32 module are led out to the pin headers on the ESP-WROVER-KIT. Users
can program ESP32 to enable multiple functions such as PWM, ADC, DAC, 12C, 12S, SPI, etc.

Micro SD Card Slot Develop applications that access Micro SD card for data storage and retrieval.

LCD ESP-WROVER-KIT supports mounting and interfacing a 3.2” SPI (standard 4-wire Serial Peripheral Interface)
LCD, as shown on figure ESP-WROVER-KIT board layout - back.

FT2232 32.768 kHz

Micro SD Card Slot OR

ESP32-WROVER
I/O Connector

Diagnostic LEDs

UART
RGB LED Sp|
Camera Connector CTS/RTS
LDO JTAG
5V Power On LED —
USB Port

5V Input

EN Button
Boot Button

Power Selector
Power Switch

Fig. 7: ESP-WROVER-KIT board layout - front

12 Chapter 1. Get Started

https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_V4_1.pdf
https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_V4_1.pdf

Read the Docs Template Documentation, Release v3.3.1

LCD

- FEET [

Fig. 8: ESP-WROVER-KIT board layout - back

Setup Options

There are three jumper headers available to set up the board functionality. Typical options to select from are listed in
table below.

1.3. Guides 13

Read the Docs Template Documentation, Release v3.3.1

Header

JP7

JP7

JpP2

14

Description of Functionality

Power ESP-WROVER-KIT board from an external
power supply

Power ESP-WROVER-KIT board from an USB port

Enable JTAG functionality

Chapter 1. Get Started

Read the Docs Template Documentation, Release v3.3.1

Allocation of ESP32 Pins

Several pins / terminals of ESP32 module are allocated to the on board hardware. If certain hardware is not installed,
e.g. nothing is plugged in to the Camera / JP4 header, then selected GPIOs may be used for other purposes.

Some of pins, like GPIOO or GPIO2, have multiple functions and some of them are shared among on board and
optional peripheral devices. Certain combinations of peripherals cannot work together. For example it is not possible
to do JTAG debugging of an application that is using SD card, because several pins are shared by JTAG and the SD
card slot.

In other cases peripherals can coexist under certain conditions. This is applicable to e.g. LCD screen and SD card that
share only a single pin GPIO21. This pin is used to provide D/C (Data / Control) signal for the LCD and CD (Card
Detect) signal read from the SD card slot. If the card detect functionality is not essential, then it may be disabled by
removing R167, so both LCD and SD may operate together.

For more details what pins are shared among peripherals please refer to the table below.

Main I/O Connector / JP1

The JP1 connector is shown in two columns in the middle under “I/O” headers. The two columns “Shared With”
outside, describe where else on the board certain GPIO is used.

Shared With 110 110 Shared With
NC/XTAL 1032 | 1033 | NC/XTAL

JTAG, MicroSD 1012 | 1013 | JTAG, MicroSD

JTAG, MicroSD 1014 | 1027 | Camera

Camera 1026 | 1025 | Camera, LCD

Camera 1035 | 1034 | Camera

Camera 1039 | 1036 | Camera

JTAG EN 1023 | Camera, LCD

Camera, LCD 1022 | 1021 | Camera, LCD, MicroSD
Camera, LCD 1019 | 1018 | Camera, LCD

Camera, LCD 105 1017 | PSRAM

PSRAM 1016 | 104 LED, Camera, MicroSD
Camera, LED, Boot | 100 102 LED, MicroSD

JTAG, MicroSD 1015 | 5V

Legend:

e NC/XTAL - 32.768 kHz Oscillator
JTAG - JTAG / JPS§
* Boot - Boot button / SW2

e Camera - Camera / JP4

* LED - RGB LED

* MicroSD - MicroSD Card / J4

LCD-LCD /U5

PSRAM - ESP32-WROVER’s PSRAM, if ESP32-WROVER is installed

1.3. Guides 15

Read the Docs Template Documentation, Release v3.3.1

32.768 kHz Oscillator

. | ESP32 Pin
1 | GPIO32
2 | GPIO33

Note: As GPIO32 and GPIO33 are connected to the oscillator, they are not connected to JP1 I/O expansion connector
to maintain signal integrity. This allocation may be changed from oscillator to JP1 by desoldering the OR resistors
from positions R11 /R23 and installing them in positions R12 / R24.

SPI Flash / JP2

ESP32 Pin

CLK / GPIO6

SDO / GP107

SD1 / GPIOS8

SD2 / GP109

SD3 / GPIO10

QN N B WD =]

CMD / GPIO11

Important:

The module’s flash bus is connected to the pin header JP2 through 0-Ohm resistors R140 ~ R145.

If the flash frequency needs to operate at 80 MHz for reasons such as improving the integrity of bus signals, it is
recommended that resistors R140 ~ R145 be desoldered. At this point, the module’s flash bus is disconnected with the

pin header JP2.
JTAG / JP2
. | ESP32 Pin JTAG Signal
1 | EN TRST_N
2 | MTMS /GPIO14 | TMS
3 | MTDO/GPIO15 | TDO
4 | MTDI/GPIO12 | TDI
5 | MTCK/GPIO13 | TCK
16 Chapter 1. Get Started

Read the Docs Template Documentation, Release v3.3.1

Camera / JP4

. ESP32 Pin | Camera Signal

1 n/a 3.3V

2 n/a Ground

3 GPIO27 SIO_C / SCCB Clock

4 GPIO26 SIO_D / SCCB Data

5 GPIO25 VSYNC / Vertical Sync

6 GPI10O23 HREF / Horizontal Reference
7 GPIO22 PCLK / Pixel Clock

8 GPIO21 XCLK / System Clock

9 GPIO35 D7 / Pixel Data Bit 7

10 | GP1IO34 D6 / Pixel Data Bit 6

11 | GPIO39 D5 / Pixel Data Bit 5

12 | GPIO36 D4 / Pixel Data Bit 4

13 | GPIO19 D3 / Pixel Data Bit 3

14 | GPIOI18 D2 / Pixel Data Bit 2

15 | GPIOS D1 / Pixel Data Bit 1

16 | GP1O4 DO / Pixel Data Bit 0

17 | GPIOO RESET / Camera Reset

18 | n/a PWDN / Camera Power Down

* Signals DO .. D7 denote camera data bus

RGB LED

MicroSD Card / J4

. | ESP32 Pin | RGB LED
1 | GPIOO Red
2 | GPIO2 Green
3 | GPIO4 Blue
. | ESP32 Pin MicroSD Signal
1 | MTDI/GPIO12 | DATA2
2 | MTCK/GPIO13 | CD/DATA3
3 | MTDO/GPIO15 | CMD
4 | MTMS /GPIO14 | CLK
5 | GPIO2 DATAO
6 | GPIO4 DATA1
7 | GPIO21 CD

1.3. Guides

17

Read the Docs Template Documentation, Release v3.3.1

LCD / U5
. | ESP32 Pin | LCD Signal
1 | GPIO18 RESET
2 | GPIO19 SCL
3 | GPIO21 D/C
4 | GPIO22 CS
5 | GP1023 SDA
6 | GPIO25 SDO
7 | GPIO5 Backlight

Start Application Development

Before powering up the ESP-WROVER-KIT, please make sure that the board has been received in good condition
with no obvious signs of damage.

Initial Setup

Select the source of power supply for the board by setting jumper JP7. The options are either USB port or an external
5V Input. For this application, the selection of the USB port is sufficient. Enable UART communication by installing
jumpers on JP2. Both selections are shown in table below.

Power up from USB port Enable UART communication
I] " W i B

it »

Do not install any other jumpers.

Turn the Power Switch on. The 5V Power On LED should turn on.

Now to Development

To start development of applications for ESP-WROVER-KIT, proceed to the Ger Started section which will walk you
through the following steps:

18 Chapter 1. Get Started

Read the Docs Template Documentation, Release v3.3.1

e Setup Toolchain in your PC to develop applications for ESP32 in C language

* Connect the module to the PC and verify if it is accessible

Build and Flash an example application to the ESP32

* Monitor instantly what the application is doing

Related Documents

ESP-WROVER-KIT V4.1 schematic (PDF)
e ESP32 Datasheet (PDF)
ESP32-WROVER-B Datasheet (PDF)

JTAG Debugging

ESP32 Hardware Reference

ESP-WROVER-KIT V3 Getting Started Guide

This user guide shows how to get started with the ESP-WROVER-KIT V3 development board including description
of its functionality and configuration options. For descriptions of other versions of the ESP-WROVER-KIT check
ESP32 Hardware Reference.

If you would like to start using this board right now, go directly to the Start Application Development section.

What You Need

¢ 1 x ESP-WROVER-KIT V3 board
* 1 x Micro USB 2.0 Cable, Type A to Micro B
¢ 1 x PC loaded with Windows, Linux or Mac OS

Overview

The ESP-WROVER-KIT is a development board built around the ESP32 and produced by Espressif. This board
is compatible with multiple ESP32 modules, including the ESP32-WROOM-32 and ESP32-WROVER. The ESP-
WROVER-KIT features support for an LCD and MicroSD card. The I/O pins have been broken out from the ESP32
module for easy extension. The board carries an advanced multi-protocol USB bridge (the FTDI FT2232HL), enabling
developers to use JTAG directly to debug the ESP32 through the USB interface. The development board makes
secondary development easy and cost-effective.

Note: ESP-WROVER-KIT V3 integrates the ESP32-WROVER module by default.

Functionality Overview

The block diagram below illustrates the ESP-WROVER-KIT’s main components and their interconnections.

1.3. Guides 19

https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_V4_1.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://espressif.com/sites/default/files/documentation/esp32-wrover-b_datasheet_en.pdf
https://espressif.com

Read the Docs Template Documentation, Release v3.3.1

32.768KHz

crystal

110 expand

ChannelA LCD.

uUsBe 3.2inch
Connector
chennan [Somer
1 MicroSD
USB_5Y
= LDO:
EXT_5V o | +5V->43.3V . - RGB LED
g [en] |Kee|

Fig. 9: ESP-WROVER-KIT block diagram

Functional Description

The following lists and figures describe the key components, interfaces, and controls of ESP-WROVER-KIT board.

32.768 kHz An external precision 32.768 kHz crystal oscillator provides a low-power consumption clock used during
Deep-Sleep mode.

OR A zero Ohm resistor intended as a placeholder for a current shunt. May be desoldered or replaced with a current
shunt to facilitate measurement of current required by ESP32 module depending on power mode.

ESP32 Module ESP-WROVER-KIT is compatible with both the ESP32-WROOM-32 and the ESP32-WROVER.
The ESP32-WROVER module features all the functions of ESP32-WROOM-32 and integrates an external 32-
Mbit PSRAM for flexible extended storage and data processing capabilities.

Note: GPIO16 and GPIO17 are used as the CS and clock signal for PSRAM. To ensure reliable performance,
the two GPIOs are not broken out.

FT2232 The FT2232 chip is a multi-protocol USB-to-serial bridge. Users can control and program the FT2232 chip
through the USB interface to establish communication with ESP32. The FT2232 chip also features USB-to-
JTAG interface. USB-to-JTAG is available on channel A of the FT2232, whilst USB-to-serial is on channel B.
The embedded FT2232 chip is one of the distinguishing features of the ESP-WROVER-KIT. It enhances users’
convenience in terms of application development and debugging. In addition, users need not purchase a JTAG
debugger separately, which reduces the development cost, see ESP-WROVER-KIT V3 schematic.

UART Serial port: the serial TX/RX signals on the FT2232HL and the ESP32 are broken out to each side of JP11. By
default, the two signals are connected with jumpers. To use the ESP32 module serial interface only, the jumpers
may be removed and the module can be connected to another external serial device.

SPI The SPI interface is used by the ESP32 to access flash and PSRAM memories within the module itself. To
interface with another SPI device, an extra CS signal is needed. Please note that the voltage level on this
interface depends on the module used (e.g 1.8V and 3.3V for the ESP32-WROVER and ESP32-WROOM-32
respectively).

20 Chapter 1. Get Started

https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_SCH-3.pdf

Read the Docs Template Documentation, Release v3.3.1

CTS/RTS Serial port flow control signals: the pins are not connected to the circuitry by default. To enable them,
respective pins of JP14 must be shorted with jumpers.

JTAG JTAG interface: the JTAG signals on FT2232HL and ESP32 are broken out to the two sides of JP8. By default,
the two signals are disconnected. To enable JTAG, shorting jumpers are required on the signals.

EN Reset button: pressing this button resets the system.

Boot Download button: holding down the Boot button and pressing the EN button initiates the firmware download
mode. Then user can download firmware through the serial port.

USB USB interface. It functions as the power supply for the board and the communication interface between PC and
ESP32 module.

Power Select Power supply selection interface: the ESP-WROVER-KIT can be powered through the USB interface
or the 5V Input interface. The user can select the power supply with a jumper. More details can be found in
section Setup Options, jumper header JP7.

Power Key Power on/off button: toggling to the right powers the board on; toggling to the left powers the board off.
5V Input The 5V power supply interface is used as a backup power supply in case of full-load operation.

LDO NCPI1117(1A). 5V-t0-3.3V LDO. (There is an alternative pin-compatible LDO — LM317DCY, with an output
current of up to 1.5A). NCP1117 can provide a maximum current of 1A. The LDO solutions are available
with both fixed output voltage and variable output voltage. For details please refer to ESP-WROVER-KIT V3
schematic.

Camera Camera interface: a standard OV7670 camera module is supported.

RGB Red, green and blue (RGB) light emitting diodes (LEDs), which may be controlled by pulse width modulation
(PWM).

I/O All the pins on the ESP32 module are led out to the pin headers on the ESP-WROVER-KIT. Users can program
ESP32 to enable multiple functions such as PWM, ADC, DAC, 12C, 128, SPI, etc.

Micro SD Card Develop applications that access Micro SD card for data storage and retrieval.

LCD ESP-WROVER-KIT supports mounting and interfacing a 3.2 SPI (standard 4-wire Serial Peripheral Interface)
LCD, as shown on figure ESP-WROVER-KIT board layout - back.

Setup Options

There are five jumper headers available to set up the board functionality. Typical options to select from are listed in
table below.

1.3. Guides 21

https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_SCH-3.pdf
https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_SCH-3.pdf

22

Read the Docs Template Documentation, Release v3.3.1

Micro
SD Card

11O

RGB
LED

Camera

LDO

5V
Input

Power
Select

) ESP-WROVER-KIT
@ ESP-WROVER-KIT, Espr

®-8 @

OR

ESP32
Module

FT2232

UART

SPI

CTS
RTS

JTAG

Key USB

Boot

EN

Fig. 10: ESP-WROVER-KIT board layout - front

Chapter 1. Get Started

Read the Docs Template Documentation, Release v3.3.1

®
oo D 23
&g
LCD Qe m
Fig. 11: ESP-WROVER-KIT board layout - back
1.3. Guides 23

Read the Docs Template Documentation, Release v3.3.1

Header

JP7

JP7

JP8

24

Jumper Setting

Description of Functionality

Power ESP-WROVER-KIT board from an external power
supply

Power ESP-WROVER-KIT board from an USB port

Enable JTAG functionality

Chapter 1. Get Started

Read the Docs Template Documentation, Release v3.3.1

Allocation of ESP32 Pins

Several pins / terminals of ESP32 module are allocated to the on board hardware. Some of them, like GPIOO or
GPIO2, have multiple functions. If certain hardware is not installed, e.g. nothing is plugged in to the Camera / JP4
header, then selected GPIOs may be used for other purposes.

Main I/O Connector / JP1

The JP1 connector is shown in two columns in the middle under “I/O” headers. The two columns “Shared With”
outside, describe where else on the board certain GPIO is used.

Shared With I/O I/0 Shared With
3.3V | GND
NC/XTAL 1032 | 1033 | NC/XTAL
JTAG, MicroSD 1012 | 1013 | JTAG, MicroSD
JTAG, MicroSD 1014 | 1027 | Camera
Camera 1026 | 1025 | Camera, LCD
Camera 1035 | 1034 | Camera
Camera 1039 | 1036 | Camera
JTAG EN 1023 | Camera, LCD
Camera, LCD 1022 | 1021 | Camera, LCD, MicroSD
Camera, LCD 1019 | 1018 | Camera, LCD
Camera, LCD 105 1017 | PSRAM
PSRAM 1016 | 104 LED, Camera, MicroSD
Camera, LED, Boot | 100 102 LED, MicroSD
JTAG, MicroSD 1015 | 5V

Legend:

NC/XTAL - 32.768 kHz Oscillator
JTAG - JTAG / JP§

Boot - Boot button / SW2

Camera - Camera / JP4

LED - RGB LED

MicroSD - MicroSD Card / J4
LCD-LCD /U5

PSRAM - ESP32-WROVER’s PSRAM, if ESP32-WROVER is installed

32.768 kHz Oscillator

ESP32 Pin

GPIO32

GPIO33

1.3. Guides

25

Read the Docs Template Documentation, Release v3.3.1

Note: As GPIO32 and GPIO33 are connected to the oscillator, they are not connected to JP1 I/O expansion connector
to maintain signal integrity. This allocation may be changed from oscillator to JP1 by desoldering the OR resistors
from positions R11 /R23 and installing them in positions R12 / R24.

SPI Flash / JP13

ESP32 Pin

CLK / GPIO6

SDO / GPIO7

SD1 / GPIO8

SD2 / GPIO9

SD3 / GPIO10

AN | | W =

CMD / GPIO11

Important:

The module’s flash bus is connected to the pin header JP13 through 0-Ohm resistors R140 ~ R145.

If the flash frequency needs to operate at 80 MHz for reasons such as improving the integrity of bus signals, it is
recommended that resistors R140 ~ R145 be desoldered. At this point, the module’s flash bus is disconnected with the

pin header JP13.

JTAG / JP8

ESP32 Pin JTAG Signal
1 | EN TRST_N
2 | MTDO/ GPIO15 | TDO
3 | MTDI/GPIO12 | TDI
4 | MTCK/GPIO13 | TCK
5 | MTMS /GPIO14 | TMS

26

Chapter 1. Get Started

Read the Docs Template Documentation, Release v3.3.1

Camera / JP4

RGB LED

MicroSD Card / J4

ESP32 Pin | Camera Signal
1 n/a 3.3V
2 n/a Ground
3 GPIO27 SIO_C / SCCB Clock
4 GPIO26 SIO_D / SCCB Data
5 GPIO25 VSYNC / Vertical Sync
6 GPI10O23 HREF / Horizontal Reference
7 GPIO22 PCLK / Pixel Clock
8 GPIO21 XCLK / System Clock
9 GPIO35 D7 / Pixel Data Bit 7
10 | GP1IO34 D6 / Pixel Data Bit 6
11 | GPIO39 D5 / Pixel Data Bit 5
12 | GPIO36 D4 / Pixel Data Bit 4
13 | GPIO19 D3 / Pixel Data Bit 3
14 | GPIOI18 D2 / Pixel Data Bit 2
15 | GPIOS D1 / Pixel Data Bit 1
16 | GP1O4 DO / Pixel Data Bit 0
17 | GPIOO RESET / Camera Reset
18 | n/a PWDN / Camera Power Down
ESP32 Pin | RGB LED
1 | GPIOO Red
2 | GPIO2 Green
3 | GPIO4 Blue
ESP32 Pin MicroSD Signal
1 | MTDI/GPIO12 | DATA2
2 | MTCK/GPIO13 | CD/DATA3
3 | MTDO/GPIO15 | CMD
4 | MTMS /GPIO14 | CLK
5 | GPIO2 DATAO
6 | GPIO4 DATA1
7 | GPIO21 CD

1.3. Guides

27

Read the Docs Template Documentation, Release v3.3.1

LCD / U5
ESP32 Pin | LCD Signal
1 | GPIO18 RESET
2 | GPIO19 SCL
3 | GPIO21 D/C
4 | GPIO22 CS
5 | GP1023 SDA
6 | GPIO25 SDO
7 | GPIO5 Backlight

Start Application Development

Before powering up the ESP-WROVER-KIT, please make sure that the board has been received in good condition
with no obvious signs of damage.

Initial Setup

Select the source of power supply for the board by setting jumper JP7. The options are either USB port or an external
power supply. For this application selection of USB port is sufficient. Enable UART communication by installing
jumpers on JP11. Both selections are shown in table below.

Enable UART communication

Do not install any other jumpers.

Now to Development

To start development of applications for ESP-WROVER-KIT, proceed to the Ger Started section which will walk you
through the following steps:

 Setup Toolchain in your PC to develop applications for ESP32 in C language

28 Chapter 1. Get Started

Read the Docs Template Documentation, Release v3.3.1

* Connect the module to the PC and verify if it is accessible
* Build and Flash an example application to the ESP32

* Monitor instantly what the application is doing

Related Documents

ESP-WROVER-KIT V3 schematic (PDF)
e ESP32 Datasheet (PDF)

ESP32-WROVER Datasheet (PDF)
ESP32-WROOM-32 Datasheet (PDF)
* JTAG Debugging

ESP32 Hardware Reference

ESP-WROVER-KIT V2 Getting Started Guide

This user guide shows how to get started with ESP-WROVER-KIT V2 development board including description of
its functionality and configuration options. For description of other versions of the ESP-WROVER-KIT check ESP32
Hardware Reference.

If you like to start using this board right now, go directly to section Start Application Development.

What You Need

* 1 x ESP-WROVER-KIT V2 board
* 1 x Micro USB 2.0 Cable, Type A to Micro B
¢ 1 x PC loaded with Windows, Linux or Mac OS

Overview

The ESP-WROVER-KIT is a development board produced by Espressif built around ESP32. This board is compatible
with ESP32 modules, including the ESP-WROOM-32 and ESP32-WROVER. The ESP-WROVER-KIT features sup-
port for an LCD and MicroSD card. The I/O pins have been broken out from the ESP32 module for easy extension.
The board carries an advanced multi-protocol USB bridge (the FTDI FT2232HL), enabling developers to use JTAG
directly to debug the ESP32 through the USB interface. The development board makes secondary development easy
and cost-effective.

Note: ESP-WROVER-KIT V2 integrates the ESP-WROOM-32 module by default.

Functionality Overview

Block diagram below presents main components of ESP-WROVER-KIT and interconnections between components.

1.3. Guides 29

https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_SCH-3.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://espressif.com/sites/default/files/documentation/esp32-wrover_datasheet_en.pdf
https://espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf
https://espressif.com

Read the Docs Template Documentation, Release v3.3.1

32.768KHz
crystal

110 expand
Channel& LCD.
uUsBe 3.2inch
Connector

cheme i

1 MicroSD

USB_5Y
= LDO:
EXT_5V o | +5V->43.3V . - RGB LED
g [en] [rer]

Fig. 12: ESP-WROVER-KIT block diagram

Functional Description

The following list and figures below describe key components, interfaces and controls of ESP-WROVER-KIT board.

32.768 kHz An external precision 32.768 kHz crystal oscillator provides the chip with a clock of low-power con-
sumption during the Deep-sleep mode.

ESP32 Module ESP-WROVER-KIT is compatible with both ESP-WROOM-32 and ESP32-WROVER. The ESP32-
WROVER module features all the functions of ESP-WROOM-32 and integrates an external 32-MBit PSRAM
for flexible extended storage and data processing capabilities.

Note: GPIO16 and GPIO17 are used as the CS and clock signal for PSRAM. To ensure reliable performance,
the two GPIOs are not broken out.

CTS/RTS Serial port flow control signals: the pins are not connected to the circuitry by default. To enable them,
respective pins of JP14 must be shorted with jumpers.

UART Serial port: the serial TX/RX signals on FT2232HL and ESP32 are broken out to the two sides of JP11. By
default, the two signals are connected with jumpers. To use the ESP32 module serial interface only, the jumpers
may be removed and the module can be connected to another external serial device.

SPI SPI interface: the SPI interface connects to an external flash (PSRAM). To interface another SPI device, an extra
CS signal is needed. If an ESP32-WROVER is being used, please note that the electrical level on the flash and
SRAM is 1.8V.

JTAG JTAG interface: the JTAG signals on FT2232HL and ESP32 are broken out to the two sides of JP8. By default,
the two signals are disconnected. To enable JTAG, shorting jumpers are required on the signals.

FT2232 FT2232 chip is a multi-protocol USB-to-serial bridge. The FT2232 chip features USB-to-UART and USB-
to-JTAG functionalities. Users can control and program the FT2232 chip through the USB interface to establish

communication with ESP32.

The embedded FT2232 chip is one of the distinguishing features of the ESP-WROVER-KIT. It enhances users’

30 Chapter 1. Get Started

Read the Docs Template Documentation, Release v3.3.1

convenience in terms of application development and debugging. In addition, uses do not need to buy a JTAG
debugger separately, which reduces the development cost, see ESP-WROVER-KIT V2 schematic.

EN Reset button: pressing this button resets the system.

Boot Download button: holding down the Boot button and pressing the EN button initiates the firmware download
mode. Then user can download firmware through the serial port.

USB USB interface. It functions as the power supply for the board and the communication interface between PC and
ESP32 module.

Power Select Power supply selection interface: the ESP-WROVER-KIT can be powered through the USB interface
or the 5V Input interface. The user can select the power supply with a jumper. More details can be found in
section Setup Options, jumper header JP7.

Power Key Power on/off button: toggling to the right powers the board on; toggling to the left powers the board off.
SV Input The 5V power supply interface is used as a backup power supply in case of full-load operation.

LDO NCP1117(1A). 5V-t0-3.3V LDO. (There is an alternative pin-compatible LDO — LM317DCY, with an output
current of up to 1.5A). NCP1117 can provide a maximum current of 1A. The LDO solutions are available
with both fixed output voltage and variable output voltage. For details please refer to ESP-WROVER-KIT V2
schematic.

Camera Camera interface: a standard OV7670 camera module is supported.

RGB Red, green and blue (RGB) light emitting diodes (LEDs), which may be controlled by pulse width modulation
(PWM).

I/0 All the pins on the ESP32 module are led out to the pin headers on the ESPWROVER-KIT. Users can program
ESP32 to enable multiple functions such as PWM, ADC, DAC, 12C, 12S, SPI, etc.

Micro SD Card Micro SD card slot for data storage: when ESP32 enters the download mode, GPIO2 cannot be held
high. However, a pull-up resistor is required on GPIO2 to enable the Micro SD Card. By default, GPIO2 and the
pull-up resistor R153 are disconnected. To enable the SD Card, use jumpers on JP1 as shown in section Serup
Options.

LCD ESP-WROVER-KIT supports mounting and interfacing a 3.2” SPI (standard 4-wire Serial Peripheral Interface)
LCD, as shown on figure ESP-WROVER-KIT board layout - back.

Setup Options

There are five jumper headers available to set up the board functionality. Typical options to select from are listed in
table below.

1.3. Guides 31

https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_SCH-2.pdf
https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_SCH-2.pdf
https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_SCH-2.pdf

Read the Docs Template Documentation, Release v3.3.1

Card

‘ o
RGE

Camera

Micro SD

LoD

Eﬂe :

T ey

32.T68K
Hz

| ESP3z
| Module

CTs

FT2232

5V
Input

Power

Key

Power
Select

UsSE

Boot EN ‘

Fig. 13: ESP-WROVER-KIT board layout - front

32

Chapter 1. Get Started

Read the Docs Template Documentation, Release v3.3.1

L |
* 9
L N |
LA |

L I

ESP-WROVER-KIT
ISP = b KL T . Eapreas I, oo & & 8

°s

TSI FrSry.

L B B IR B BN BN BN B BE B B O B BN B B I R R B N O
[B BN IR B BN BN BN BN BE OB BN BN BN BN BN BN B BN AN BN NN B

Fig. 14: ESP-WROVER-KIT board layout - back

1.3. Guides

33

Read the Docs Template Documentation, Release v3.3.1

Header

Jumper Setting

JP1

JP1

34

JP7

JP7

Description of Functionality

Enable pull up for the Micro SD Card

Assert GPIO2 low during each download (by jumping it to
GPIO0)

Power ESP-WROVER-KIT board from an external power supply

rjllr::-l JF 1.
i8[= #nSRST

157

i3 =i

Power ESP-WROVER-KIT board from an USB port

Chapter 1. Get Started

Read the Docs Template Documentation, Release v3.3.1

Start Application Development

Before powering up the ESP-WROVER-KIT, please make sure that the board has been received in good condition
with no obvious signs of damage.

Initial Setup

Select the source of power supply for the board by setting jumper JP7. The options are either USB port or an external
power supply. For this application selection of USB port is sufficient. Enable UART communication by installing
jumpers on JP11. Both selections are shown in table below.

Enable UART communication

Do not install any other jumpers.

Now to Development

To start development of applications for ESP32-DevKitC, proceed to section Ger Started, that will walk you through
the following steps:

 Setup Toolchain in your PC to develop applications for ESP32 in C language
* Connect the module to the PC and verify if it is accessible
* Build and Flash an example application to the ESP32

* Monitor instantly what the application is doing

Related Documents

ESP-WROVER-KIT V2 schematic (PDF)
ESP32 Datasheet (PDF)
ESP-WROOM-32 Datasheet (PDF)
ESP32-WROVER Datasheet (PDF)

» JTAG Debugging

ESP32 Hardware Reference

1.3. Guides 35

https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_SCH-2.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp-wroom-32_datasheet_en.pdf
https://espressif.com/sites/default/files/documentation/esp32-wrover_datasheet_en.pdf

Read the Docs Template Documentation, Release v3.3.1

1.3.3 ESP32-PICO-KIT V4 / V4.1 Getting Started Guide

[l

This user guide shows how to get started with the ESP32-PICO-KIT V4 / V4.1 mini development board. For descrip-
tion of other versions of the ESP32-PICO-KIT check ESP32 Hardware Reference.

Note: This particular description covers ESP32-PICO-KIT V4 and V4.1. The difference is USB-UART bridge that
has been changed from CP2102 in V4 to CP2102N in V4.1. The first provides up to 1 Mbps transfer rates, while the
later up to 3 Mbps transfer rates.

What You Need

e 1 x ESP32-PICO-KIT mini development board
* 1 x USB A/ Micro USB B cable
¢ 1 x PC loaded with Windows, Linux or Mac OS

If you like to start using this board right now, go directly to section Start Application Development.

Overview

ESP32-PICO-KIT is a mini development board produced by Espressif. At the core of this board is the ESP32-PICO-
D4, a System-in-Package (SiP) module with complete Wi-Fi and Bluetooth functionalities. Comparing to other ESP32
modules, the ESP32-PICO-D4 integrates several peripheral components in one single package, that otherwise would
need to be installed separately. This includes a 40 MHz crystal oscillator, a 4 MB flash, filter capacitors and RF
matching links in. This greatly reduces quantity and costs of additional components, subsequent assembly and testing
cost, as well as overall product complexity.

The development board integrates a USB-UART Bridge circuit, allowing the developers to connect the board to a PC’s
USB port for downloads and debugging.

For easy interfacing, all the 1O signals and system power on ESP32-PICO-D4 are led out through two rows of 20 x 0.1”
pitch header pads on both sides of the development board. To make the ESP32-PICO-KIT easier for Dupont wires, 2
x 17 header pads are populated with two rows of female pin headers. The remaining 2 x 3 header pads grouped on
each side of the board besides the antenna are not populated, and may be populated later by the user if required.

Note:

1. The 2 x 3 pads not populated with female pin headers are internally connected to the flash memory embedded
in the ESP32-PICO-D4 SiP module. For more details see module’s datasheet in Related Documents.

2. Earlier versions of ESP32-PICO-KIT come with male headers by default.

The board dimensions are 52 x 20.3 x 10 mm (2.1” x 0.8” x 0.4), see section Board Dimensions. An overview
functional block diagram is shown below.

Functional Description

The following list and figure below describe key components, interfaces and controls of ESP32-PICO-KIT board.

36 Chapter 1. Get Started

../../../zh_CN/v3.3.1/get-started/get-started-pico-kit.html
https://espressif.com

Read the Docs Template Documentation, Release v3.3.1

0000000000 OGSOOGOOGEOSO®O OGS
LLLLLL L L L L L L L L L LS Pin Header

DF/DM i
USE Bridgep —
5Y =
USE Port
LDO Regulator

@ &) —

Powe
AR o
[BN BN BN BN BN BN BN BN BN BN BN M BN M N N N N N)

Pin Header

Fig. 15: ESP32-PICO-KIT functional block diagram

ESP32-PICO-D4 Standard ESP32-PICO-D4 module soldered to the ESP32-PICO-KIT board. The complete system
of the ESP32 chip has been integrated into the SiP module, requiring only external antenna with LC matching
network, decoupling capacitors and pull-up resistors for EN signals to function properly.

LDO 5V-to-3.3V Low dropout voltage regulator (LDO).

USB-UART Bridge A single chip USB-UART bridge: CP2102 in V4 of the board and CP2102N in V4.1. The first
provides up to 1 Mbps transfer rates, while the latter up to 3 Mbps transfers rates.

Micro USB Port USB interface. It functions as the power supply for the board and the communication interface
between PC and ESP32-PICO-KIT.

Power On LED Turns on when the power supply is applied to the board. For details see schematic in Related Docu-
ments.

I/0 All the pins on ESP32-PICO-D4 are broken out to the female pin headers on the board. Users can program ESP32
to enable multiple functions such as PWM, ADC, DAC, 12C, 128, SPI, etc. For details please see section Pin
Descriptions.

BOOT Button Holding down the Boot button and pressing the EN button initiates the firmware download mode.
Then user can download firmware through the serial port.

EN Button Reset button: pressing this button resets the system.

Power Supply Options

The following options are available to provide power supply to the ESP32-PICO-KIT:
1. Micro USB port, this is default power supply connection
2. 5V / GND header pins

1.3. Guides 37

Read the Docs Template Documentation, Release v3.3.1

ESP32-PICO-D4 LDO USB-to-UART Bridge

W MAR 1AF 3y o 3 a

3D Antenna ——=

el
|
-L— Micro USB Port

)

Power On LED

/O Connector

Fig. 16: ESP32-PICO-KIT board layout

3. 3V3/ GND header pins

Warning: Above options are mutually exclusive, i.e. the power supply may be provided using only one of the
above options. Attempt to power the board using more than one connection at a time may damage the board and/or
the power supply source.

Start Application Development
Before powering up the ESP32-PICO-KIT, please make sure that the board has been received in good condition with
no obvious signs of damage.
To start development of applications, proceed to section Get Started, that will walk you through the following steps:
* Setup Toolchain in your PC to develop applications for ESP32 in C language
e Connect the module to the PC and verify if it is accessible
* Build and Flash an example application to the ESP32

* Monitor instantly what the application is doing

Pin Descriptions

The two tables below provide the Name and Function of I/O female headers on both sides of the board, see ESP32-
PICO-KIT board layout. The pin numbering and header names are the same as on a schematic in Related Documents.

38 Chapter 1. Get Started

Read the Docs Template Documentation, Release v3.3.1

1.3. Guides

39

Read the Docs Template Documentation, Release v3.3.1

Header J2

No. Name Type Function
1 FLASH_SD1 (FSD1) 1/0

GPIOS, SD_DATAL,
SPID, HS1_DATAL1 (1),
U2CTS

2 FLASH_SD3 (FSD3) I/0

GPIO7, SD_DATAO,
SPIQ, HS1_DATAO (1),
U2RTS

3 FLASH_CLK (FCLK) /0

GPIO6, SD_CLK,
SPICLK, HS1_CLK (),
UICTS

4 1021 I/0

GPIO21, VSPIHD,
EMAC_TX_EN

5 1022 /0

GPIO22, VSPIWP,
UORTS, EMAC_TXD1

6 1019 /0

GPIO19, VSPIQ,
UOCTS, EMAC_TXDO

7 1023 /0

GPIO23, VSPID,
HS1_STROBE

8 1018 I/0

GPIO18, VSPICLK,
HS1_DATA7

9 105 I/0

GPIOS5, VSPICSO,
HS1_DATAGS,
EMAC_RX_CLK

10 1010 /0

GPIO10, SD_DATA3,
SPIWP, HS1_DATA3,
UITXD

)
\=]
=
)

M=

1
40 Chapter 1. Get Started
GPIO9, SD_DATA2,

SPIHD, HS1_DATAZ2,
UIRXD

Read the Docs Template Documentation, Release v3.3.1

1.3. Guides a1

Read the Docs Template Documentation, Release v3.3.1

Header J3

Name

Type

Function

FLASH_CS (FCS)

I/0

GPIO16, HS1_DATA4
(1), U2RXD,
EMAC_CLK_OUT

FLASH_SDO (FSDO0)

I/0

GPIO17, HS1_DATAS5
(1), U2TXD,
EMAC_CLK_OUT_180

FLASH_SD2 (FSD2)

/0

GPIO11, SD_CMD,
SPICS0, HS1_CMD (1),
UIRTS

SENSOR_VP (FSVP)

GPIO36, ADC1_CHO,
ADC_PRE_AMP (2a),
RTC_GPIOO

SENSOR_VN (FSVN)

GPIO39, ADC1_CH3,
ADC_PRE_AMP (2b),
RTC_GPIO3

1025

I/0

GPIO25, DAC_1,
ADC2_CHS,
RTC_GPIOG,
EMAC_RXDO0

1026

I/0

GPIO26, DAC_2,
ADC2_CHO,
RTC_GPIO7,
EMAC_RXDI

1032

/0

32K_XP (3a),
ADC1_CH4, TOUCHY,
RTC_GPIO9

1033

/0

32K_XN (3b),
ADC1_CHS, TOUCHS,
RTC_GPIOS

1027

I/0

Chapter 1. Get Started

GPIO27, ADC2_CH7,
TOUCH7, RTC_GPIO17

Read the Docs Template Documentation, Release v3.3.1

Notes to Pin Descriptions
1. This pin is connected to the flash pin of ESP32-PICO-D4.

2. When used as ADC_PRE_AMP, connect 270 pF capacitors between: (a) SENSOR_VP and 1037, (b) SEN-
SOR_VN and 1038.

3. 32.768 kHz crystal oscillator: (a) input, (b) output.
4. This pin is connected to the pin of the USB bridge chip on the board.

5. The operating voltage of ESP32-PICO-KIT’s embedded SPI flash is 3.3V. Therefore, the strapping pin MTDI
should hold bit ”’0” during the module power-on reset.

Board Dimensions

ESP32-PICO-KIT
E€SPRESSIF

ESPRESSIF SYSTENS (" ¢
(SHNGHALDPTE LTD
FOE 1D: 200 T2-ESP32PICOKIT

20.3 mm

M
A 4

52 mm

Fig. 17: ESP32-PICO-KIT dimensions - back

For the board physical construction details, please refer to Reference Design listed below.

Related Documents

ESP32-PICO-KIT V4 schematic (PDF)

ESP32-PICO-KIT V4.1 schematic (PDF)

ESP32-PICO-KIT Reference Design containing OrCAD schematic, PCB layout, gerbers and BOM
ESP32-PICO-D4 Datasheet (PDF)

ESP32 Hardware Reference

1.3. Guides 43

https://dl.espressif.com/dl/schematics/esp32-pico-kit-v4_schematic.pdf
https://dl.espressif.com/dl/schematics/esp32-pico-kit-v4.1_schematic.pdf
https://www.espressif.com/en/support/download/documents?keys=ESP32-PICO-KIT+Reference+Design
http://espressif.com/sites/default/files/documentation/esp32-pico-d4_datasheet_en.pdf

Read the Docs Template Documentation, Release v3.3.1

ESP32-PICO-KIT V3 Getting Started Guide

This user guide shows how to get started with the ESP32-PICO-KIT V3 mini development board. For description of
other versions of the ESP32-PICO-KIT check ESP32 Hardware Reference.

What You Need

e 1 x ESP32-PICO-KIT V3 mini development board
¢ 1 x USB A/ Micro USB B cable
¢ 1 x PC loaded with Windows, Linux or Mac OS

Overview

ESP32-PICO-KIT V3 is a mini development board based on the ESP32-PICO-D4 SIP module produced by Espressif.
All the 10 signals and system power on ESP32-PICO-D4 are led out through two standard 20 pin x 0.1” pitch headers
on both sides for easy interfacing. The development board integrates a USB-UART Bridge circuit, allowing the
developers to connect the development board to a PC’s USB port for downloads and debugging.

Functional Description

The following list and figure below describe key components, interfaces and controls of ESP32-PICO-KIT V3 board.

ESP32-PICO-D4 Standard ESP32-PICO-D4 module soldered to the ESP32-PICO-KIT V3 board. The complete
system of the ESP32 chip has been integrated into the SIP module, requiring only external antenna with LC
matching network, decoupling capacitors and pull-up resistors for EN signals to function properly.

USB-UART Bridge A single chip USB-UART bridge provides up to 1 Mbps transfers rates.

I/O All the pins on ESP32-PICO-D4 are broken out to the pin headers on the board. Users can program ESP32 to
enable multiple functions such as PWM, ADC, DAC, 12C, 128, SPI, etc.

Micro USB Port USB interface. It functions as the power supply for the board and the communication interface
between PC and ESP32-PICO-KIT V3.

EN Button Reset button; pressing this button resets the system.

BOOT Button Holding down the Boot button and pressing the EN button initiates the firmware download mode.
Then user can download firmware through the serial port.

Start Application Development

Before powering up the ESP32-PICO-KIT V3, please make sure that the board has been received in good condition
with no obvious signs of damage.

To start development of applications, proceed to section Get Started, that will walk you through the following steps:
e Setup Toolchain in your PC to develop applications for ESP32 in C language
e Connect the module to the PC and verify if it is accessible
* Build and Flash an example application to the ESP32

* Monitor instantly what the application is doing

44 Chapter 1. Get Started

https://espressif.com

Read the Docs Template Documentation, Release v3.3.1

" 3D Antenna | [ESP32-PICO-D4
|

SVP
1037
1038
SVN
1034

EN
1035
1025
1026

GND g

1032
1033
1027
1014
1012
1013
1015

102

104

100
/O

Fig. 18

g0 ceCceoed e

@
Sl
=7
@
.'3.
&
e
-
%

g

-

LA RRL

plig 8SN

P L GOLOELOEOIVOEOLOEGGEGLOEOOO

E

Micro USB
Port

USB-UART
Bridge

: ESP32-PICO-KIT V3 board layout

ESP32-PICO-KIT V3

1.3. Guides

45

Read the Docs Template Documentation, Release v3.3.1

Related Documents

* ESP32-PICO-KIT V3 schematic (PDF)
¢ ESP32-PICO-D4 Datasheet (PDF)
* ESP32 Hardware Reference

If you have different board, move to sections below.

1.4 Setup Toolchain

The quickest way to start development with ESP32 is by installing a prebuilt toolchain. Pick up your OS below and
follow provided instructions.

1.4.1 Standard Setup of Toolchain for Windows

[l

Introduction

Windows doesn’t have a built-in “make” environment, so as well as installing the toolchain you will need a GNU-
compatible environment. We use the MSYS2 environment to provide this. You don’t need to use this environment all
the time (you can use Eclipse or some other front-end), but it runs behind the scenes.

Toolchain Setup

The quick setup is to download the Windows all-in-one toolchain & MSYS2 zip file from dl.espressif.com:
https://dl.espressif.com/dl/esp32_win32_msys2_environment_and_toolchain-20181001.zip

Unzip the zip file to C: \ (or some other location, but this guide assumes C : \) and it will create an msy s 32 directory
with a pre-prepared environment.

Important: If another toolchain location is used (different than the default C : \msys32), please ensure that the path
where the all-in-one toolchain gets unzipped is a plain ASCII, contains no spaces, symlinks or accents.

Check it Out

Open a MSYS2 MINGW32 terminal window by running C:\msys32\mingw32.exe. The environment in this
window is a bash shell. Create a directory named e sp that is a default location to develop ESP32 applications. To do
so0, run the following shell command:

mkdir -p ~/esp

By typing cd ~/esp you can then move to the newly created directory. If there are no error messages you are done
with this step.

Use this window in the following steps setting up development environment for ESP32.

46 Chapter 1. Get Started

https://dl.espressif.com/dl/schematics/esp32-pico-kit-v3_schematic.pdf
http://espressif.com/sites/default/files/documentation/esp32-pico-d4_datasheet_en.pdf
../../../zh_CN/v3.3.1/get-started/windows-setup.html
https://msys2.github.io/
https://dl.espressif.com/dl/esp32_win32_msys2_environment_and_toolchain-20181001.zip

Read the Docs Template Documentation, Release v3.3.1

m ~/esp o | E)ER

$ mkdir -p ~/esp

Fig. 19: MSYS2 MINGW32 shell window

Next Steps

To carry on with development environment setup, proceed to section Get ESP-IDF'.

Updating The Environment
When IDF is updated, sometimes new toolchains are required or new requirements are added to the Windows MSYS2
environment. To move any data from an old version of the precompiled environment to a new one:

e Take the old MSYS2 environment (ie C:\msys32) and move/rename it to a different directory (ie
C:\msys32_o1d).

* Download the new precompiled environment using the steps above.
* Unzip the new MSYS2 environment to C : \msys32 (or another location).
* Find the old C: \msys32_old\home directory and move this into C: \msys32.
* You can now delete the C: \msys32_o1d directory if you no longer need it.
You can have independent different MSYS2 environments on your system, as long as they are in different directories.

There are also steps to update the existing environment without downloading a new one, although this is more complex.

Related Documents

Setup Windows Toolchain from Scratch

Setting up the environment gives you some more control over the process, and also provides the information for
advanced users to customize the install. The pre-built environment, addressed to less experienced users, has been
prepared by following these steps.

To quickly setup the toolchain in standard way, using a prebuilt environment, proceed to section Standard Setup of
Toolchain for Windows.

Configure Toolchain & Environment from Scratch

This process involves installing MSYS2, then installing the MSYS2 and Python packages which ESP-IDF uses, and
finally downloading and installing the Xtensa toolchain.

1.4. Setup Toolchain 47

https://msys2.github.io/
https://msys2.github.io/

Read the Docs Template Documentation, Release v3.3.1

* Navigate to the MSYS2 installer page and download the msys2-1686-xxxxxxx .exe installer executable
(we only support a 32-bit MSYS environment, it works on both 32-bit and 64-bit Windows.) At time of writing,
the latest installer is msys2-1686-20161025.exe.

* Run through the installer steps. Uncheck the “Run MSYS2 32-bit now” checkbox at the end.
* Once the installer exits, open Start Menu and find “MSYS2 MinGW 32-bit” to run the terminal.

(Why launch this different terminal? MSYS2 has the concept of different kinds of environments. The default
“MSYS” environment is Cygwin-like and uses a translation layer for all Windows API calls. We need the
“MinGW” environment in order to have a native Python which supports COM ports.)

e The ESP-IDF repository on github contains a script in the tools directory titled
windows_install_prerequisites.sh. If you haven’t got a local copy of the ESP-IDF yet, that’s OK -
you can just download that one file in Raw format from here: tools/windows/windows_install_prerequisites.sh.
Save it somewhere on your computer.

e Type the path to the shell script into the MSYS2 terminal window. You can type it as a normal Win-
dows path, but use forward-slashes instead of back-slashes. ie: C:/Users/myuser/Downloads/
windows_install_prerequisites.sh. You can read the script beforehand to check what it does.

e Thewindows_install_prerequisites. sh script will download and install packages for ESP-IDF sup-
port, and the ESP32 toolchain.

Troubleshooting

* While the install script runs, MSYS may update itself into a state where it can no longer operate. You may see
errors like the following:

«++ fatal error - cygheap base mismatch detected - 0x612E5408/0x612E4408. This_,
—problem is probably due to using incompatible versions of the cygwin DLL.

If you see errors like this, close the terminal window entirely (terminating the processes running there) and then
re-open a new terminal. Re-run windows_install_prerequisites.sh (tip: use the up arrow key to
see the last run command). The update process will resume after this step.

e MSYS2 is a “rolling” distribution so running the installer script may install newer packages than what is used in
the prebuilt environments. If you see any errors that appear to be related to installing MSYS2 packages, please
check the MSYS2-packages issues list for known issues. If you don’t see any relevant issues, please raise an
IDF issue.

MSYS2 Mirrors in China

There are some (unofficial) MSYS2 mirrors inside China, which substantially improves download speeds inside China.

To add these mirrors, edit the following two MSYS2 mirrorlist files before running the setup script. The mirrorlist
files can be found in the /etc/pacman.d directory (i.e. c: \msys2\etc\pacman.d).

Add these lines at the top of mirrorlist.mingw32:

https://mirrors.ustc.edu.cn/msys2/mingw/1686/
http://mirror.bit.edu.cn/msys2/REPOS/MINGW/1686

Server
Server

Add these lines at the top of mirrorlist.msys:

Server http://mirrors.ustc.edu.cn/msys2/msys/$arch
Server = http://mirror.bit.edu.cn/msys2/REPOS/MSYS2/S$Sarch

48 Chapter 1. Get Started

https://msys2.github.io/
https://github.com/espressif/esp-idf/raw/v3.3.1/tools/windows/windows_install_prerequisites.sh
https://github.com/Alexpux/MSYS2-packages/issues/
https://github.com/espressif/esp-idf/issues/new
https://github.com/espressif/esp-idf/issues/new

Read the Docs Template Documentation, Release v3.3.1

HTTP Proxy

You can enable an HTTP proxy for MSYS and PIP downloads by setting the ht t p_proxy variable in the terminal
before running the setup script:

’export http_proxy='http://http.proxy.server:PORT'

Or with credentials:

’export http_proxy='http://user:password@http.proxy.server:PORT'

Add this lineto /et c/profile in the MSYS directory in order to permanently enable the proxy when using MSY'S.

Alternative Setup: Just download a toolchain

If you already have an MSYS2 install or want to do things differently, you can download just the toolchain here:
https://dl.espressif.com/dl/xtensa-esp32-elf-win32-1.22.0-80-gb6c4433a-5.2.0.zip

Note: If you followed instructions Configure Toolchain & Environment from Scratch, you already have the toolchain
and you won’t need this download.

Important: Just having this toolchain is not enough to use ESP-IDF on Windows. You will need GNU make, bash,
and sed at minimum. The above environments provide all this, plus a host compiler (required for menuconfig support).

Next Steps

To carry on with development environment setup, proceed to section Get ESP-IDF'.

Updating The Environment

When IDF is updated, sometimes new toolchains are required or new system requirements are added to the Windows
MSYS2 environment.

Rather than setting up a new environment, you can update an existing Windows environment & toolchain:
» Update IDF to the new version you want to use.

* Runthe tools/windows/windows_install_prerequisites. sh scriptinside IDF. This will install
any new software packages that weren’t previously installed, and download and replace the toolchain with the
latest version.

The script to update MSYS2 may also fail with the same errors mentioned under Troubleshooting.

If you need to support multiple IDF versions concurrently, you can have different independent MSYS2 environments
in different directories. Alternatively you can download multiple toolchains and unzip these to different directories,
then use the PATH environment variable to set which one is the default.

1.4.2 Standard Setup of Toolchain for Linux

[l

1.4. Setup Toolchain 49

https://dl.espressif.com/dl/xtensa-esp32-elf-win32-1.22.0-80-g6c4433a-5.2.0.zip
../../../zh_CN/v3.3.1/get-started/linux-setup.html

Read the Docs Template Documentation, Release v3.3.1

Install Prerequisites

To compile with ESP-IDF you need to get the following packages:
e CentOS 7:

sudo yum install gcc git wget make ncurses-devel flex bison gperf python python2-
—cryptography

Ubuntu and Debian:

sudo apt-get install gcc git wget make libncurses-dev flex bison gperf python
—python-pip python-setuptools python-serial python-cryptography python-future
—python-pyparsing

Arch:

sudo pacman -S --needed gcc git make ncurses flex bison gperf python2-pyserial
—python2-cryptography python2-future python2-pyparsing

Note: Some older Linux distributions may be missing some of the Python packages listed above (or may use
pyserial version 2.x which is not supported by ESP-IDF). It is possible to install these packages via pip instead -
as described in section Install the Required Python Packages.

Toolchain Setup

ESP32 toolchain for Linux is available for download from Espressif website:
* for 64-bit Linux:
https://dl.espressif.com/dl/xtensa-esp32-elf-linux64-1.22.0-80-g6c4433a-5.2.0.tar.gz
* for 32-bit Linux:
https://dl.espressif.com/dl/xtensa-esp32-elf-linux32-1.22.0-80-g6c4433a-5.2.0.tar.gz
1. Download this file, then extract it in ~/esp directory:

¢ for 64-bit Linux:

mkdir -p ~/esp
cd ~/esp
tar -xzf ~/Downloads/xtensa-esp32-elf-1inux64-1.22.0-80-g6c4433a-5.2.0.tar.gz

for 32-bit Linux:

mkdir -p ~/esp
cd ~/esp
tar -xzf ~/Downloads/xtensa-esp32-elf-1inux32-1.22.0-80-g6cd4433a-5.2.0.tar.gz

2. The toolchain will be extracted into ~/esp/xtensa-esp32-elf/ directory.

To use it, you will need to update your PATH environment variable in ~/.profile file. To make
xtensa—-esp32-elf available for all terminal sessions, add the following line to your ~/ .profile file:

export PATH="SHOME/esp/xtensa-esp32-elf/bin:$PATH"

50 Chapter 1. Get Started

https://dl.espressif.com/dl/xtensa-esp32-elf-linux64-1.22.0-80-g6c4433a-5.2.0.tar.gz
https://dl.espressif.com/dl/xtensa-esp32-elf-linux32-1.22.0-80-g6c4433a-5.2.0.tar.gz

Read the Docs Template Documentation, Release v3.3.1

Alternatively, you may create an alias for the above command. This way you can get the toolchain only when
you need it. To do this, add different line to your ~/ .profile file:

alias get_esp32='export PATH="$HOME/esp/xtensa-esp32-elf/bin:S$SPATH"'

Then when you need the toolchain you can type get_esp32 on the command line and the toolchain will be
added to your PATH.

Note: If you have /bin/bash set as login shell, and both .bash_profile and .profile exist, then
update .bash_profile instead. In CentOS, alias should setin .bashrc.

3. Log off and log in back to make the .profile changes effective. Run the following command to verify if
PATH is correctly set:

printenv PATH

You are looking for similar result containing toolchain’s path at the beginning of displayed string:

$ printenv PATH
/home/user-name/esp/xtensa-esp32-elf/bin:/home/user-name/bin:/home/user—-name/.
—local/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/
—games:/usr/local/games:/snap/bin

Instead of /home /user—-name there should be a home path specific to your installation.

Permission issues /dev/ttyUSB0

With some Linux distributions you may get the Failed to open port /dev/ttyUSBO error message when
flashing the ESP32. This can be solved by adding the current user to the dialout group.

Arch Linux Users

To run the precompiled gdb (xtensa-esp32-elf-gdb) in Arch Linux requires ncurses 5, but Arch uses ncurses 6.
Backwards compatibility libraries are available in AUR for native and lib32 configurations:

* https://aur.archlinux.org/packages/ncurses5-compat-libs/

e https://aur.archlinux.org/packages/lib32-ncurses5-compat-libs/

Before installing these packages you might need to add the author’s public key to your keyring as described in the
“Comments” section at the links above.

Alternatively, use crosstool-NG to compile a gdb that links against ncurses 6.

Next Steps

To carry on with development environment setup, proceed to section Get ESP-IDF'.

Related Documents

1.4. Setup Toolchain 51

https://wiki.archlinux.org/index.php/Arch_User_Repository
https://aur.archlinux.org/packages/ncurses5-compat-libs/
https://aur.archlinux.org/packages/lib32-ncurses5-compat-libs/

Read the Docs Template Documentation, Release v3.3.1

Setup Linux Toolchain from Scratch

[l

Note: Standard process for installing the toolchain is described here. See Customized Setup of Toolchain section for
some of the reasons why installing the toolchain from scratch may be necessary.

Install Prerequisites

To compile with ESP-IDF you need to get the following packages:

¢ Ubuntu and Debian:

sudo apt-get install gcc git wget make libncurses-dev flex bison gperf python
—python-pip python-setuptools python-serial python-cryptography python-future
—python-pyparsing

e Arch:

sudo pacman -S --needed gcc git make ncurses flex bison gperf python2-pyserial,
—python2-cryptography python2-future python2-pyparsing

Note: Some older (pre-2014) Linux distributions may use pyserial version 2.x which is not supported by ESP-
IDF. In this case please install a supported version via pip as it is described in section Install the Required Python
Packages.

Compile the Toolchain from Source

¢ Install dependencies:

CentOS 7:

sudo yum install gawk gperf grep gettext ncurses-devel python python-devel
—automake bison flex texinfo help2man libtool

— Ubuntu pre-16.04:

sudo apt-get install gawk gperf grep gettext libncurses-dev python python-dev
—automake bison flex texinfo help2man libtool

— Ubuntu 16.04 or newer:

sudo apt-get install gawk gperf grep gettext python python-dev automake bison,
—flex texinfo help2Z2man libtool libtool-bin

— Debian 9:

sudo apt-get install gawk gperf grep gettext libncurses-dev python python-dev
—automake bison flex texinfo help2man libtool libtool-bin

— Arch:

52 Chapter 1. Get Started

../../../zh_CN/v3.3.1/get-started/linux-setup-scratch.html

Read the Docs Template Documentation, Release v3.3.1

TODO

Create the working directory and go into it:

mkdir -p ~/esp
cd ~/esp

Download crosstool-NG and build it:

git clone -b xtensa-1.22.x https://github.com/espressif/crosstool-NG.git
cd crosstool-NG
./bootstrap && ./configure —--enable-local && make install

Build the toolchain:

./ct-ng xtensa-esp32-elf
./ct-ng build
chmod -R u+w builds/xtensa-esp32-elf

Toolchain will be built in ~/esp/crosstool-NG/builds/xtensa—esp32—-elf. Follow instructions for
standard setup to add the toolchain to your PATH.

Next Steps

To carry on with development environment setup, proceed to section Get ESP-IDF'.

1.4.3 Standard Setup of Toolchain for Mac OS

[l

Install Prerequisites

* install pip:

sudo easy_install pip

Note: pip will be used later for installing the required Python packages.

Toolchain Setup

ESP32 toolchain for macOS is available for download from Espressif website:
https://dl.espressif.com/dl/xtensa-esp32-elf-osx-1.22.0-80-gbc4433a-5.2.0.tar.gz

Download this file, then extract it in ~/esp directory:

mkdir -p ~/esp
cd ~/esp
tar -xzf ~/Downloads/xtensa-esp32-elf-osx-1.22.0-80-g6c4433a-5.2.0.tar.gz

1.4. Setup Toolchain 53

../../../zh_CN/v3.3.1/get-started/macos-setup.html
https://dl.espressif.com/dl/xtensa-esp32-elf-osx-1.22.0-80-g6c4433a-5.2.0.tar.gz

Read the Docs Template Documentation, Release v3.3.1

The toolchain will be extracted into ~/esp/xtensa—esp32-elf/ directory.

To use it, you will need to update your PATH environment variable in ~/.profile file. To make
xtensa-esp32-elf available for all terminal sessions, add the following line to your ~/ .profile file:

’export PATH=$HOME/esp/xtensa-esp32-elf/bin:$SPATH

Alternatively, you may create an alias for the above command. This way you can get the toolchain only when you
need it. To do this, add different line to your ~/ .profile file:

’alias get_esp32="export PATH=$HOME/esp/xtensa-esp32-elf/bin:S$SPATH"

Then when you need the toolchain you can type get _esp32 on the command line and the toolchain will be added to
your PATH.

Next Steps

To carry on with development environment setup, proceed to section Get ESP-IDF'.

Related Documents

Setup Toolchain for Mac OS from Scratch

[l

Note: Standard process for installing the toolchain is described here. See Customized Setup of Toolchain section for
some of the reasons why installing the toolchain from scratch may be necessary.

Install Prerequisites

* install pip:

sudo easy_install pip

Note: pip will be used later for installing the required Python packages.

Compile the Toolchain from Source

* Install dependencies:

— Install either MacPorts or homebrew package manager. MacPorts needs a full XCode installation, while
homebrew only needs XCode command line tools.

— with MacPorts:

sudo port install gsed gawk binutils gperf grep gettext wget libtool autoconf
—automake

— with homebrew:

54 Chapter 1. Get Started

../../../zh_CN/v3.3.1/get-started/macos-setup-scratch.html
https://www.macports.org/install.php
https://brew.sh/

Read the Docs Template Documentation, Release v3.3.1

brew install gnu-sed gawk binutils gperftools gettext wget helpZman libtool
—autoconf automake

Create a case-sensitive filesystem image:

hdiutil create ~/esp/crosstool.dmg -volname "ctng" -size 10g —-fs "Case-sensitive HES+"

Mount it:

hdiutil mount ~/esp/crosstool.dmg

Create a symlink to your work directory:

mkdir -p ~/esp
In -s /Volumes/ctng ~/esp/ctng-volume

Go into the newly created directory:

cd ~/esp/ctng-volume

Download crosstool—-NG and build it:

git clone -b xtensa-1.22.x https://github.com/espressif/crosstool-NG.git
cd crosstool-NG
./bootstrap && ./configure --enable-local && make install

Build the toolchain:

./ct-ng xtensa-esp32-elf
./ct-ng build
chmod -R u+w builds/xtensa-esp32-elf

Toolchain will be built in ~/esp/ctng-volume/crosstool-NG/builds/xtensa-esp32-elf. Follow
instructions for standard setup to add the toolchain to your PATH.

Next Steps

To carry on with development environment setup, proceed to section Get ESP-IDF.

Windows Linux Mac OS

1.4. Setup Toolchain 55

../get-started/windows-setup.html
../get-started/linux-setup.html
../get-started/macos-setup.html
../get-started/windows-setup.html
../get-started/linux-setup.html
../get-started/macos-setup.html

Read the Docs Template Documentation, Release v3.3.1

Note: We are using ~/esp directory to install the prebuilt toolchain, ESP-IDF and sample applications. You can use
different directory, but need to adjust respective commands.

Depending on your experience and preferences, instead of using a prebuilt toolchain, you may want to customize your
environment. To set up the system your own way go to section Customized Setup of Toolchain.

Once you are done with setting up the toolchain then go to section Get ESP-IDF'.

1.5 Get ESP-IDF

Besides the toolchain (that contains programs to compile and build the application), you also need ESP32 specific API
/ libraries. They are provided by Espressif in ESP-IDF repository.

To obtain a local copy: open terminal, navigate to the directory you want to put ESP-IDF, and clone the repository
using git clone command:

cd ~/esp
git clone -b v3.3.1 —--recursive https://github.com/espressif/esp-idf.git

ESP-IDF will be downloaded into ~/esp/esp—-idf.

Consult ESP-IDF Versions for information about which version of ESP-IDF to use in a given situation.

Note: The git clone option -b v3.3.1 tells git to clone the tag in the ESP-IDF repository git clone
corresponding to this version of the documentation.

Note: As a fallback, it is also possible to download a zip file of this stable release from the Releases page. Do not
download the “Source code” zip file(s) generated automatically by GitHub, they do not work with ESP-IDF.

Note: Do not miss the ——recursive option. If you have already cloned ESP-IDF without this option, run another
command to get all the submodules:

cd esp-idf
git submodule update —--init --recursive

1.6 Setup Path to ESP-IDF

The toolchain programs access ESP-IDF using IDF_PATH environment variable. This variable should be set up on
your PC, otherwise projects will not build. Setting may be done manually, each time PC is restarted. Another option
is to set up it permanently by defining IDF_PATH in user profile. To do so, follow instructions specific to Windows ,
Linux and MacOS in section Add IDF_PATH to User Profile.

56 Chapter 1. Get Started

https://github.com/espressif/esp-idf
https://github.com/espressif/esp-idf/releases

Read the Docs Template Documentation, Release v3.3.1

1.7 Install the Required Python Packages

Python packages required by ESP-IDF are located in the $IDF_PATH/requirements.txt file. You can install
them by running:

’python -m pip install --user -r S$IDF_PATH/requirements.txt

Note: Please invoke that version of the Python interpreter which you will be using with ESP-IDF. The version of the
interpreter can be checked by running command python --version and depending on the result, you might want
touse python2, python2. 7 or similar instead of python, e.g.:

’python2.7 -m pip install --user -r SIDF_PATH/requirements.txt

1.8 Start a Project

Now you are ready to prepare your application for ESP32. To start off quickly, we will use get-started/hello_world
project from examples directory in IDF.

Copy get-started/hello_world to ~/esp directory:

cd ~/esp
cp -r $SIDF_PATH/examples/get-started/hello_world .

You can also find a range of example projects under the examples directory in ESP-IDF. These example project
directories can be copied in the same way as presented above, to begin your own projects.

Important: The esp-idf build system does not support spaces in paths to esp-idf or to projects.

1.9 Connect

You are almost there. To be able to proceed further, connect ESP32 board to PC, check under what serial port the
board is visible and verify if serial communication works. If you are not sure how to do it, check instructions in
section Establish Serial Connection with ESP32. Note the port number, as it will be required in the next step.

1.10 Configure

Being in terminal window, go to directory of hello_world application by typing cd ~/esp/hello_world.
Then start project configuration utility menuconfig:

cd ~/esp/hello_world
make menuconfig

If previous steps have been done correctly, the following menu will be displayed:

In the menu, navigate to Serial flasher config > Default serial port to configure the serial port,
where project will be loaded to. Confirm selection by pressing enter, save configuration by selecting < Save > and
then exit application by selecting < Exit >.

1.7. Install the Required Python Packages 57

https://github.com/espressif/esp-idf/tree/v3.3.1/examples/get-started/hello_world
https://github.com/espressif/esp-idf/tree/v3.3.1/examples
https://github.com/espressif/esp-idf/tree/v3.3.1/examples/get-started/hello_world
https://github.com/espressif/esp-idf/tree/v3.3.1/examples

Read the Docs Template Documentation, Release v3.3.1

Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty submenus ----). Highlighted
letters are hotkeys. Pressing <Y> includes, <N> excludes, <M> modularizes features. Press <Esc><Esc>
to exit, <?> for Help, </> for Search. Legend: [*] built-in [] excluded <M> module < > module
capable

DK tool configuration ---=
ootloader config --->
ecurity features ---=
I
artition Table --->

ptimization level (Debug) ---=
omponent config ---=

< Exit > < Help > < Save > < Load >

Fig. 20: Project configuration - Home window

Note: On Windows, serial ports have names like COM1. On MacOS, they start with /dev/cu.. On Linux, they
start with /dev/tty. (See Establish Serial Connection with ESP32 for full details.)

Here are couple of tips on navigation and use of menuconfig:
* Use up & down arrow keys to navigate the menu.
» Use Enter key to go into a submenu, Escape key to go out or to exit.
* Type ? to see a help screen. Enter key exits the help screen.
» Use Space key, or Y and N keys to enable (Yes) and disable (No) configuration items with checkboxes “[]”
* Pressing ? while highlighting a configuration item displays help about that item.

* Type / to search the configuration items.

Note: If you are Arch Linux user, navigate to SDK tool configuration and change the name of Python 2
interpreter from python to python2.

Attention: When using ESP32-DevKitC board with ESP32-SOLO-1 module, enable single core mode (CON-
FIG_FREERTOS_UNICORE) in menuconfig before flashing example applications.

1.11 Build and Flash

Now you can build and flash the application. Run:

’make flash

This will compile the application and all the ESP-IDF components, generate bootloader, partition table, and application
binaries, and flash these binaries to your ESP32 board.

58 Chapter 1. Get Started

Read the Docs Template Documentation, Release v3.3.1

esptool.py v2.0-beta2

Flashing binaries to serial port /dev/ttyUSBO (app at offset 0x10000)...
esptool.py v2.0-beta?2

Connecting........
Uploading stub...
Running stub...
Stub running...
Changing baud rate to 921600

Changed.

Attaching SPI flash...

Configuring flash size...

Auto-detected Flash size: 4MB

Flash params set to 0x0220

Compressed 11616 bytes to 6695...

Wrote 11616 bytes (6695 compressed) at 0x00001000 in 0.1 seconds (effective 920.5
<—>kblt/3) “ ..

Hash of data verified.

Compressed 408096 bytes to 171625...

Wrote 408096 bytes (171625 compressed) at 0x00010000 in 3.9 seconds (effective 847.3_,
—kbit/s) ...

Hash of data verified.

Compressed 3072 bytes to 82...

Wrote 3072 bytes (82 compressed) at 0x00008000 in 0.0 seconds (effective 8297.4 kbit/
<~>S) PR

Hash of data verified.

Leaving...
Hard resetting...

If there are no issues, at the end of build process, you should see messages describing progress of loading process.
Finally, the end module will be reset and “hello_world” application will start.

If you’d like to use the Eclipse IDE instead of running make, check out the Eclipse guide.

1.12 Monitor

To see if “hello_world” application is indeed running, type make monitor. This command is launching /DF Mon-
itor application:

$ make monitor

MONITOR
—-—— idf_monitor on /dev/ttyUSBO 115200 -—-
—-—— Quit: Ctrl+] | Menu: Ctrl+T | Help: Ctrl+T followed by Ctrl+H ——-

ets Jun 8 2016 00:22:57

rst:0x1 (POWERON_RESET),boot:0x13 (SPI_FAST_FLASH_BOOT)
ets Jun 8 2016 00:22:57

Several lines below, after start up and diagnostic log, you should see “Hello world!” printed out by the application.

Hello world!
Restarting in 10 seconds...
I (211) cpu_start: Starting scheduler on APP CPU.

(continues on next page)

1.12. Monitor 59

Read the Docs Template Documentation, Release v3.3.1

(continued from previous page)

Restarting in 9 seconds...
Restarting in 8 seconds...
Restarting in 7 seconds...

To exit the monitor use shortcut Ctrl1+].

Note: If instead of the messages above, you see a random garbage similar to:

e) (XnQy.! (PW+)Hn%a/9!t5P~keea5jA
~zY¥Y (1,1 e) (Xn@y.!Drz¥ (jpi|+z5¥mvp

or monitor fails shortly after upload, your board is likely using 26MHz crystal, while the ESP-IDF assumes default
of 40MHz. Exit the monitor, go back to the menuconfig, change CONFIG_ESP32_XTAL_FREQ_SEL to 26MHz,
then build and flash the application again. This is found under make menuconfig under Component config —>
ESP32-specific —> Main XTAL frequency.

To execute make flash and make monitor in one go, type make flash monitor. Check section /DF
Monitor for handy shortcuts and more details on using this application.

That’s all what you need to get started with ESP32!

Now you are ready to try some other examples, or go right to developing your own applications.

1.13 Environment Variables

Some environment variables can be specified whilst calling make allowing users to override arguments without
needing to reconfigure them using make menuconfig.

Variables | Description & Usage

ESPPORT | Overrides the serial port used in f1ash and monitor.

Examples: make flash ESPPORT=/dev/ttyUSB1, make monitor ESPPORT=COM1
ESPBAUD | Overrides the serial baud rate when flashing the ESP32.

Example: make flash ESPBAUD=9600

MONITORBAWYerrides the serial baud rate used when monitoring.

Example: make monitor MONITORBAUD=9600

Note: Users can export environment variables (e.g. export ESPPORT=/dev/ttyUSB1). All subsequent calls
of make within the same terminal session will use the exported value given that the variable is not simultaneously
overridden.

1.14 Updating ESP-IDF

After some time of using ESP-IDF, you may want to update it to take advantage of new features or bug fixes. The
simplest way to do so is by deleting existing esp—-idf folder and cloning it again, exactly as when doing initial
installation described in sections Ger ESP-IDF.

If downloading to a new path, remember to Add IDF_PATH to User Profile so that the toolchain scripts know where
to find the ESP-IDF in its release specific location.

60 Chapter 1. Get Started

https://github.com/espressif/esp-idf/tree/v3.3.1/examples

Read the Docs Template Documentation, Release v3.3.1

Another solution is to update only what has changed. The update procedure depends on the version of ESP-IDF you
are using.

1.15 Related Documents

1.15.1 Add IDF_PATH to User Profile

[l

To preserve setting of IDF_PATH environment variable between system restarts, add it to the user profile, following
instructions below.

Windows
The user profile scripts are contained in C: /msys32/etc/profile.d/ directory. They are executed every time
you open an MSYS2 window.

1. Create a new script filein C: /msys32/etc/profile.d/ directory. Name it export_idf_path.sh.

2. Identify the path to ESP-IDF directory. It is specific to your system configuration and may look something like
C:\msys32\home\user—name\esp\esp-idf

3. Add the export command to the script file, e.g.:

export IDF_PATH="C:/msys32/home/user—name/esp/esp-idf"

Remember to replace back-slashes with forward-slashes in the original Windows path.
4. Save the script file.

5. Close MSYS2 window and open it again. Check if IDF_PATH is set, by typing:

printenv IDF_PATH

The path previusly entered in the script file should be printed out.

If you do not like to have IDF_PATH set up permanently in user profile, you should enter it manually on opening of
an MSYS2 window:

export IDF_PATH="C:/msys32/home/user—name/esp/esp-idf"

If you got here from section Setup Path to ESP-IDF, while installing s/w for ESP32 development, then go back to
section Start a Project.

Linux and MacOS

Set up IDF_PATH by adding the following line to ~/ .profile file:

export IDF_PATH=~/esp/esp-idf

Log off and log in back to make this change effective.

Note: If you have /bin/bash set as login shell, and both .bash_profile and .profile exist, then update
.bash_profile instead.

1.15. Related Documents 61

../../../zh_CN/v3.3.1/get-started/add-idf_path-to-profile.html

Read the Docs Template Documentation, Release v3.3.1

Run the following command to check if IDF_PATH is set:

printenv IDF_PATH

The path previously entered in ~/ . profile file (or set manually) should be printed out.

If you do not like to have IDF_PATH set up permanently, you should enter it manually in terminal window on each
restart or logout:

export IDF_PATH=~/esp/esp-idf

If you got here from section Setup Path to ESP-IDF, while installing s/w for ESP32 development, then go back to
section Start a Project.

1.15.2 Establish Serial Connection with ESP32

[l

This section provides guidance how to establish serial connection between ESP32 and PC.

Connect ESP32 to PC

Connect the ESP32 board to the PC using the USB cable. If device driver does not install automatically, identify USB
to serial converter chip on your ESP32 board (or external converter dongle), search for drivers in internet and install
them.

Below are the links to drivers for ESP32 and other boards produced by Espressit:

Development Board USB Driver Remarks

ESP32-DevKitC CP210x

ESP32-LyraT CP210x

ESP32-LyraTD-MSC CP210x

ESP32-PICO-KIT CP210x

ESP-WROVER-KIT FTDI

ESP32 Demo Board FTDI

ESP-Prog FTDI Programmer board (w/o ESP32)
ESP32-MeshKit-Sense n/a Use with ESP-Prog
ESP32-Sense Kit n/a Use with ESP-Prog

* CP210x: CP210x USB to UART Bridge VCP Drivers
e FTDI: FTDI Virtual COM Port Drivers

The drivers above are primarily for reference. Under normal circumstances, the drivers should be bundled with and
operating system and automatically installed upon connecting one of the listed boards to the PC.

Check port on Windows

Check the list of identified COM ports in the Windows Device Manager. Disconnect ESP32 and connect it back, to
verify which port disappears from the list and then shows back again.

Figures below show serial port for ESP32 DevKitC and ESP32 WROVER KIT

62 Chapter 1. Get Started

../../../zh_CN/v3.3.1/get-started/establish-serial-connection.html
https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
https://www.espressif.com/en/products/hardware/esp32-lyrat
https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
https://www.espressif.com/en/products/hardware/esp32-lyratd-msc
https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
http://www.ftdichip.com/Drivers/VCP.htm
http://www.ftdichip.com/Drivers/VCP.htm
https://github.com/espressif/esp-iot-solution/blob/master/documents/evaluation_boards/ESP-Prog_guide_en.md#introduction-to-the-esp-prog-board
http://www.ftdichip.com/Drivers/VCP.htm
https://github.com/espressif/esp-iot-solution/blob/master/documents/evaluation_boards/ESP32-MeshKit-Sense_guide_en.md#esp32-meshkit-sense-hardware-design-guidelines
https://github.com/espressif/esp-iot-solution/blob/master/documents/evaluation_boards/ESP-Prog_guide_en.md#introduction-to-the-esp-prog-board
https://github.com/espressif/esp-iot-solution/blob/master/documents/evaluation_boards/esp32_sense_kit_guide_en.md#guide-for-esp32-sense-development-kit
https://github.com/espressif/esp-iot-solution/blob/master/documents/evaluation_boards/ESP-Prog_guide_en.md#introduction-to-the-esp-prog-board
https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
http://www.ftdichip.com/Drivers/VCP.htm

Read the Docs Template Documentation, Release v3.3.1

o

=4 Device Manager EI@

File Action View Help

&= = HE "

4 = tdk-kmb-op780
- .M Computer

s = Disk drives

- B Display adapters

» 1—_-.|L? DVDYCD-ROM drives

Eﬁ Human Interface Devices
= IDE ATASATAPT controllers
s - Keyboards

o

s --ﬂ Mice and other pointing devices
> ‘_g_. Manitors

b -F Network adapters

473 Ports (COM & LPT)

> n Processors

b -% Sound, video and game controllers
> .M System devices

p - E Universal Serial Bus controllers

Fig. 21: USB to UART bridge of ESP32-DevKitC in Windows Device Manager

1.15. Related Documents 63

Read the Docs Template Documentation, Release v3.3.1

P

=y Device Manager
File Action View Help

= @ E HE R

(= =@])=]

a = tdk-kmb-op780
..M Computer

- w

- Disk drives

A Display adapters

1___li-r, DVD/CD-ROM drives

l:ﬁ Human Interface Devices
g IDE ATASATAPI controllers

= Keyboards

TR W W

"

--,!'E! Mice and cther pointing devices
A Monitors

¥ Metwork adapters

473" Ports (COM & LPT)

CRT R

- w

. 3 Processors

. -&% Sound, video and game controllers
» .M System devices

- i Universal Serial Bus controllers

Fig. 22: Two USB Serial Ports of ESP-WROVER-KIT in Windows Device Manager

64

Chapter 1. Get Started

Read the Docs Template Documentation, Release v3.3.1

Check port on Linux and MacOS

To check the device name for the serial port of your ESP32 board (or external converter dongle), run this command
two times, first with the board / dongle unplugged, then with plugged in. The port which appears the second time is
the one you need:

Linux

’ls /dev/tty*

MacOS

’ls /dev/cu.

Adding user to dialout on Linux

The currently logged user should have read and write access the serial port over USB. On most Linux distributions,
this is done by adding the user to dialout group with the following command:

sudo usermod —-a -G dialout S$USER

on Arch Linux this is done by adding the user to uucp group with the following command:

sudo usermod -a -G uucp SUSER

Make sure you re-login to enable read and write permissions for the serial port.

Verify serial connection

Now verify that the serial connection is operational. You can do this using a serial terminal program. In this example
we will use PuTTY SSH Client that is available for both Windows and Linux. You can use other serial program and
set communication parameters like below.

Run terminal, set identified serial port, baud rate = 115200, data bits = 8, stop bits = 1, and parity = N. Below are
example screen shots of setting the port and such transmission parameters (in short described as 115200-8-1-N) on
Windows and Linux. Remember to select exactly the same serial port you have identified in steps above.

Then open serial port in terminal and check, if you see any log printed out by ESP32. The log contents will depend on
application loaded to ESP32. An example log by ESP32 is shown below.

ets Jun 8 2016 00:22:57

rst:0x5 (DEEPSLEEP_RESET),boot:0x13 (SPI_FAST_ FLASH_BOOT)
ets Jun 8 2016 00:22:57

rst:0x7 (TGOWDT_SYS_RESET) ,boot:0x13 (SPI_FAST_FLASH_BOOT)

configsip: 0, SPIWP:0x00
clk_drv:0x00,qg_drv:0x00,d_drv:0x00,cs0_drv:0x00,hd_drv:0x00,wp_drv:0x00
mode:DIO, clock div:2

load:0x3f£ff0008, 1len:8

load:0x3fff0010, 1len:3464

load:0x40078000,1len:7828

10ad:0x40080000, 1len:252

entry 0x40080034

I (44) boot: ESP-IDF v2.0-rcl-401-gf9fba35 2nd stage bootloader

(continues on next page)

1.15. Related Documents 65

http://www.putty.org/

Read the Docs Template Documentation, Release v3.3.1

ﬁ PuTTY Configuration
Categony:

=~ Sgssinn

[=J- Terminal
- Keyboard
- Bell
- Features
[=- Window

- Appearance
- Behaviour
- Tranglation
- Selection
- Colours
[=- Connection
- Data
- Proxy
- Telnet
- Blogin
- 55H
- Senal

Options cortroling local senal lines

About

Select a senal line

Serial line to connect to

Corfigure the sedal line
Speed (baud)

Data bits

Stop bits

Parity

Flow control

coMmiz

115200

[Mone

)

| XON/XOFF

~)

Open] [Cancel

Fig. 23: Setting Serial Communication in PuTTY on Windows

66

Chapter 1. Get Started

Read the Docs Template Documentation, Release v3.3.1

PuTTY Configuration

Category:
Logging

¥ Terminal
Keyboard
Bell
Features

¥ Window
Appearance
Behaviour
Translation
Selection
Colours
Fonks

¥ Connection
Data
Proxy
Telnet
Rlegin

* 55H

About

Options controlling local serial lines
Select a serial line

serial line to connect to Jdev/ttyUsBo
Configure the serial line

Speed (baud) 115200

Data bits 8

Stop bits 1

Parity Mone -
Flow control XON/XOFF =

Laopen) concel

Fig. 24: Setting Serial Communication in PuTTY on Linux

1.15. Related Documents

67

Read the Docs Template Documentation, Release v3.3.1

(continued from previous page)

I (45) boot: compile time 18:48:10

If you see some legible log, it means serial connection is working and you are ready to proceed with installation and
finally upload of application to ESP32.

Note: For some serial port wiring configurations, the serial RTS & DTR pins need to be disabled in the terminal
program before the ESP32 will boot and produce serial output. This depends on the hardware itself, most development
boards (including all Espressif boards) do not have this issue. The issue is present if RTS & DTR are wired directly to
the EN & GPIOO pins. See the esptool documentation for more details.

Note: Close serial terminal after verification that communication is working. In next step we are going to use another
application to upload ESP32. This application will not be able to access serial port while it is open in terminal.

If you got here from section Connect when installing s/w for ESP32 development, then go back to section Configure.

1.15.3 Build and Flash with Make

[l

Finding a project

As well as the esp-idf-template project, ESP-IDF comes with some example projects on github in the examples direc-
tory.

Once you’ve found the project you want to work with, change to its directory and you can configure and build it.

Configuring your project

’make menuconfig

Compiling your project

’make all

. will compile app, bootloader and generate a partition table based on the config.

Flashing your project

When make all finishes, it will print a command line to use esptool.py to flash the chip. However you can also do
this from make by running:

make flash

68 Chapter 1. Get Started

https://github.com/espressif/esptool/wiki/ESP32-Boot-Mode-Selection#automatic-bootloader
../../../zh_CN/v3.3.1/get-started/make-project.html
https://github.com/espressif/esp-idf-template
https://github.com/espressif/esp-idf/tree/v3.3.1/examples

Read the Docs Template Documentation, Release v3.3.1

This will flash the entire project (app, bootloader and partition table) to a new chip. Also if partition table has ota_data
then this command will flash a initial ota_data. It allows to run the newly loaded app from a factory partition (or the
first OTA partition, if factory partition is not present). The settings for serial port flashing can be configured with make
menuconfig.

You don’t need to run make all before running make flash,make flash will automatically rebuild anything
which needs it.

Compiling & Flashing Just the App

After the initial flash, you may just want to build and flash just your app, not the bootloader and partition table:
* make app - build just the app.
* make app-flash - flash just the app.

make app-flash will automatically rebuild the app if it needs it.

There’s no downside to reflashing the bootloader and partition table each time, if they haven’t changed.

The Partition Table
Once you’ve compiled your project, the “build” directory will contain a binary file with a name like “my_app.bin”.
This is an ESP32 image binary that can be loaded by the bootloader.

A single ESP32’s flash can contain multiple apps, as well as many kinds of data (calibration data, filesystems, param-
eter storage, etc). For this reason, a partition table is flashed to offset 0x8000 in the flash.

Each entry in the partition table has a name (label), type (app, data, or something else), subtype and the offset in flash
where the partition is loaded.

The simplest way to use the partition table is to make menuconfig and choose one of the simple predefined partition
tables:

» “Single factory app, no OTA”
* “Factory app, two OTA definitions”

In both cases the factory app is flashed at offset 0x10000. If you make partition_table then it will print a summary of
the partition table.

For more details about partition tables and how to create custom variations, view the documentation.

1.15.4 Build and Flash with Eclipse IDE

[l

Installing Eclipse IDE
The Eclipse IDE gives you a graphical integrated development environment for writing, compiling and debugging
ESP-IDF projects.

* Start by installing the esp-idf for your platform (see files in this directory with steps for Windows, OS X, Linux).

* We suggest building a project from the command line first, to get a feel for how that process works. You also
need to use the command line to configure your esp-idf project (viamake menuconfig), this is not currently
supported inside Eclipse.

1.15. Related Documents 69

../../../zh_CN/v3.3.1/get-started/eclipse-setup.html

Read the Docs Template Documentation, Release v3.3.1

* Download the Eclipse Installer for your platform from eclipse.org.

e When running the Eclipse Installer, choose “Eclipse for C/C++ Development” (in other places you’ll see this
referred to as CDT.)

Setting up Eclipse

Once your new Eclipse installation launches, follow these steps:

Import New Project

* Eclipse makes use of the Makefile support in ESP-IDF. This means you need to start by creating an ESP-IDF
project. You can use the idf-template project from github, or open one of the examples in the esp-idf examples
subdirectory.

* Once Eclipse is running, choose File -> Import. . .
¢ In the dialog that pops up, choose “C/C++” -> “Existing Code as Makefile Project” and click Next.

* On the next page, enter “Existing Code Location” to be the directory of your IDF project. Don’t specify the
path to the ESP-IDF directory itself (that comes later). The directory you specify should contain a file named
“Makefile” (the project Makefile).

* On the same page, under “Toolchain for Indexer Settings” choose “Cross GCC”. Then click Finish.

Project Properties

* The new project will appear under Project Explorer. Right-click the project and choose Properties from the
context menu.

* Click on the “Environment” properties page under “C/C++ Build”. Click “Add...” and enter name
BATCH_BUILD and value 1.

¢ Click “Add...” again, and enter name IDF_PATH. The value should be the full path where ESP-IDF is installed.
Windows users can copy the IDF_PATH from windows explorer.

» Edit the PATH environment variable. Keep the current value, and append the path to the Xtensa toolchain
installed as part of IDF setup, if this is not already listed on the PATH. A typical path to the toolchain
looks like /home/user—name/esp/xtensa-esp32-elf/bin. Note that you need to add a colon

before the appended path. Windows users will need to prepend C:\msys32\mingw32\bin;
C:\msys32\opt\xtensa-esp32-elf\bin;C:\msys32\usr\bin to PATH environment variable
(If you installed msys32 to a different directory then you’ll need to change these paths to match).

* On macOS, add a PYTHONPATH environment variable and set it to /Library/Frameworks/Python.
framework/Versions/2.7/1ib/python2.7/site-packages. This is so that the system Python,
which has pyserial installed as part of the setup steps, overrides any built-in Eclipse Python.

ADDITIONAL NOTE: If either the IDF_PATH directory or the project directory is located outside
C:\msys32\home directory, you will have to give custom build command in C/C++ Build properties as: python
${IDF_PATH}/tools/windows/eclipse_make.py (Please note that the build time may get significantly
increased by this method.)

Navigate to “C/C++ General” -> “Preprocessor Include Paths” property page:
* Click the “Providers” tab

¢ In the list of providers, click “CDT Cross GCC Built-in Compiler Settings”. Change “Command to get compiler
specs” to xtensa-esp32-elf-gcc ${FLAGS} -std=c++11 -E -P -v -dD "${INPUTS}".

70 Chapter 1. Get Started

https://www.eclipse.org/

Read the Docs Template Documentation, Release v3.3.1

¢ In the list of providers, click “CDT GCC Build Output Parser” and change the “Compiler command pattern” to
xtensa-esp32-elf-(gcclg\+\+|c\+\+|cc|cpplclang)

Navigate to “C/C++ General” -> “Indexer” property page:
» Check “Enable project specific settings” to enable the rest of the settings on this page.

* Uncheck “Allow heuristic resolution of includes”. When this option is enabled Eclipse sometimes fails to find
correct header directories.

Navigate to “C/C++ Build” -> “Behavior” property page:

¢ Check “Enable parallel build” to enable multiple build jobs in parallel.

Building in Eclipse

Before your project is first built, Eclipse may show a lot of errors and warnings about undefined values. This is because
some source files are automatically generated as part of the esp-idf build process. These errors and warnings will go
away after you build the project.

* Click OK to close the Properties dialog in Eclipse.

e Outside Eclipse, open a command line prompt. Navigate to your project directory, and run make
menuconfig to configure your project’s esp-idf settings. This step currently has to be run outside Eclipse.

If you try to build without running a configuration step first, esp-idf will prompt for configuration on the command line
- but Eclipse is not able to deal with this, so the build will hang or fail.

* Back in Eclipse, choose Project -> Build to build your project.

TIP: If your project had already been built outside Eclipse, you may need to do a Project -> Clean before choosing
Project -> Build. This is so Eclipse can see the compiler arguments for all source files. It uses these to determine the
header include paths.

Flash from Eclipse

You can integrate the “make flash™ target into your Eclipse project to flash using esptool.py from the Eclipse Ul:

* Right-click your project in Project Explorer (important to make sure you select the project, not a directory in the
project, or Eclipse may find the wrong Makefile.)

¢ Select Build Targets -> Create. .. from the context menu.
» Type “flash” as the target name. Leave the other options as their defaults.

* Now you can use Project -> Build Target -> Build (Shift+F9) to build the custom flash target, which will compile
and flash the project.

Note that you will need to use “make menuconfig” to set the serial port and other config options for flashing. “make
menuconfig” still requires a command line terminal (see the instructions for your platform.)

Follow the same steps to add boot loader and partition_table targets, if necessary.

1.15.5 IDF Monitor

[l

The IDF Monitor tool is a Python program which runs when the make monitor target is invoked in IDF.

1.15. Related Documents 71

../../../zh_CN/v3.3.1/get-started/idf-monitor.html

Read the Docs Template Documentation, Release v3.3.1

It is mainly a serial terminal program which relays serial data to and from the target device’s serial port, but it has
some other IDF-specific features.

Interacting With IDF Monitor

e Ctrl-] will exit the monitor.
e Ctrl-T Ctrl-H will display a help menu with all other keyboard shortcuts.

* Any other key apart from Ctr1-] and Ctr1-T is sent through the serial port.

Automatically Decoding Addresses

Any time esp-idf prints a hexadecimal code address of the form 0x4 , IDF Monitor will use addr2line to
look up the source code location and function name.

When an esp-idf app crashes and panics a register dump and backtrace such as this is produced:

Guru Meditation Error of type StoreProhibited occurred on core 0. Exception was,
—unhandled.
Register dump:

PC : 0x400£360d PS : 0x00060330 A0 : 0x800dbf56 Al : 0x3ffb7e00
A2 : 0x3ffbl36c A3 : 0x00000005 A4 : 0x00000000 A5 : 0x00000000
A6 : 0x00000000 A7 : 0x00000080 A8 : 0x00000000 A9 : 0x3ffb7ddo0
AlQ : 0x00000003 All : 0x00060£23 Al2 : 0x00060£20 Al1l3 : 0x3ffba6d0l
Al4 : 0x00000047 Al5 : 0x0000000f SAR : 0x00000019 EXCCAUSE: 0x0000001d
EXCVADDR: 0x00000000 LBEG : 0x4000c46c LEND : 0x4000c477 LCOUNT : 0x00000000

Backtrace: 0x400£360d:0x3ffb7e00 0x400dbf56:0x3ffb7e20 0x400dbfbe:0x3ffb7e40
—0x400dbf82:0x3ffb7e60 0x400d071d:0x3ffb7e90

IDF Monitor will augment the dump:

Guru Meditation Error of type StoreProhibited occurred on core 0. Exception was,
—unhandled.

Register dump:

PC : 0x400£360d PS : 0x00060330 A0 : 0x800dbf56 Al : 0x3ffb7e00
0x400£360d: do_something to_crash at /home/gus/esp/32/idf/examples/get-started/hello_
—~world/main/./hello_world_main.c:57

(inlined by) inner_dont_crash at /home/gus/esp/32/idf/examples/get-started/hello_
—world/main/./hello_world_main.c:52

A2 : 0x3ffbl36c A3 : 0x00000005 A4 : 0x00000000 A5 : 0x00000000
A6 : 0x00000000 A7 : 0x00000080 A8 : 0x00000000 A9 : 0x3ffb7ddo0
Al0 : 0x00000003 All : 0x00060£23 Al2 : 0x00060£20 Al3 : 0x3ffba6d0l
Al4 : 0x00000047 AlS5 : 0x0000000f SAR : 0x00000019 EXCCAUSE: 0x0000001d
EXCVADDR: 0x00000000 LBEG : 0x4000c46c LEND : 0x4000c477 LCOUNT : 0x00000000

Backtrace: 0x400£360d:0x3ffb7e00 0x400dbf56:0x3ffb7e20 0x400dbfS5e:0x3ffb7e40
—0x400db£f82:0x3ffb7e60 0x400d071d:0x3ffb7e90

0x400£360d: do_something_to_crash at /home/gus/esp/32/idf/examples/get-started/hello_
—world/main/./hello_world_main.c:57

(inlined by) inner_dont_crash at /home/gus/esp/32/idf/examples/get—-started/hello_
—world/main/./hello_world_main.c:52

0x400dbf56: still_dont_crash at /home/gus/esp/32/idf/examples/get-started/hello_world/
—main/./hello_world _main.c:47

0x400dbf5e: dont_crash at /home/gus/esp/32/idf/examples/get-started/hello_world/main/.
—/hello_world_main.c:42

(continues on next page)

72 Chapter 1. Get Started

https://sourceware.org/binutils/docs/binutils/addr2line.html

Read the Docs Template Documentation, Release v3.3.1

(continued from previous page)

0x400db£f82: app_main at /home/gus/esp/32/idf/examples/get-started/hello_world/main/./
—~hello_world_main.c:33
0x400d071d: main_task at /home/gus/esp/32/idf/components/esp32/./cpu_start.c:254

Behind the scenes, the command IDF Monitor runs to decode each address is:

xtensa-esp32-elf-addr2line -pfiaC -e build/PROJECT.elf ADDRESS

Launch GDB for GDBStub

By default, if an esp-idf app crashes then the panic handler prints registers and a stack dump as shown above, and then
resets.

Optionally, the panic handler can be configured to run a serial “gdb stub”” which can communicate with a gdb debugger
program and allow memory to be read, variables and stack frames examined, etc. This is not as versatile as JTAG
debugging, but no special hardware is required.

To enable the gdbstub, run make menuconfig and set CONFIG_ESP32_PANIC option to Invoke GDBStub.

If this option is enabled and IDF Monitor sees the gdb stub has loaded, it will automatically pause serial monitoring
and run GDB with the correct arguments. After GDB exits, the board will be reset via the RTS serial line (if this is
connected.)

Behind the scenes, the command IDF Monitor runs is:

xtensa-esp32-elf-gdb -ex "set serial baud BAUD" -ex "target remote PORT" -ex_
—interrupt build/PROJECT.elf

Quick Compile and Flash

The keyboard shortcut Ctr1-T Ctrl-F will pause IDF Monitor, run the make flash target, then resume IDF
Monitor. Any changed source files will be recompiled before re-flashing.

The keyboard shortcut Ctr1-T Ctrl-A will pause IDF Monitor, run the make app-flash target, then resume
IDF Monitor. This is similar to make flash, but only the main app is compiled and reflashed.

Quick Reset

The keyboard shortcut Ct r1-T Ctrl-R will reset the target board via the RTS line (if it is connected.)

Pause the Application

The keyboard shortcut Ctr1-T Ctr1-P will reset the target into bootloader, so that the board will run nothing. This
is useful when you want to wait for another device to startup. Then shortcut Ctr1-T Ctr1-R can be used to restart
the application.

Toggle Output Display

Sometimes you may want to stop new output printed to screen, to see the log before. The keyboard shortcut Ctr1-T
Ctrl-Y will toggle the display (discard all serial data when the display is off) so that you can stop to see the log, and
revert again quickly without quitting the monitor.

1.15. Related Documents 73

https://sourceware.org/gdb/download/onlinedocs/

Read the Docs Template Documentation, Release v3.3.1

Filtering the Output

The IDF monitor can be invoked as make monitor PRINT_FILTER="" with specifying a custom
PRINT_FILTER option for filtering outputs. The default value is an empty string which means that everything
will be printed. Restrictions on what to print can be specified as a series of <tag>:<log_level> items where
<tag> is the tag string and <log_level> is a character from set {N, E, W, I, D, V, =} referring to a
level for logging. For example, PRINT_FILTER="tagl:W" will match and print (only) the outputs written with
ESP_LOGW ("tagl", ...) or at lower verbosity level, i.e. ESP_LOGE ("tagl", ...). Not specifying a
<log_level> or using * defaults to Verbose level.

Note: The primary logging is set up at compilation time through the logging library. Output filtering by the IDF
monitor is only a secondary solution because one cannot filter something which has been disabled at compilation
time. The advantage of the secondary filtering is that one can use various filtering options without recompiling the
application.

A restriction applies to tags when one wants to use them together with output filtering: they cannot contain spaces,
asterisks = and semicolons :.

If the last line of the output is written without an end of line then the output filtering might get confused, i.e. the
monitor starts to print the line and only later finds out that the line should have not been written. This is a known
issue and can be avoided by always adding an end of line after printing something (especially when no output follows
immediately afterwards).

Examples Of Filtering Rules:

* Asterisk can be used to match any tags. However, specifying PRINT_FILTER="x:I tagl:E" will print
for tagl only errors because the rule for tagl has a precedence over the rule for «.

* The default (empty) rule is equivalent to % :V because matching every tag at level Verbose or lower means
matching everything.

* Rule "tagl:W tagl:E" is equivalent to "tagl:E" because any consequent occurrence of the same tag
name overwrites the previous one.

* Rule "tagl:I tag2:W" will print only tagl at verbosity level Info or lower and tag2 at verbosity level
Warning or lower.

* Rule "tagl:I tag2:W tag3:N" is essentially equivalent to the previous one because tag3: N specifies
that tag3 should not be printed.

* tag3:Ninrule "tagl:I tag2:W tag3:N *:V" is more meaningful because in this context the result
will be that tag3 will not be printed, tagl and tag2 will be at the specified (or lower) verbosity level and
everything else will be printed by default.

e "% :N" will suppress all outputs even prints made by something else than the logging functions, e.g. printf.
For printing those outputs one need to use * : E or higher verbosity level.

* Rules "tagl:V","tagl:v", "tagl:", "tagl:*" and "tagl" are all equivalent ones.

A More Complex Filtering Example

The following log snippet was acquired using make monitor:

74 Chapter 1. Get Started

Read the Docs Template Documentation, Release v3.3.1

10ad:0x40078000, 1len:13564

entry 0x40078d4c

31) esp_image: image at 0x30000 has invalid magic byte

31) esp_image: image at 0x30000 has invalid SPI mode 255

39) boot: Factory app partition is not bootable

cpu_start: Pro cpu up.

heap_init: Initializing. RAM available for dynamic allocation:
cpu_start: Pro cpu start user code

light_driver: [light_init, 74]:status: 1, mode: 2

vis: esp_vfs_register_fd_range is successful for range <54; 64) and VFS ID 1
wifi: wifi driver task: 3ffdbf84, prio:23, stack:4096, core=0

568

H O UOHHHES ©
500230000
o
0

The captured output for make monitor PRINT_FILTER="wifi esp_image:E light_driver:I" is
the following:

E (31) esp_image: image at 0x30000 has invalid magic byte
I (328) wifi: wifi driver task: 3ffdbf84, prio:23, stack:4096, core=0

make monitor PRINT_FILTER="light_driver:D esp_image:N boot:N cpu_start:N vfs:N
wifi:N *:V" gives the following output:

1oad:0x40078000, 1len:13564

entry 0x40078d4c

I (569) heap_init: Initializing. RAM available for dynamic allocation:
D (309) light_driver: [light_init, 74]:status: 1, mode: 2

Simple Monitor

Earlier versions of ESP-IDF used the pySerial command line program miniterm as a serial console program.
This program can still be run, via make simple_monitor.

IDF Monitor is based on miniterm and shares the same basic keyboard shortcuts.

Known Issues with IDF Monitor

Issues Observed on Windows

¢ If you are using the supported Windows environment and receive the error “winpty: command not found” then
run pacman —-S winpty to fix.

* Arrow keys and some other special keys in gdb don’t work, due to Windows Console limitations.
¢ Occasionally when “make” exits, it may stall for up to 30 seconds before idf _monitor resumes.

* Occasionally when “gdb” is run, it may stall for a short time before it begins communicating with the gdbstub.

1.15.6 Customized Setup of Toolchain
Instead of downloading binary toolchain from Espressif website (see Serup Toolchain) you may build the toolchain
yourself.

If you can’t think of a reason why you need to build it yourself, then probably it’s better to stick with the binary
version. However, here are some of the reasons why you might want to compile it from source:

* if you want to customize toolchain build configuration

1.15. Related Documents 75

https://github.com/pyserial/pyserial
https://pyserial.readthedocs.org/en/latest/tools.html#module-serial.tools.miniterm

Read the Docs Template Documentation, Release v3.3.1

In any case, here are the instructions to compile the toolchain yourself.

if you want to use a different GCC version (such as 4.8.5)
if you want to hack gcc or newlib or libstdc++
if you are curious and/or have time to spare

if you don’t trust binaries downloaded from the Internet

76

Chapter 1. Get Started

CHAPTER 2

Get Started (CMake)

Note: This is documentation for the CMake-based build system which is currently in preview release. If you encounter
any gaps or bugs, please report them in the Issues section of the ESP-IDF repository.

The CMake-based build system will become the default build system in ESP-IDF V4.0. The existing GNU Make
based build system will be deprecated in ESP-IDF V5.0.

Important: The following features are not yet supported with the CMake-based build system:
* Eclipse IDE Documentation
* Secure Boot
* Flash Encryption

Support for these features will be available before CMake becomes the default build system.

This document is intended to help users set up the software environment for development of applications using
hardware based on the Espressif ESP32. Through a simple example we would like to illustrate how to use ESP-
IDF (Espressif IoT Development Framework), including the menu based configuration, compiling the ESP-IDF and
firmware download to ESP32 boards.

Note: This is documentation for stable version v3.3.1 of ESP-IDF. Other ESP-IDF Versions are also available.

2.1 Introduction

ESP32 integrates Wi-Fi (2.4 GHz band) and Bluetooth 4.2 solutions on a single chip, along with dual high performance
cores, Ultra Low Power co-processor and several peripherals. Powered by 40 nm technology, ESP32 provides a robust,

77

../../../zh_CN/v3.3.1/get-started-cmake/index.html
https://github.com/espressif/esp-idf/issues

Read the Docs Template Documentation, Release v3.3.1

highly integrated platform to meet the continuous demands for efficient power usage, compact design, security, high
performance, and reliability.

Espressif provides the basic hardware and software resources that help application developers to build their ideas
around the ESP32 series hardware. The software development framework by Espressif is intended for rapidly de-
veloping Internet-of-Things (IoT) applications, with Wi-Fi, Bluetooth, power management and several other system
features.

2.2 What You Need

To develop applications for ESP32 you need:
* PC loaded with either Windows, Linux or Mac operating system
 Toolchain to compile code for ESP32
* Build tools CMake and Ninja to build a full Application for ESP32

ESP-IDF that essentially contains API for ESP32 and scripts to operate the Toolchain
* A text editor to write programs (Projects) in C, e.g. Eclipse

The ESP32 board itself and a USB cable to connect it to the PC

ESP.IDE CMake / Eclipse

Toolchain

Application LT

UPLOAD

SOCUEROSHRe0Gn0 S0 e
OOCOSOO0CU0S0c00cane D)

- ——————— T

[SLE Lo L i i o == === __ rs

/,._; e e ""=.'I__\ R S ______..-_-".-::‘f
[

Fig. 1: Development of applications for ESP32

2.3 Installation Step by Step

This is a detailed roadmap to walk you through the installation process.

78 Chapter 2. Get Started (CMake)

https://www.eclipse.org/

Read the Docs Template Documentation, Release v3.3.1

2.3.1 Setting up Development Environment

e Step 1. Set up Toolchain for Windows, Linux or MacOS
o Step 2. Get ESP-IDF
o Step 3. Set Environment Variables

e Step 4. Install the Required Python Packages

2.3.2 Creating Your First Project

e Step 5. Start a Project

e Step 6. Connect the Device
o Step 7. Configure

e Step 8. Build the Project

o Step 9. Flash to a Device
 Step 10. Monitor

2.4 Development Board Guides

If you have one of ESP32 development boards listed below, click on the link for hardware setup:

2.4.1 ESP32-DevKitC V4 Getting Started Guide (CMake)

This user guide shows how to get started with ESP32-DevKitC V4 development board. For description of other
versions of the ESP32-DevKitC check ESP32 Hardware Reference.

What You Need

e 1 x ESP32-DevKitC V4 board
e 1 x USB A/ micro USB B cable
¢ 1 x PC loaded with Windows, Linux or Mac OS

If you want to start using this board right now, go directly to Section Start Application Development.

Overview

ESP32-DevKitC V4 is a small-sized ESP32-based development board produced by Espressif. Most of the I/O pins are
broken out to the pin headers on both sides for easy interfacing. Developers can connect these pins to peripherals as
needed. Standard headers also make development easy and convenient when using a breadboard.

The board supports various ESP32 modules, including ESP32-WROOM-32, ESP32-WROOM-32U, ESP32-WROOM-
32D and ESP32-SOLO-1.

2.4. Development Board Guides 79

https://espressif.com

Read the Docs Template Documentation, Release v3.3.1

Functional Description

The following list and figure below describe key components, interfaces and controls of ESP32-DevKitC V4 board.

ESP-WROOM-32 ESP32-WROOM-32 module soldered to the ESP32-DevKitC V4 board. Optionally ESP32-
WROOM-32D, ESP32-WROOM-32U or ESP32-SOLO-1 module may be soldered instead of the ESP32-
WROOM-32.

USB-UART Bridge A single chip USB-UART bridge provides up to 3 Mbps transfers rates.

Boot Download button: holding down the Boot button and pressing the EN button initiates the firmware download
mode. Then user can download firmware through the serial port.

Micro USB Port USB interface. It functions as the power supply for the board and the communication interface
between PC and the ESP module.

5V Power On LED This LED lights when the USB or an external 5V power supply is applied to the board. For
details see schematic in Related Documents.

EN Reset button: pressing this button resets the system.

I/O Most of the pins on the ESP module are broken out to the pin headers on the board. Users can program ESP32 to
enable multiple functions such as PWM, ADC, DAC, 12C, 128, SPI, etc.

Note: Some of broken out pins are used internally be the ESP32 module to communicate with SPI memory.
They are grouped on one side of the board besides the USB connector and labeled DO, D1, D2, D3, CMD and
CLK. In general these pins should be left unconnected or access to the SPI flash memory / SPI RAM may be
disturbed.

Note: GPIO16 and 17 are used internally by the ESP32-WROVER module. They are broken out and avialable
for use only for boards that have the ESP-WROOM-32 module installed.

Power Supply Options

There following options are available to provide power supply to this board:
1. Micro USB port, this is default power supply connection
2. 5V / GND header pins
3. 3V3/ GND header pins

Warning: Above options are mutually exclusive, i.e. the power supply may be provided using only one of the
above options. Attempt to power the board using more than one connection at a time may damage the board and/or
the power supply source.

Start Application Development
Before powering up the ESP32-DevKitC, please make sure that the board has been received in good condition with no
obvious signs of damage.

To start development of applications, proceed to Section Get Started (CMake), that will walk you through the Instal-
lation Step by Step.

80 Chapter 2. Get Started (CMake)

Read the Docs Template Documentation, Release v3.3.1

5V Power On LED I/O Connector

CE R E R R E T LT I L EEY)
NS OWD EQ Z0 ET OND ZT PT LZ 9T ST EE€ ZE SE ¥WE NA dA N3 ENE

'r-I.IIIIII.III.Ii'

EN Button o Y) (e (AN
S vy () (=)

Micro USB Port ——— ESP32-WROOM-32

¥323323113

Boot Button L - ol | Hisssnans T

7 S |18 19 GND 21 RX TX 22 23 GM
29909099

USB-to-UART Bridge Optional Space for ESP32-WROVER

Fig. 2: ESP32-DevKitC V4 with ESP-WROOM-32 module soldered

Board Dimensions
Related Documents

e ESP32-DevKitC V4 schematic (PDF)
e ESP32 Datasheet (PDF)
ESP-WROOM-32 Datasheet (PDF)

ESP32-WROVER Datasheet (PDF)

ESP32-DevKitC V2 Getting Started Guide (CMake)

This user guide shows how to get started with ESP32-DevKitC development board.

What You Need

e 1 x ESP32-DevKitC V2 board
e 1 x USB A/ micro USB B cable
¢ 1 x PC loaded with Windows, Linux or Mac OS

If you want to start using this board right now, go directly to Section Start Application Development.

2.4. Development Board Guides 81

https://dl.espressif.com/dl/schematics/esp32_devkitc_v4-sch.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://espressif.com/sites/default/files/documentation/esp-wroom-32_datasheet_en.pdf
https://espressif.com/sites/default/files/documentation/esp32-wrover_datasheet_en.pdf

Read the Docs Template Documentation, Release v3.3.1

LKD® D1 15 2 @ 4 16 17 5 18 19GND 21 RX TX 22 23 GND

& v

27.9 mm

CX4

-
-
&
g
ol
=
2
S

Fig. 3: ESP32 DevKitC board dimensions - back

Overview

ESP32-DevKitC is a small-sized ESP32-based development board produced by Espressif. Most of the I/O pins are
broken out to the pin headers on both sides for easy interfacing. Developers can connect these pins to peripherals as
needed. Standard headers also make development easy and convenient when using a breadboard.

Functional Description

The following list and figure below describe key components, interfaces and controls of ESP32-DevKitC board.
ESP-WROOM-32 Standard ESP-WROOM-32 module soldered to the ESP32-DevKitC board.
EN Reset button: pressing this button resets the system.

Boot Download button: holding down the Boot button and pressing the EN button initiates the firmware download
mode. Then user can download firmware through the serial port.

USB USB interface. It functions as the power supply for the board and the communication interface between PC and
ESP-WROOM-32.

I/0 Most of the pins on the ESP-WROOM-32 are broken out to the pin headers on the board. Users can program
ESP32 to enable multiple functions such as PWM, ADC, DAC, 12C, 12S, SPI, etc.

Power Supply Options

There following options are available to provide power supply to this board:

1. Micro USB port, this is default power supply connection

82 Chapter 2. Get Started (CMake)

https://espressif.com
https://www.espressif.com/sites/default/files/documentation/esp-wroom-32_datasheet_en.pdf

Read the Docs Template Documentation, Release v3.3.1

ESP-WROOM-32

0000000000

OND 6101 BIOI SOI LIO1 3101 +O0 DO

Fig. 4: ESP32-DevKitC V2 board layout

2. 5V / GND header pins
3. 3V3/GND header pins

Warning: Above options are mutually exclusive, i.e. the power supply may be provided using only one of the
above options. Attempt to power the board using more than one connection at a time may damage the board and/or
the power supply source.

Start Application Development

Before powering up the ESP32-DevKitC, please make sure that the board has been received in good condition with no
obvious signs of damage.

To start development of applications, proceed to Section Get Started (CMake), that will walk you through the Instal-
lation Step by Step.

Related Documents

¢ ESP32-DevKitC schematic (PDF)
* ESP32 Datasheet (PDF)
¢ ESP-WROOM-32 Datasheet (PDF)

2.4. Development Board Guides 83

https://dl.espressif.com/dl/schematics/ESP32-Core-Board-V2_sch.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://espressif.com/sites/default/files/documentation/esp-wroom-32_datasheet_en.pdf

Read the Docs Template Documentation, Release v3.3.1

2.4.2 ESP-WROVER-KIT V3 Getting Started Guide (CMake)

This user guide shows how to get started with ESP-WROVER-KIT V3 development board including description of
its functionality and configuration options. For description of other versions of the ESP-WROVER-KIT check ESP32
Hardware Reference.

What You Need

e 1 x ESP-WROVER-KIT V3 board
* 1 x Micro USB 2.0 Cable, Type A to Micro B
¢ 1 x PC loaded with Windows, Linux or Mac OS

If you want to start using this board right now, go directly to Section Start Application Development.

Overview

The ESP-WROVER-KIT is a development board produced by Espressif built around ESP32. This board is compatible
with ESP32 modules, including the ESP-WROOM-32 and ESP32-WROVER. The ESP-WROVER-KIT features sup-
port for an LCD and MicroSD card. The I/O pins have been broken out from the ESP32 module for easy extension.
The board carries an advanced multi-protocol USB bridge (the FTDI FT2232HL), enabling developers to use JTAG
directly to debug the ESP32 through the USB interface. The development board makes secondary development easy
and cost-effective.

Note: ESP-WROVER-KIT V3 integrates the ESP32-WROVER module by default.

Functionality Overview

Block diagram below presents main components of ESP-WROVER-KIT and interconnections between components.

Functional Description

The following list and figures below describe key components, interfaces and controls of ESP-WROVER-KIT board.

32.768 kHz An external precision 32.768 kHz crystal oscillator provides the chip with a clock of low-power con-
sumption during the Deep-sleep mode.

OR A zero Ohm resistor intended as a placeholder for a current shunt. May be desoldered or replaced with a current
shunt to facilitate measurement of current required by ESP32 module depending on power mode.

ESP32 Module ESP-WROVER-KIT is compatible with both ESP-WROOM-32 and ESP32-WROVER. The ESP32-
WROVER module features all the functions of ESP-WROOM-32 and integrates an external 32-MBit PSRAM
for flexible extended storage and data processing capabilities.

Note: GPIO16 and GPIO17 are used as the CS and clock signal for PSRAM. To ensure reliable performance,
the two GPIOs are not broken out.

FT2232 The FT2232 chip is a multi-protocol USB-to-serial bridge. Users can control and program the FT2232 chip
through the USB interface to establish communication with ESP32. The FT2232 chip also features USB-to-
JTAG interface. USB-to-JTAG is available on channel A of FT2232, USB-to-serial on channel B. The embedded

84 Chapter 2. Get Started (CMake)

https://espressif.com

Read the Docs Template Documentation, Release v3.3.1

32.768KHz

crystal

110 expand

ChannelA LCD.

uUsBe 3.2inch
Connector
cheme i
1 MicroSD
USB_5Y
= LDO:
EXT_5V _ | +5V->+3.3V 1 ' RGB LED
- o] [rere]

Fig. 5: ESP-WROVER-KIT block diagram

FT2232 chip is one of the distinguishing features of the ESPWROVER-KIT. It enhances users’ convenience in
terms of application development and debugging. In addition, users do not need to buy a JTAG debugger
separately, which reduces the development cost, see ESP-WROVER-KIT V3 schematic.

UART Serial port: the serial TX/RX signals on FT2232HL and ESP32 are broken out to the two sides of JP11. By
default, the two signals are connected with jumpers. To use the ESP32 module serial interface only, the jumpers
may be removed and the module can be connected to another external serial device.

SPI SPI interface: the SPI interface connects to an external flash (PSRAM). To interface another SPI device, an extra
CS signal is needed. The electrical level on the flash of this module is 1.8V. If an ESP-WROOM-32 is being
used, please note that the electrical level on the flash of this module is 3.3V.

CTS/RTS Serial port flow control signals: the pins are not connected to the circuitry by default. To enable them,
respective pins of JP14 must be shorted with jumpers.

JTAG JTAG interface: the JTAG signals on FT2232HL and ESP32 are broken out to the two sides of JP8. By default,
the two signals are disconnected. To enable JTAG, shorting jumpers are required on the signals.

EN Reset button: pressing this button resets the system.

Boot Download button: holding down the Boot button and pressing the EN button initiates the firmware download
mode. Then user can download firmware through the serial port.

USB USB interface. It functions as the power supply for the board and the communication interface between PC and
ESP32 module.

Power Select Power supply selection interface: the ESP-WROVER-KIT can be powered through the USB interface
or the 5V Input interface. The user can select the power supply with a jumper. More details can be found in
Section Setup Options, jumper header JP7.

Power Key Power on/off button: toggling to the right powers the board on; toggling to the left powers the board off.
5V Input The 5V power supply interface is used as a backup power supply in case of full-load operation.

LDO NCPI1117(1A). 5V-t0-3.3V LDO. (There is an alternative pin-compatible LDO — LM317DCY, with an output
current of up to 1.5A). NCP1117 can provide a maximum current of 1A. The LDO solutions are available

2.4. Development Board Guides 85

https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_SCH-3.pdf

Read the Docs Template Documentation, Release v3.3.1

with both fixed output voltage and variable output voltage. For details please refer to ESP-WROVER-KIT V3
schematic.

Camera Camera interface: a standard OV7670 camera module is supported.

RGB Red, green and blue (RGB) light emitting diodes (LEDs), which may be controlled by pulse width modulation
(PWM).

I/O All the pins on the ESP32 module are led out to the pin headers on the ESP-WROVER-KIT. Users can program
ESP32 to enable multiple functions such as PWM, ADC, DAC, 12C, 128, SPI, etc.

Micro SD Card Micro SD card slot for data storage.

LCD ESP-WROVER-KIT supports mounting and interfacing a 3.2 SPI (standard 4-wire Serial Peripheral Interface)
LCD, as shown on figure ESP-WROVER-KIT board layout - back.

32.768
kHz
Micro OR
SD Card
ESP32
e, Module
FT2232
RGB
LED ;
1 it LR
UART
Camera
= SPl
it
LDO
CTS
RTS
5V
Input JTAG
ggg‘;{ PE:’;' USB Boot EN

Fig. 6: ESP-WROVER-KIT board layout - front

86 Chapter 2. Get Started (CMake)

https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_SCH-3.pdf
https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_SCH-3.pdf

Read the Docs Template Documentation, Release v3.3.1

LCD

Fig. 7: ESP-WROVER-KIT board layout - back

oo 5B 3.3
&9
Qe m

24,

Development Board Guides

87

Read the Docs Template Documentation, Release v3.3.1

Setup Options

There are five jumper headers available to set up the board functionality. Typical options to select from are listed in
table below.

88 Chapter 2. Get Started (CMake)

Read the Docs Template Documentation, Release v3.3.1

Header

JP7

JP7

JP8

2.4. Devel

Jumper Setting

Description of Functionality

Power ESP-WROVER-KIT board from an external power
supply

Power ESP-WROVER-KIT board from an USB port

Enable JTAG functionality

89

Read the Docs Template Documentation, Release v3.3.1

Allocation of ESP32 Pins

Several pins / terminals of ESP32 module are allocated to the on board hardware. Some of them, like GPIOO or
GPIO2, have multiple functions. If certain hardware is not installed, e.g. nothing is plugged in to the Camera / JP4
header, then selected GPIOs may be used for other purposes.

Main I/O Connector / JP1

The JP1 connector is shown in two columns in the middle under “I/O” headers. The two columns “Shared With”
outside, describe where else on the board certain GPIO is used.

Shared With I/O I/O Shared With
3.3V | GND
NC/XTAL 1032 | 1033 | NC/XTAL
JTAG, MicroSD | 1012 | 1013 | JTAG, MicroSD
JTAG, MicroSD | 1014 | 1027 | Camera
Camera 1026 | 1025 | Camera, LCD
Camera 1035 | 1034 | Camera
Camera 1039 | 1036 | Camera
JTAG EN 1023 | Camera, LCD
Camera, LCD 1022 | 1021 | Camera, LCD, MicroSD
Camera, LCD 1019 | 1018 | Camera, LCD
Camera, LCD 105 1017 | PSRAM
PSRAM 1016 | 104 LED, Camera, MicroSD
LED, Boot 100 102 LED, Camera, MicroSD
JTAG, MicroSD | 1015 | 5V

Legend:

NC/XTAL - 32.768 kHz Oscillator
JTAG - JTAG / JP§

Boot - Boot button / SW2

Camera - Camera / JP4

LED - RGB LED

MicroSD - MicroSD Card / J4
LCD-LCD /U5

PSRAM - ESP32-WROVER’s PSRAM, if ESP32-WROVER is installed

32.768 kHz Oscillator

ESP32 Pin

GPIO32

GPIO33

90

Chapter 2. Get Started (CMake)

Read the Docs Template Documentation, Release v3.3.1

Note: As GPIO32 and GPIO33 are connected to the oscillator, to maintain signal integrity, they are not connected to
JP1 I/O expansion connector. This allocation may be changed from oscillator to JP1 by desoldering OR resistors from

positions R11 /R23 and installing them in positions R12 / R24.

SPI Flash / JP13

ESP32 Pin

CLK / GPIO6

SDO / GPIO7

SD1 / GPIO8

SD2 / GPIO9

SD3 / GPIO10

AN | | W =

CMD / GPIO11

Important: The module’s flash bus is connected to the pin header JP13 through 0-Ohm resistors R140 ~ R145. If

the flash frequency needs to operate at 80 MHz, to improve integrity of the bus signals, it is recommended to desolder

resistors R140 ~ R145. At this point, the module’s flash bus is disconnected with the pin header JP13.

JTAG / JP8

ESP32 Pin JTAG Signal
1 | EN TRST_N
2 | MTDO /GPIO15 | TDO
3 | MTDI/GPIO12 | TDI
4 | MTCK/GPIO13 | TCK
5 | MTMS /GPIO14 | TMS

2.4. Development Board Guides

91

Read the Docs Template Documentation, Release v3.3.1

Camera / JP4

RGB LED

MicroSD Card / J4

ESP32 Pin | Camera Signal
1 GPI1O27 SCCB Clock
2 | GPIO26 SCCB Data
3 GPIO21 System Clock
4 | GPIO25 Vertical Sync
5 GPIO23 Horizontal Reference
6 | GPIO22 Pixel Clock
7 | GPIO4 Pixel Data Bit 0
8 GPIOS Pixel Data Bit 1
9 | GPIOIS Pixel Data Bit 2
10 | GPIO19 Pixel Data Bit 3
11 | GPIO36 Pixel Data Bit 4
11 | GPIO39 Pixel Data Bit 5
11 | GPIO34 Pixel Data Bit 6
11 | GPIO35 Pixel Data Bit 7
11 | GPIO2 Camera Reset

ESP32 Pin | RGB LED

1 | GPIOO Red

2 | GPIO2 Blue

3 | GPIO4 Green

ESP32 Pin MicroSD Signal

1 | MTDI/GPIO12 | DATA2
2 | MTCK/GPIO13 | CD/DATA3
3 | MTDO/GPIO15 | CMD
4 | MTMS/GPIO14 | CLK
5 | GPIO2 DATAO
6 | GP1O4 DATAI
7 | GP1O21 CD

92

Chapter 2. Get Started (CMake)

Read the Docs Template Documentation, Release v3.3.1

LCD / U5

Start Application Development

ESP32 Pin | LCD Signal
1 | GPIO18 RESET
2 | GPIO19 SCL
3 | GPIO21 D/C
4 | GPIO22 CS
5 | GP1023 SDA
6 | GPIO25 SDO
7 | GPIO5 Backlight

Before powering up the ESP-WROVER-KIT, please make sure that the board has been received in good condition

with no obvious signs of damage.

Initial Setup

Select the source of power supply for the board by setting jumper JP7. The options are either USB port or an external
power supply. For this application selection of USB port is sufficient. Enable UART communication by installing
jumpers on JP11. Both selections are shown in table below.

Power up from USB port
|- e

Enable UART communication

Do not install any other jumpers.

Now to Development

To start development of applications, proceed to Section Get Started (CMake), that will walk you through the Instal-

lation Step by Step.

2.4. Development Board Guides

93

Read the Docs Template Documentation, Release v3.3.1

Related Documents

ESP-WROVER-KIT V3 schematic (PDF)
e ESP32 Datasheet (PDF)
ESP32-WROVER Datasheet (PDF)
ESP-WROOM-32 Datasheet (PDF)
JTAG Debugging

* ESP32 Hardware Reference

ESP-WROVER-KIT V2 Getting Started Guide (CMake)

This user guide shows how to get started with ESP-WROVER-KIT V2 development board including description of
its functionality and configuration options. For description of other versions of the ESP-WROVER-KIT check ESP32
Hardware Reference.

If you want to start using this board right now, go directly to Section Start Application Development.

What You Need

* 1 x ESP-WROVER-KIT V2 board
¢ 1 x Micro USB 2.0 Cable, Type A to Micro B
¢ 1 x PC loaded with Windows, Linux or Mac OS

Overview

The ESP-WROVER-KIT is a development board produced by Espressif built around ESP32. This board is compatible
with ESP32 modules, including the ESP-WROOM-32 and ESP32-WROVER. The ESP-WROVER-KIT features sup-
port for an LCD and MicroSD card. The I/O pins have been broken out from the ESP32 module for easy extension.
The board carries an advanced multi-protocol USB bridge (the FTDI FT2232HL), enabling developers to use JTAG
directly to debug the ESP32 through the USB interface. The development board makes secondary development easy
and cost-effective.

Note: ESP-WROVER-KIT V2 integrates the ESP-WROOM-32 module by default.

Functionality Overview

Block diagram below presents main components of ESP-WROVER-KIT and interconnections between components.

Functional Description

The following list and figures below describe key components, interfaces and controls of ESP-WROVER-KIT board.

32.768 kHz An external precision 32.768 kHz crystal oscillator provides the chip with a clock of low-power con-
sumption during the Deep-sleep mode.

94 Chapter 2. Get Started (CMake)

https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_SCH-3.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://espressif.com/sites/default/files/documentation/esp32-wrover_datasheet_en.pdf
https://espressif.com/sites/default/files/documentation/esp-wroom-32_datasheet_en.pdf
https://espressif.com

Read the Docs Template Documentation, Release v3.3.1

32.768KHz

crystal

110 expand

ChannelA LCD.

uUsBe 3.2inch
Connector
chennan [Somer
1 MicroSD
USB_5Y
= LDO:
EXT_5V o | +5V->43.3V . - RGB LED
g [en] |Kee|

Fig. 8: ESP-WROVER-KIT block diagram

ESP32 Module ESP-WROVER-KIT is compatible with both ESP~-WROOM-32 and ESP32-WROVER. The ESP32-
WROVER module features all the functions of ESP-WROOM-32 and integrates an external 32-MBit PSRAM
for flexible extended storage and data processing capabilities.

Note: GPIO16 and GPIO17 are used as the CS and clock signal for PSRAM. To ensure reliable performance,
the two GPIOs are not broken out.

CTS/RTS Serial port flow control signals: the pins are not connected to the circuitry by default. To enable them,
respective pins of JP14 must be shorted with jumpers.

UART Serial port: the serial TX/RX signals on FT2232HL and ESP32 are broken out to the two sides of JP11. By
default, the two signals are connected with jumpers. To use the ESP32 module serial interface only, the jumpers
may be removed and the module can be connected to another external serial device.

SPI SPI interface: the SPI interface connects to an external flash (PSRAM). To interface another SPI device, an extra
CS signal is needed. If an ESP32-WROVER is being used, please note that the electrical level on the flash and
SRAM is 1.8V.

JTAG JTAG interface: the JTAG signals on FT2232HL and ESP32 are broken out to the two sides of JPS. By default,
the two signals are disconnected. To enable JTAG, shorting jumpers are required on the signals.

FT2232 FT2232 chip is a multi-protocol USB-to-serial bridge. The FT2232 chip features USB-to-UART and USB-
to-JTAG functionalities. Users can control and program the FT2232 chip through the USB interface to establish
communication with ESP32.

The embedded FT2232 chip is one of the distinguishing features of the ESP-WROVER-KIT. It enhances users’
convenience in terms of application development and debugging. In addition, uses do not need to buy a JTAG
debugger separately, which reduces the development cost, see ESP-WROVER-KIT V2 schematic.

EN Reset button: pressing this button resets the system.

Boot Download button: holding down the Boot button and pressing the EN button initiates the firmware download
mode. Then user can download firmware through the serial port.

2.4. Development Board Guides 95

https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_SCH-2.pdf

Read the Docs Template Documentation, Release v3.3.1

USB USB interface. It functions as the power supply for the board and the communication interface between PC and
ESP32 module.

Power Select Power supply selection interface: the ESP-WROVER-KIT can be powered through the USB interface
or the 5V Input interface. The user can select the power supply with a jumper. More details can be found in
Section Setup Options, jumper header JP7.

Power Key Power on/off button: toggling to the right powers the board on; toggling to the left powers the board off.
5V Input The 5V power supply interface is used as a backup power supply in case of full-load operation.

LDO NCPI1117(1A). 5V-to-3.3V LDO. (There is an alternative pin-compatible LDO — LM317DCY, with an output
current of up to 1.5A). NCP1117 can provide a maximum current of 1A. The LDO solutions are available
with both fixed output voltage and variable output voltage. For details please refer to ESP-WROVER-KIT V2
schematic.

Camera Camera interface: a standard OV7670 camera module is supported.

RGB Red, green and blue (RGB) light emitting diodes (LEDs), which may be controlled by pulse width modulation
(PWM).

I/O All the pins on the ESP32 module are led out to the pin headers on the ESPWROVER-KIT. Users can program
ESP32 to enable multiple functions such as PWM, ADC, DAC, 12C, 128, SPI, etc.

Micro SD Card Micro SD card slot for data storage: when ESP32 enters the download mode, GPIO2 cannot be held
high. However, a pull-up resistor is required on GPIO2 to enable the Micro SD Card. By default, GPIO2 and
the pull-up resistor R153 are disconnected. To enable the SD Card, use jumpers on JP1 as shown in Section
Setup Options.

LCD ESP-WROVER-KIT supports mounting and interfacing a 3.2” SPI (standard 4-wire Serial Peripheral Interface)
LCD, as shown on figure ESP-WROVER-KIT board layout - back.

Setup Options

There are five jumper headers available to set up the board functionality. Typical options to select from are listed in
table below.

96 Chapter 2. Get Started (CMake)

https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_SCH-2.pdf
https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_SCH-2.pdf

Read the Docs Template Documentation, Release v3.3.1

Micro SD — — 32.7T68K
Cad [KB & : Hz

| ESP3z
| Module

‘ o

Eﬂe :

T ey

CTs

RGE

Camera

LoD FT2232

Power I Power
Key | Select

5V
Input

UsBE Boot EN ‘

Fig. 9: ESP-WROVER-KIT board layout - front

Development Board Guides 97

Read the Docs Template Documentation, Release v3.3.1

TSI FrSry.

L |
* 9
L N |
LA |

L I

ESP-WROVER-KIT
ISP = b KL T . Eapreas I, oo & & 8

L B B IR B BN BN BN B BE B B O B BN B B I R R B N O
[B BN IR B BN BN BN BN BE OB BN BN BN BN BN BN B BN AN BN NN B

°s

Fig. 10: ESP-WROVER-KIT board layout - back

98 Chapter 2. Get Started (CMake)

Read the Docs Template Documentation, Release v3.3.1

Header

Jumper Setting

JP1

JP1

JP7

JP7

Description of Functionality

Enable pull up for the Micro SD Card

Assert GPIO2 low during each download (by jumping it to
GPIO0)

Power ESP-WROVER-KIT board from an external power supply

MWRTS JF 13-

E-El"_';insf-.‘f-:?[i‘ - ’ﬁ’

B -
[Uf:'iw
s 1o e

Power ESP-WROVER-KIT board from an USB port

99

Read the Docs Template Documentation, Release v3.3.1

Start Application Development

Before powering up the ESP-WROVER-KIT, please make sure that the board has been received in good condition
with no obvious signs of damage.

Initial Setup

Select the source of power supply for the board by setting jumper JP7. The options are either USB port or an external
power supply. For this application selection of USB port is sufficient. Enable UART communication by installing
jumpers on JP11. Both selections are shown in table below.

Enable UART communication

Power up from USB port

=T

Do not install any other jumpers.

Now to Development

To start development of applications, proceed to Section Get Started (CMake), that will walk you through the Instal-
lation Step by Step.

Related Documents

ESP-WROVER-KIT V2 schematic (PDF)
e ESP32 Datasheet (PDF)
ESP-WROOM-32 Datasheet (PDF)
ESP32-WROVER Datasheet (PDF)
JTAG Debugging

ESP32 Hardware Reference

2.4.3 ESP32-PICO-KIT V4 Getting Started Guide (CMake)

This user guide shows how to get started with the ESP32-PICO-KIT V4 mini development board. For description of
other versions of the ESP32-PICO-KIT check ESP32 Hardware Reference.

100 Chapter 2. Get Started (CMake)

https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_SCH-2.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp-wroom-32_datasheet_en.pdf
https://espressif.com/sites/default/files/documentation/esp32-wrover_datasheet_en.pdf

Read the Docs Template Documentation, Release v3.3.1

What You Need

e 1 x ESP32-PICO-KIT V4 mini development board
* 1 x USB A/ Micro USB B cable
¢ 1 x PC loaded with Windows, Linux or Mac OS

If you want to start using this board right now, go directly to Section Start Application Development.

Overview

ESP32-PICO-KIT V4 is a mini development board produced by Espressif. At the core of this board is the ESP32-
PICO-D4, a System-in-Package (SIP) module with complete Wi-Fi and Bluetooth functionalities. Comparing to other
ESP32 chips, the ESP32-PICO-D4 integrates several peripheral components in one single package, that otherwise
would need to be installed separately. This includes a 40 MHz crystal oscillator, 4 MB flash, filter capacitors and RF
matching links in. This greatly reduces quantity and costs of additional components, subsequent assembly and testing
cost, as well as overall product complexity.

The development board integrates a USB-UART Bridge circuit, allowing the developers to connect the board to a PC’s
USB port for downloads and debugging.

For easy interfacing, all the IO signals and system power on ESP32-PICO-D4 are led out through two rows of 20
x 0.1” pitch header pads on both sides of the development board. To make the ESP32-PICO-KIT V4 fit into mini
breadboards, the header pads are populated with two rows of 17 pin headers. Remaining 2 x 3 pads grouped on each
side of the board besides the antenna are not populated. The remaining 2 x 3 pin headers may be soldered later by the
user.

Note: The 2 x 3 pads not populated with pin headers are internally connected to the flash memory embedded in the
ESP32-PICO-D4 SIP module. For more details see module’s datasheet in Related Documents.

The board dimensions are 52 x 20.3 x 10 mm (2.1” x 0.8” x 0.4”), see Section Board Dimensions. An overview
functional block diagram is shown below.

Functional Description

The following list and figure below describe key components, interfaces and controls of ESP32-PICO-KIT V4 board.

ESP32-PICO-D4 Standard ESP32-PICO-D4 module soldered to the ESP32-PICO-KIT V4 board. The complete
system of the ESP32 chip has been integrated into the SIP module, requiring only external antenna with LC
matching network, decoupling capacitors and pull-up resistors for EN signals to function properly.

LDO 5V-t0-3.3V Low dropout voltage regulator (LDO).
USB-UART Bridge A single chip USB-UART bridge provides up to 1 Mbps transfers rates.

Micro USB Port USB interface. It functions as the power supply for the board and the communication interface
between PC and ESP32-PICO-KIT V4.

5V Power On LED This light emitting diode lits when the USB or an external 5V power supply is applied to the
board. For details see schematic in Related Documents.

I/0 All the pins on ESP32-PICO-D4 are broken out to the pin headers on the board. Users can program ESP32 to
enable multiple functions such as PWM, ADC, DAC, 12C, 12S, SPI, etc. For details please see Section Pin
Descriptions.

BOOT Button Holding down the Boot button and pressing the EN button initiates the firmware download mode.
Then user can download firmware through the serial port.

2.4. Development Board Guides 101

https://espressif.com

Read the Docs Template Documentation, Release v3.3.1

0000000000 OGSOOGOOGEOSO®O OGS
LLLLLL L L L L L L L L L LS Pin Header

USB Bridget

n
=
AR

USE Port

LDO Regulator

@ &) —

Power
SONSSNNNNNNNNSNNNNN -
L BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN N N N

Pin Header

Fig. 11: ESP32-PICO-KIT V4 functional block diagram

EN Button Reset button; pressing this button resets the system.

Power Supply Options

There following options are available to provide power supply to the ESP32-PICO-KIT V4:
1. Micro USB port, this is default power supply connection
2. 5V / GND header pins
3. 3V3/GND header pins

Warning: Above options are mutually exclusive, i.e. the power supply may be provided using only one of the
above options. Attempt to power the board using more than one connection at a time may damage the board and/or
the power supply source.

Start Application Development
Before powering up the ESP32-PICO-KIT V4, please make sure that the board has been received in good condition
with no obvious signs of damage.

To start development of applications, proceed to Section Get Started (CMake), that will walk you through the Instal-
lation Step by Step.

102 Chapter 2. Get Started (CMake)

Read the Docs Template Documentation, Release v3.3.1

\ USB-UART Bridge

3D Antenna ‘ ‘ ESP32-PICO-D4 ‘ ‘ LDO ‘
|

EEEEE NS N NN NN B N XN N
RX0 "_rxn 1035 K034 1334 1037 EN GND 3V3

108 1023 1008 W05 100 109

CLK 021 1022

i - r - — CANEERNAE :
e fi-. o
- - = -

_,L? A

-

-
d] o
@ C_®
RNRRREN 507 VP Svk K025 1028 1037 1033 1027 1014 JOTT 1013 U015 102 104 100 3V3 OMD Y
B 00 9GSO e D we e

Fig. 12: ESP32-PICO-KIT V4 board layout

Pin Descriptions
The two tables below provide the Name and Function of I/O headers on both sides of the board, see ESP32-PICO-KIT
V4 board layout. The pin numbering and header names are the same as on a schematic in Related Documents.

103

2.4. Development Board Guides

Read the Docs Template Documentation, Release v3.3.1

Header J2

No. Name Type Function

1 FLASH_SD1 (FSD1) /0

GPIOS, SD_DATAL,
SPID, HS1_DATAL1 (1),
U2CTS

2 FLASH_SD3 (FSD3) I/0

GPIO7, SD_DATAO,
SPIQ, HS1_DATAO (1),
U2RTS

3 FLASH_CLK (FCLK) /0

GPIO6, SD_CLK,
SPICLK, HS1_CLK (),
UICTS

4 1021 I/0

GPIO21, VSPIHD,
EMAC_TX_EN

5 1022 /0

GPIO22, VSPIWP,
UORTS, EMAC_TXD1

6 1019 /0

GPIO19, VSPIQ,
UOCTS, EMAC_TXDO

7 1023 /0

GPIO23, VSPID,
HS1_STROBE

8 1018 I/0

GPIO18, VSPICLK,
HS1_DATA7

9 105 I/0

GPIOS5, VSPICSO,
HS1_DATAGS,
EMAC_RX_CLK

10 1010 /0

GPIO10, SD_DATA3,
SPIWP, HS1_DATA3,
UITXD

11

)
\=]
=
)

104 Chapter 2. Get Started (CMake)
GPIO9, SD_DATA?2,

SPIHD, HS1_DATAZ2,
UIRXD

Read the Docs Template Documentation, Release v3.3.1

2.4. Development Board Guides 105

Read the Docs Template Documentation, Release v3.3.1

Header J3

Name

Type

Function

FLASH_CS (FCS)

I/0

GPIO16, HS1_DATA4
(1), U2RXD,
EMAC_CLK_OUT

FLASH_SDO (FSDO0)

I/0

GPIO17, HS1_DATAS5
(1), U2TXD,
EMAC_CLK_OUT_180

FLASH_SD2 (FSD2)

/0

GPIO11, SD_CMD,
SPICS0, HS1_CMD (1),
UIRTS

SENSOR_VP (FSVP)

GPIO36, ADC1_CHO,
ADC_PRE_AMP (2a),
RTC_GPIOO

SENSOR_VN (FSVN)

GPIO39, ADC1_CH3,
ADC_PRE_AMP (2b),
RTC_GPIO3

1025

I/0

GPIO25, DAC_1,
ADC2_CHS,
RTC_GPIOG,
EMAC_RXDO0

1026

I/0

GPIO26, DAC_2,
ADC2_CHO,
RTC_GPIO7,
EMAC_RXDI

1032

/0

32K_XP (3a),
ADC1_CH4, TOUCHY,
RTC_GPIO9

1033

/0

32K_XN (3b),
ADC1_CHS, TOUCHS,
RTC_GPIOS

1027

I/0

Chapter 2. Get Started (CMake)

GPIO27, ADC2_CH7,
TOUCH7, RTC_GPIO17

Read the Docs Template Documentation, Release v3.3.1

Notes to Pin Descriptions

1. This pin is connected to the flash pin of ESP32-PICO-D4.

2. When used as ADC_PRE_AMP, connect 270 pF capacitors between: (a) SENSOR_VP and 1037, (b) SEN-

SOR_VN and 1038.
3. 32.768 kHz crystal oscillator: (a) input, (b) output.
4. This pin is connected to the pin of the USB bridge chip on the board.

5. The operating voltage of ESP32-PICO-KIT’s embedded SPI flash is 3.3V. Therefore, the strapping pin MTDI

should hold bit ”’0” during the module power-on reset.

Board Dimensions

ESP32-PICO-KIT

A @ g "r ESPRESEIF
hiad " ' ESPRESSIF STSTEHS(E

(SHANGHAI)PTE LTR

© © [ESPI2-PICO-KIT V4 FCC |D:2ACT2-ESPIPICOKIT

.3mm

Fig. 13: ESP32-PICO-KIT V4 dimensions - back

Related Documents

e ESP32-PICO-KIT V4 schematic (PDF)
e ESP32-PICO-D4 Datasheet (PDF)
* ESP32 Hardware Reference

ESP32-PICO-KIT V3 Getting Started Guide (CMake)

This user guide shows how to get started with the ESP32-PICO-KIT V3 mini development board. For description of

other versions of the ESP32-PICO-KIT check ESP32 Hardware Reference.

2.4. Development Board Guides

107

https://dl.espressif.com/dl/schematics/esp32-pico-kit-v4_schematic.pdf
http://espressif.com/sites/default/files/documentation/esp32-pico-d4_datasheet_en.pdf

Read the Docs Template Documentation, Release v3.3.1

L 52 mm J

Fig. 14: ESP32-PICO-KIT V4 dimensions - side

What You Need

* 1 x ESP32-PICO-KIT V3 mini development board
¢ 1 x USB A /Micro USB B cable
¢ 1 x PC loaded with Windows, Linux or Mac OS

If you want to start using this board right now, go directly to Section Start Application Development.

Overview

ESP32-PICO-KIT V3 is a mini development board based on the ESP32-PICO-D4 SIP module produced by Espressif.
All the 10 signals and system power on ESP32-PICO-D4 are led out through two standard 20 pin x 0.1” pitch headers
on both sides for easy interfacing. The development board integrates a USB-UART Bridge circuit, allowing the
developers to connect the development board to a PC’s USB port for downloads and debugging.

Functional Description

The following list and figure below describe key components, interfaces and controls of ESP32-PICO-KIT V3 board.

ESP32-PICO-D4 Standard ESP32-PICO-D4 module soldered to the ESP32-PICO-KIT V3 board. The complete
system of the ESP32 chip has been integrated into the SIP module, requiring only external antenna with LC
matching network, decoupling capacitors and pull-up resistors for EN signals to function properly.

USB-UART Bridge A single chip USB-UART bridge provides up to 1 Mbps transfers rates.

I/O All the pins on ESP32-PICO-D4 are broken out to the pin headers on the board. Users can program ESP32 to
enable multiple functions such as PWM, ADC, DAC, 12C, 128, SPI, etc.

Micro USB Port USB interface. It functions as the power supply for the board and the communication interface
between PC and ESP32-PICO-KIT V3.

EN Button Reset button; pressing this button resets the system.

BOOT Button Holding down the Boot button and pressing the EN button initiates the firmware download mode.
Then user can download firmware through the serial port.

108 Chapter 2. Get Started (CMake)

https://espressif.com

Read the Docs Template Documentation, Release v3.3.1

" 3D Antenna | [ESP32-PICO-D4
|

SVP
1037
1038
SVN
1034

EN
1035
1025
1026
GND g
1032
1033
1027
1014
1012
1013
1015

102

104

100
/O

g0 ceCceoed e

g

plig 8SN

P L GOLOELOEOIVOEOLOEGGEGLOEOOO

-

E

@
G
-
<@
.'3.
o
(]
-
%

ESP32-PICO-KIT V3

Micro USB USB-UART
Port Bridge

Fig. 15: ESP32-PICO-KIT V3 board layout

2.4. Development Board Guides 109

Read the Docs Template Documentation, Release v3.3.1

Start Application Development

Before powering up the ESP32-PICO-KIT V3, please make sure that the board has been received in good condition
with no obvious signs of damage.

To start development of applications, proceed to Section Get Started (CMake), that will walk you through the Instal-
lation Step by Step.

Related Documents

e ESP32-PICO-KIT V3 schematic (PDF)
e ESP32-PICO-D4 Datasheet (PDF)
e ESP32 Hardware Reference

If you have different board, move to sections below.

2.5 Step 1. Set up Toolchain

The quickest way to start development with ESP32 is by installing a prebuilt toolchain. Pick up your OS below and
follow provided instructions.

2.5.1 Standard Setup of Toolchain for Windows (CMake)

[l

Note: This is documentation for the CMake-based build system which is currently in preview release. If you encounter
any gaps or bugs, please report them in the Issues section of the ESP-IDF repository.

The CMake-based build system will become the default build system in ESP-IDF V4.0. The existing GNU Make
based build system will be deprecated in ESP-IDF V5.0.

Note: The CMake-based build system is only supported on 64-bit versions of Windows.

Introduction
ESP-IDF requires some prerequisite tools to be installed so you can build firmware for the ESP32. The prerequisite
tools include Git, a cross-compiler and the CMake build tool. We’ll go over each one in this document.

For this Getting Started we’re going to use a command prompt, but after ESP-IDF is installed you can use Eclipse or
another graphical IDE with CMake support instead.

Note: The GNU Make based build system requires the MSYS2 Unix compatibility environment on Windows. The
CMake-based build system does not require this environment.

110 Chapter 2. Get Started (CMake)

https://dl.espressif.com/dl/schematics/esp32-pico-kit-v3_schematic.pdf
http://espressif.com/sites/default/files/documentation/esp32-pico-d4_datasheet_en.pdf
../../../zh_CN/v3.3.1/get-started-cmake/windows-setup.html
https://github.com/espressif/esp-idf/issues
https://msys2.github.io/

Read the Docs Template Documentation, Release v3.3.1

ESP-IDF Tools Installer

The easiest way to install ESP-IDF’s prerequisites is to download the ESP-IDF Tools installer from this URL:
https://dl.espressif.com/dl/esp-idf-tools-setup-1.2.exe

The installer will automatically install the ESP32 Xtensa gcc toolchain, Ninja build tool, and a configuration tool
called mconf-idf. The installer can also download and run installers for CMake and Python 2.7 if these are not already
installed on the computer.

By default, the installer updates the Windows Path environment variable so all of these tools can be run from any-
where. If you disable this option, you will need to configure the environment where you are using ESP-IDF (terminal
or chosen IDE) with the correct paths.

Note that this installer is for the ESP-IDF Tools package, it doesn’t include ESP-IDF itself.

Installing Git

The ESP-IDF tools installer does not install Git. By default, the getting started guide assumes you will be using Git
on the command line. You can download and install a command line Git for Windows (along with the “Git Bash”
terminal) from Git For Windows.

If you prefer to use a different graphical Git client, then you can install one such as Github Desktop. You will need to
translate the Git commands in the Getting Started guide for use with your chosen Git client.

Using a Terminal

For the remaining Getting Started steps, we’re going to use a terminal command prompt. It doesn’t matter which
command prompt you use:

* You can use the built-in Windows Command Prompt, under the Start menu. All Windows command line in-
structions in this documentation are “batch” commands for use with the Windows Command Prompt.

* You can use the “Git Bash” terminal which is part of Git for Windows. This uses the same “bash” command
prompt syntax as is given for Mac OS or Linux. You can find it in the Start menu once installed.

e If you have MSYS?2 installed (maybe from a previous ESP-IDF version), then you can also use the MSYS
terminal.

Next Steps

To carry on with development environment setup, proceed to Step 2. Get ESP-IDF.

Related Documents

For advanced users who want to customize the install process:

Setup Windows Toolchain from Scratch (CMake)

[l

Note: This is documentation for the CMake-based build system which is currently in preview release. If you encounter
any gaps or bugs, please report them in the Issues section of the ESP-IDF repository.

2.5. Step 1. Set up Toolchain 111

https://dl.espressif.com/dl/esp-idf-tools-setup-1.2.exe
https://ninja-build.org/
https://github.com/espressif/kconfig-frontends/releases/
https://cmake.org/download/
https://www.python.org/downloads/windows/
https://gitforwindows.org/
https://gitforwindows.org/
https://msys2.github.io/
../../../zh_CN/v3.3.1/get-started-cmake/windows-setup-scratch.html
https://github.com/espressif/esp-idf/issues

Read the Docs Template Documentation, Release v3.3.1

The CMake-based build system will become the default build system in ESP-IDF V4.0. The existing GNU Make
based build system will be deprecated in ESP-IDF V5.0.

This is a step-by-step alternative to running the ESP-IDF Tools Installer for the CMake-based build system. Installing
all of the tools by hand allows more control over the process, and also provides the information for advanced users to
customize the install.

To quickly setup the toolchain and other tools in standard way, using the ESP-IDF Tools installer, proceed to section
Standard Setup of Toolchain for Windows (CMake).

Note: The GNU Make based build system requires the MSYS2 Unix compatibility environment on Windows. The
CMake-based build system does not require this environment.

Tools
cmake

Download the latest stable release of CMake for Windows and run the installer.

When the installer asks for Install Options, choose either “Add CMake to the system PATH for all users” or “Add
CMake to the system PATH for the current user”.

Ninja build

Note: Ninja currently only provides binaries for 64-bit Windows. It is possible to use CMake and 1df . py with other
build tools, such as mingw-make, on 32-bit windows. However this is currently undocumented.

Download the ninja latest stable Windows release from the (download page).

The Ninja for Windows download is a .zip file containing a single ninJja.exe file which needs to be unzipped to a
directory which is then added to your Path (or you can choose a directory which is already on your Path).

Python 2.x

Download the latest Python 2.7 for Windows installer, and run it.

The “Customise” step of the Python installer gives a list of options. The last option is “Add python.exe to Path”.
Change this option to select “Will be installed”.

Once Python is installed, open a Windows Command Prompt from the Start menu and run the following command:

pip install —-user pyserial

MConf for IDF

Download the configuration tool mconf-idf from the kconfig-frontends releases page. This is the mcon £ configuration
tool with some minor customizations for ESP-IDF.

This tool will also need to be unzipped to a directory which is then added to your Path.

112 Chapter 2. Get Started (CMake)

https://msys2.github.io/
https://ninja-build.org/
https://www.python.org/downloads/windows/

Read the Docs Template Documentation, Release v3.3.1

Toolchain Setup

Download the precompiled Windows toolchain:
https://dl.espressif.com/dl/xtensa-esp32-elf-win32-1.22.0-80-gb6c4433a-5.2.0.zip

Unzip the zip file to C:\Program Files (or some other location). The zip file contains a single directory
xtensa-esp32-elf.

Next, the bin subdirectory of this directory must be added to your Path. For example, the directory to add may be
C:\Program Files\xtensa-esp32-elf\bin.

Note: If you already have the MSYS2 environment (for use with the “GNU Make” build system) installed, you
can skip the separate download and add the directory C: \msys32\opt\xtensa-esp32-elf\bin to the Path
instead, as the toolchain is included in the MSYS2 environment.

Adding Directory to Path

To add any new directory to your Windows Path environment variable:

Open the System control panel and navigate to the Environment Variables dialog. (On Windows 10, this is found
under Advanced System Settings).

Double-click the Path variable (either User or System Path, depending if you want other users to have this directory
on their path.) Go to the end of the value, and append ; <new value>.

Next Steps

To carry on with development environment setup, proceed to Step 2. Get ESP-IDF.

2.5.2 Standard Setup of Toolchain for Linux (CMake)

[l

Note: This is documentation for the CMake-based build system which is currently in preview release. If you encounter
any gaps or bugs, please report them in the Issues section of the ESP-IDF repository.

The CMake-based build system will become the default build system in ESP-IDF V4.0. The existing GNU Make
based build system will be deprecated in ESP-IDF V5.0.

Install Prerequisites

To compile with ESP-IDF you need to get the following packages:
e CentOS 7:

sudo yum install git wget ncurses-devel flex bison gperf python pyserial cmake_
—ninja-build ccache

¢ Ubuntu and Debian:

2.5. Step 1. Set up Toolchain 113

https://dl.espressif.com/dl/xtensa-esp32-elf-win32-1.22.0-80-g6c4433a-5.2.0.zip
../../../zh_CN/v3.3.1/get-started-cmake/linux-setup.html
https://github.com/espressif/esp-idf/issues

Read the Docs Template Documentation, Release v3.3.1

sudo apt-get install git wget libncurses-dev flex bison gperf python python-pip,,
—python-setuptools python-serial python-cryptography python-future python-
—pyparsing cmake ninja-build ccache

Arch:

sudo pacman -S ——needed gcc git make ncurses flex bison gperf python2-pyserial
—python2-cryptography python2-future python2-pyparsing cmake ninja ccache

Note: CMake version 3.5 or newer is required for use with ESP-IDF. Older Linux distributions may require updating,
enabling of a “backports” repository, or installing of a “cmake3” package rather than “cmake”.

Toolchain Setup

ESP32 toolchain for Linux is available for download from Espressif website:
e for 64-bit Linux:
https://dl.espressif.com/dl/xtensa-esp32-elf-linux64-1.22.0-80-g6c4433a-5.2.0.tar.gz
* for 32-bit Linux:
https://dl.espressif.com/dl/xtensa-esp32-elf-linux32-1.22.0-80-g6c4433a-5.2.0.tar.gz
1. Download this file, then extract it in ~/esp directory:

o for 64-bit Linux:

mkdir -p ~/esp
cd ~/esp
tar -xzf ~/Downloads/xtensa-esp32-elf-1inux64-1.22.0-80-g6c4433a-5.2.0.tar.gz

e for 32-bit Linux:

mkdir -p ~/esp
cd ~/esp
tar -xzf ~/Downloads/xtensa-esp32-elf-1inux32-1.22.0-80-g6cd4433a-5.2.0.tar.gz

2. The toolchain will be extracted into ~/esp/xtensa-esp32-elf/ directory.

To use it, you will need to update your PATH environment variable in ~/.profile file. To make
xtensa—-esp32-elf available for all terminal sessions, add the following line to your ~/ .profile file:

’export PATH="$SHOME/esp/xtensa-esp32-elf/bin:SPATH"

Alternatively, you may create an alias for the above command. This way you can get the toolchain only when
you need it. To do this, add different line to your ~/ .profile file:

’alias get_esp32='export PATH="SHOME/esp/xtensa-esp32-elf/bin:$PATH"'

Then when you need the toolchain you can type get_esp32 on the command line and the toolchain will be
added to your PATH.

Note: If you have /bin/bash set as login shell, and both .bash_profile and .profile exist, then
update .bash_profile instead.

114 Chapter 2. Get Started (CMake)

https://dl.espressif.com/dl/xtensa-esp32-elf-linux64-1.22.0-80-g6c4433a-5.2.0.tar.gz
https://dl.espressif.com/dl/xtensa-esp32-elf-linux32-1.22.0-80-g6c4433a-5.2.0.tar.gz

Read the Docs Template Documentation, Release v3.3.1

3. Log off and log in back to make the .profile changes effective. Run the following command to verify if
PATH is correctly set:

printenv PATH

You are looking for similar result containing toolchain’s path at the beginning of displayed string:

$ printenv PATH
/home/user—-name/esp/xtensa-esp32-elf/bin:/home/user—-name/bin:/home/user—name/.
—local/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/
—games: /usr/local/games:/snap/bin

Instead of /home /user-name there should be a home path specific to your installation.

Permission issues /dev/ttyUSB0

With some Linux distributions you may get the Failed to open port /dev/ttyUSBO error message when
flashing the ESP32. This can be solved by adding the current user to the dialout group.

Arch Linux Users

To run the precompiled gdb (xtensa-esp32-elf-gdb) in Arch Linux requires ncurses 5, but Arch uses ncurses 6.
Backwards compatibility libraries are available in AUR for native and lib32 configurations:

e https://aur.archlinux.org/packages/ncurses5-compat-libs/

* https://aur.archlinux.org/packages/lib32-ncurses5-compat-libs/

Before installing these packages you might need to add the author’s public key to your keyring as described in the
“Comments” section at the links above.

Alternatively, use crosstool-NG to compile a gdb that links against ncurses 6.

Next Steps

To carry on with development environment setup, proceed to Step 2. Get ESP-IDF.

Related Documents

Setup Linux Toolchain from Scratch (CMake)

[l

Note: This is documentation for the CMake-based build system which is currently in preview release. If you encounter
any gaps or bugs, please report them in the Issues section of the ESP-IDF repository.

The CMake-based build system will become the default build system in ESP-IDF V4.0. The existing GNU Make
based build system will be deprecated in ESP-IDF V5.0.

The following instructions are alternative to downloading binary toolchain from Espressif website. To quickly setup
the binary toolchain, instead of compiling it yourself, backup and proceed to section Standard Setup of Toolchain for
Linux (CMake).

2.5. Step 1. Set up Toolchain 115

https://wiki.archlinux.org/index.php/Arch_User_Repository
https://aur.archlinux.org/packages/ncurses5-compat-libs/
https://aur.archlinux.org/packages/lib32-ncurses5-compat-libs/
../../../zh_CN/v3.3.1/get-started-cmake/linux-setup-scratch.html
https://github.com/espressif/esp-idf/issues

Read the Docs Template Documentation, Release v3.3.1

Install Prerequisites

To compile with ESP-IDF you need to get the following packages:
e CentOS 7:

sudo yum install git wget ncurses-devel flex bison gperf python pyserial cmake
—ninja-build ccache

Ubuntu and Debian:

sudo apt-get install git wget libncurses-dev flex bison gperf python python-pip,
—python-setuptools python-serial python-cryptography python-future python-
—pyparsing cmake ninja-build ccache

Arch:

sudo pacman —-S ——needed gcc git make ncurses flex bison gperf python2-pyserial
—python2-cryptography python2-future python2-pyparsing cmake ninja ccache

Note: CMake version 3.5 or newer is required for use with ESP-IDF. Older Linux distributions may require updating,
enabling of a “backports” repository, or installing of a “cmake3” package rather than “cmake”.

Compile the Toolchain from Source

¢ Install dependencies:

CentOS 7:

sudo yum install gawk gperf grep gettext ncurses-devel python python-devel
—automake bison flex texinfo help2man libtool make

— Ubuntu pre-16.04:

sudo apt-get install gawk gperf grep gettext libncurses-dev python python-dev
—automake bison flex texinfo help2man libtool make

— Ubuntu 16.04 or newer:

sudo apt-get install gawk gperf grep gettext python python-dev automake bison,
—flex texinfo help2man libtool libtool-bin make

— Debian 9:

sudo apt-get install gawk gperf grep gettext libncurses-dev python python-dev_,
—automake bison flex texinfo help2man libtool libtool-bin make

— Arch:

TODO

Create the working directory and go into it:

mkdir -p ~/esp
cd ~/esp

116 Chapter 2. Get Started (CMake)

Read the Docs Template Documentation, Release v3.3.1

Download crosstool—-NG and build it:

git clone -b xtensa-1.22.x https://github.com/espressif/crosstool-NG.git
cd crosstool-NG
./bootstrap && ./configure —-enable-local && make install

Build the toolchain:

./ct-ng xtensa-esp32-elf
./ct-ng build
chmod -R u+w builds/xtensa-esp32-elf

Toolchain will be builtin ~/esp/crosstool-NG/builds/xtensa-esp32-elf. Follow instructions for stan-
dard setup to add the toolchain to your PATH.

Next Steps

To carry on with development environment setup, proceed to Step 2. Get ESP-IDF.

2.5.3 Standard Setup of Toolchain for Mac OS (CMake)

[l

Note: This is documentation for the CMake-based build system which is currently in preview release. If you encounter
any gaps or bugs, please report them in the Issues section of the ESP-IDF repository.

The CMake-based build system will become the default build system in ESP-IDF V4.0. The existing GNU Make
based build system will be deprecated in ESP-IDF V5.0.

Install Prerequisites

ESP-IDF will use the version of Python installed by default on Mac OS.

* install pip:

sudo easy_install pip

* install pyserial:

’pip install --user pyserial

¢ install CMake & Ninja build:

— If you have HomeBrew, you can run:

’brew install cmake ninja

— If you have MacPorts, you can run:

’sudo port install cmake ninija

— Otherwise, consult the CMake and Ninja home pages for Mac OS installation downloads.

2.5. Step 1. Set up Toolchain 117

../../../zh_CN/v3.3.1/get-started-cmake/macos-setup.html
https://github.com/espressif/esp-idf/issues
https://brew.sh/
https://www.macports.org/install.php
https://cmake.org/
https://ninja-build.org/

Read the Docs Template Documentation, Release v3.3.1

e It is strongly recommended to also install ccache for faster builds. If you have HomeBrew, this can be done via
brew install ccacheor sudo port install ccache on MacPorts.

Note: If an error like this is shown during any step:

xcrun: error: invalid active developer path (/Library/Developer/CommandLineTools),
—missing xcrun at: /Library/Developer/CommandLineTools/usr/bin/xcrun

Then you will need to install the XCode command line tools to continue. You can
—~install these by running °~ xcode-select —--install’ .

Toolchain Setup

ESP32 toolchain for macOS is available for download from Espressif website:
https://dl.espressif.com/dl/xtensa-esp32-elf-osx-1.22.0-80-gbc4433a-5.2.0.tar.gz

Download this file, then extract it in ~/esp directory:

mkdir -p ~/esp
cd ~/esp
tar -xzf ~/Downloads/xtensa-esp32-elf-osx-1.22.0-80-g6c4433a-5.2.0.tar.gz

The toolchain will be extracted into ~/esp/xtensa—esp32-elf/ directory.

To use it, you will need to update your PATH environment variable in ~/.profile file. To make
xtensa-esp32-elf available for all terminal sessions, add the following line to your ~/ .profile file:

’export PATH=$HOME/esp/xtensa-esp32-elf/bin:S$PATH

Alternatively, you may create an alias for the above command. This way you can get the toolchain only when you
need it. To do this, add different line to your ~/ .profile file:

’alias get_esp32="export PATH=$HOME/esp/xtensa-esp32-elf/bin:S$SPATH"

Then when you need the toolchain you can type get_esp32 on the command line and the toolchain will be added to
your PATH.

Log off and log in back to make the . profile changes effective. Run the following command to verify if PATH is
correctly set:

printenv PATH

Next Steps

To carry on with development environment setup, proceed to Step 2. Get ESP-IDF.

Related Documents

Setup Toolchain for Mac OS from Scratch (CMake)

[l

118 Chapter 2. Get Started (CMake)

https://ccache.samba.org/
https://brew.sh/
https://www.macports.org/install.php
https://dl.espressif.com/dl/xtensa-esp32-elf-osx-1.22.0-80-g6c4433a-5.2.0.tar.gz
../../../zh_CN/v3.3.1/get-started-cmake/macos-setup-scratch.html

Read the Docs Template Documentation, Release v3.3.1

Note: This is documentation for the CMake-based build system which is currently in preview release. If you encounter
any gaps or bugs, please report them in the Issues section of the ESP-IDF repository.

The CMake-based build system will become the default build system in ESP-IDF V4.0. The existing GNU Make
based build system will be deprecated in ESP-IDF V5.0.

Package Manager
To set up the toolchain from scratch, rather than downloading a pre-compiled toolchain, you will need to install either

the MacPorts or homebrew package manager.

MacPorts needs a full XCode installation, while homebrew only needs XCode command line tools.

See Customized Setup of Toolchain section for some of the reasons why installing the toolchain from scratch may be
necessary.

Install Prerequisites

* install pip:

sudo easy_install pip

* install pyserial:

’pip install --user pyserial

¢ install CMake & Ninja build:

— If you have HomeBrew, you can run:

’brew install cmake ninja

— If you have MacPorts, you can run:

’sudo port install cmake ninija

Compile the Toolchain from Source

* Install dependencies:

— with MacPorts:

sudo port install gsed gawk binutils gperf grep gettext wget libtool autoconf
—automake make

with homebrew:

brew install gnu-sed gawk binutils gperftools gettext wget help2man libtool,
—autoconf automake make

Create a case-sensitive filesystem image:

2.5. Step 1. Set up Toolchain 119

https://github.com/espressif/esp-idf/issues
https://www.macports.org/install.php
https://brew.sh/

Read the Docs Template Documentation, Release v3.3.1

hdiutil create ~/esp/crosstool.dmg -volname "ctng" -size 10g —fs "Case-sensitive HES+"

Mount it:

hdiutil mount ~/esp/crosstool.dmg

Create a symlink to your work directory:

mkdir -p ~/esp
In -s /Volumes/ctng ~/esp/ctng-volume

Go into the newly created directory:

cd ~/esp/ctng-volume

Download crosstool—-NG and build it:

git clone -b xtensa-1.22.x https://github.com/espressif/crosstool-NG.git
cd crosstool-NG
./bootstrap && ./configure —--enable-local && make install

Build the toolchain:

./ct-ng xtensa-esp32-elf
./ct-ng build
chmod -R u+w builds/xtensa-esp32-elf

Toolchain will be built in ~/esp/ctng-volume/crosstool-NG/builds/xtensa-esp32-elf. Follow
instructions for standard setup to add the toolchain to your PATH.

Next Steps

To carry on with development environment setup, proceed to Step 2. Get ESP-IDF.

Windows Linux Mac OS

Note: We are an using esp subdirectory in your user’s home directory (~/esp on Linux and MacOS,
Suserprofile%\esp on Windows) to install everything needed for ESP-IDF. You can use any different direc-
tory, but will need to adjust the respective commands.

120 Chapter 2. Get Started (CMake)

../get-started-cmake/windows-setup.html
../get-started-cmake/linux-setup.html
../get-started-cmake/macos-setup.html
../get-started-cmake/windows-setup.html
../get-started-cmake/linux-setup.html
../get-started-cmake/macos-setup.html

Read the Docs Template Documentation, Release v3.3.1

Depending on your experience and preferences, instead of using a prebuilt toolchain, you may want to customize your
environment. To set up the system your own way go to Section Customized Setup of Toolchain (CMake).

2.6 Step 2. Get ESP-IDF

Besides the toolchain (that contains programs to compile and build the application), you also need ESP32 specific API
/ libraries. They are provided by Espressif in ESP-IDF repository. To get it, open terminal, navigate to the directory
you want to put ESP-IDF, and clone it using git clone command.

2.6.1 Linux and MacOS

To obtain a local copy: open terminal, navigate to the directory you want to put ESP-IDF, and clone the repository
using git clone command:

cd ~/esp
git clone -b v3.3.1 —--recursive https://github.com/espressif/esp-idf.git

ESP-IDF will be downloaded into ~/esp/esp—-idf.

Consult ESP-IDF Versions for information about which version of ESP-IDF to use in a given situation.

2.6.2 Windows Command Prompt

mkdir Suserprofile%\esp
cd Suserprofile%\esp
git clone -b v3.3.1 --recursive https://github.com/espressif/esp-idf.git

ESP-IDF will be downloaded into esp\esp—-idf in the user’s profile directory.

Consult ESP-IDF Versions for information about which version of ESP-IDF to use in a given situation.

Note: The git clone option -b v3.3.1 tells git to clone the tag in the ESP-IDF repository git clone
corresponding to this version of the documentation.

Note: As a fallback, it is also possible to download a zip file of this stable release from the Releases page. Do not
download the “Source code” zip file(s) generated automatically by GitHub, they do not work with ESP-IDF.

Note: Do not miss the ——recursive option. If you have already cloned ESP-IDF without this option, run another
command to get all the submodules:

cd esp-idf
git submodule update —--init

2.7 Step 3. Set Environment Variables

ESP-IDF requires two environment variables to be set for normal operation:

2.6. Step 2. Get ESP-IDF 121

https://github.com/espressif/esp-idf
https://github.com/espressif/esp-idf/releases

Read the Docs Template Documentation, Release v3.3.1

e IDF_PATH should be set to the path to the ESP-IDF root directory.
e PATH should include the path to the t ools directory inside the same IDF_PATH directory.
These two variables should be set up on your PC, otherwise projects will not build.

Setting may be done manually, each time PC is restarted. Another option is to set them permanently in user profile.
To do this, follow instructions specific to Windows , Linux and MacOS in Section Add IDF_PATH & idf.py PATH to
User Profile (CMake).

2.8 Step 4. Install the Required Python Packages

Python packages required by ESP-IDF are located in the $IDF_PATH/requirements.txt file. You can install
them by running:

’python -m pip install —--user -r SIDF_PATH/requirements.txt

Note: Please invoke that version of the Python interpreter which you will be using with ESP-IDF. The version of the
interpreter can be checked by running command python —--version and depending on the result, you might want
to use python2, python2 .7 or similar instead of python, e.g.:

’python2.7 -m pip install --user -r $IDF_PATH/requirements.txt

2.9 Step 5. Start a Project

Now you are ready to prepare your application for ESP32. To start off quickly, we will use get-started/hello_world
project from examples directory in IDF.

Copy get-started/hello_world to ~/esp directory:

2.9.1 Linux and MacOS

cd ~/esp
cp -r SIDF_PATH/examples/get-started/hello_world .

2.9.2 Windows Command Prompt

cd %userprofile%\esp
xcopy /e /i %IDF_PATHS\examples\get-started\hello_world hello_world

You can also find a range of example projects under the examples directory in ESP-IDF. These example project
directories can be copied in the same way as presented above, to begin your own projects.

It is also possible to build examples in-place, without copying them first.

Important: The esp-idf build system does not support spaces in the path to either esp-idf or to projects.

122 Chapter 2. Get Started (CMake)

https://github.com/espressif/esp-idf/tree/v3.3.1/examples/get-started/hello_world
https://github.com/espressif/esp-idf/tree/v3.3.1/examples
https://github.com/espressif/esp-idf/tree/v3.3.1/examples/get-started/hello_world
https://github.com/espressif/esp-idf/tree/v3.3.1/examples

Read the Docs Template Documentation, Release v3.3.1

2.10 Step 6. Connect the Device

You are almost there. To be able to proceed further, connect ESP32 board to PC, check under what serial port the
board is visible and verify if serial communication works. If you are not sure how to do it, check instructions in
Section Establish Serial Connection with ESP32 (CMake). Note the port number, as it will be required in the next
step.

2.11 Step 7. Configure

Navigate to the directory of the hello_world application copy, and run the menuconfig project configuration
utility:

2.11.1 Linux and MacOS

cd ~/esp/hello_world
idf.py menuconfig

2.11.2 Windows Command Prompt

cd Suserprofile%\esp\hello_world
idf.py menuconfig

Note: If you get an error about idf . py not being found, check the t ools directory is part of your Path as described
above in Step 3. Set Environment Variables. If there is no 1df . py in the tools directory, check you have the correct
branch for the CMake preview as shown under Step 2. Get ESP-IDF.

Note: Windows users, the Python 2.7 installer will try to configure Windows to associate files with a . py extension
with Python 2. If a separate installed program (such as Visual Studio Python Tools) has created an association with a
different version of Python, then running idf . py may not work (it opens the file in Visual Studio instead). You can
either run C:\Python27\python idf.py each time instead, or change the association that Windows uses for
.py files.

Note: Linux users, if your default version of Python is 3.x then you may need to run python2 idf.py instead.

If previous steps have been done correctly, the following menu will be displayed:
Here are couple of tips on navigation and use of menuconfig:
¢ Use up & down arrow keys to navigate the menu.
» Use Enter key to go into a submenu, Escape key to go up a level or exit.
* Type ? to see a help screen. Enter key exits the help screen.
» Use Space key, or Y and N keys to enable (Yes) and disable (No) configuration items with checkboxes “[x]”

* Pressing ? while highlighting a configuration item displays help about that item.

2.10. Step 6. Connect the Device 123

Read the Docs Template Documentation, Release v3.3.1

Espressif IoT Development Framework Configuration 1
Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty submenus ----). Highlighted
letters are hotkeys. Pressing <Y> includes, <N> excludes, <M> modularizes features. Press <Esc><Esc>
to exit, <?> for Help, </> for Search. Legend: [*] built-in [] excluded <M> module < > module
capable

SDK tool configuration ---=
BEootloader config --->
Security features ---=
I
Partition Table --->

optimization level (Debug) ---=
Component config --->

< Exit > < Help > < Save > < Load >

Fig. 16: Project configuration - Home window

* Type / to search the configuration items.

Attention: When using ESP32-DevKitC board with ESP32-SOLO-1 module, enable single core mode (CON-
FIG_FREERTOS_UNICORE) in menuconfig before flashing example applications.

2.12 Step 8. Build the Project

Now you can build the project. Run:

idf.py build

This command will compile the application and all the ESP-IDF components, generate bootloader, partition table, and
application binaries.

$ idf.py build

Running cmake in directory /path/to/hello_world/build

Executing "cmake -G Ninja --warn-uninitialized /path/to/hello_world"...
Warn about uninitialized wvalues.

—-— Found Git: /usr/bin/git (found version "2.17.0")

—— Building empty aws_iot component due to configuration

—-— Component names:

—— Component paths:

(more lines of build system output)

[527/527] Generating hello-world.bin
esptool.py v2.3.1

Project build complete. To flash, run this command:
./../../components/esptool_py/esptool/esptool.py -p (PORT) -b 921600 write_flash ——
—flash_mode dio —--flash_size detect —--flash_freq 40m 0x10000 build/hello-world.bin _,
—build 0x1000 build/bootloader/bootloader.bin 0x8000 build/partition_table/partition-

—table.bin
or run 'idf.py -p PORT flash'

124 Chapter 2. Get Started (CMake)

Read the Docs Template Documentation, Release v3.3.1

If there are no errors, the build will finish by generating the firmware binary .bin file.

2.13 Step 9. Flash to a Device

Now you can flash the application to the ESP32 board. Run:

idf.py -p PORT flash

Replace PORT with the name of your ESP32 board’s serial port. On Windows, serial ports have names like COM1.
On MacOS, they start with /dev/cu.. On Linux, they start with /dev/tty. See Establish Serial Connection with
ESP32 (CMake) for full details.

This step will flash the binaries that you just built to your ESP32 board.

Note: Running idf.py buildbefore idf.py flash isnotactually necessary, the flash step will automatically
build the project if required before flashing.

Running esptool.py in directory [...]/esp/hello_world

Executing "python [...]/esp-idf/components/esptool_py/esptool/esptool.py -b 460800,
—write_flash Q@flash_project_args"...

esptool.py -b 460800 write_flash —--flash _mode dio --flash_size detect --flash_freq,,
—40m 0x1000 bootloader/bootloader.bin 0x8000 partition_table/partition-table.bin
—~0x10000 hello-world.bin

esptool.py v2.3.1

Connecting....

Detecting chip type... ESP32

Chip is ESP32DOWDQ6 (revision 1)

Features: WiFi, BT, Dual Core

Uploading stub...

Running stub...

Stub running...

Changing baud rate to 460800

Changed.

Configuring flash size...

Auto-detected Flash size: 4MB

Flash params set to 0x0220

Compressed 22992 bytes to 13019...

Wrote 22992 bytes (13019 compressed) at 0x00001000 in 0.3 seconds (effective 558.9
—kbit/s) ...

Hash of data verified.

Compressed 3072 bytes to 82...

Wrote 3072 bytes (82 compressed) at 0x00008000 in 0.0 seconds (effective 5789.3 kbit/
<—>S) PR

Hash of data verified.

Compressed 136672 bytes to 67544...

Wrote 136672 bytes (67544 compressed) at 0x00010000 in 1.9 seconds (effective 567.5
—kbit/s) ...

Hash of data verified.

Leaving...
Hard resetting via RTS pin...

If there are no issues, at the end of flash process, the module will be reset and “hello_world” application will be
running there.

2.13. Step 9. Flash to a Device 125

Read the Docs Template Documentation, Release v3.3.1

2.14 Step 10. Monitor

To see if “hello_world” application is indeed running, type idf.py -p PORT monitor. This command is launch-
ing IDF Monitor application:

$ idf.py -p /dev/ttyUSBO monitor

Running idf_monitor in directory [...]/esp/hello_world/build

Executing "python [...]/esp-idf/tools/idf_monitor.py -b 115200 [...]/esp/hello_world/
—build/hello-world.elf"...

-—— idf_monitor on /dev/ttyUSBO 115200 —---

—-—— Quit: Ctrl+] | Menu: Ctrl+T | Help: Ctrl+T followed by Ctrl+H —-—-

ets Jun 8 2016 00:22:57

rst:0x1l (POWERON_RESET),boot:0x13 (SPI_FAST_FLASH_BOOT)
ets Jun 8 2016 00:22:57

Several lines below, after start up and diagnostic log, you should see “Hello world!” printed out by the application.

Hello world!

Restarting in 10 seconds...

I (211) cpu_start: Starting scheduler on APP CPU.
Restarting in 9 seconds...

Restarting in 8 seconds...

Restarting in 7 seconds...

To exit the monitor use shortcut Ctr1+].

Note: If instead of the messages above, you see a random garbage similar to:

e) (XnQy.! (PW+)Hn%a/9!t5P~keea5jA
~zYY (1,1 e) (Xn@y.!'DrzY¥ (jpil|+z5¥mvp

or monitor fails shortly after upload, your board is likely using 26MHz crystal. Most development board designs
use 40MHz and the ESP-IDF uses this default value. Exit the monitor, go back to the menuconfig, change CON-
FIG_ESP32_XTAL_FREQ_SEL to 26MHz, then build and flash the application again. This is found under idf .py
menuconfig under Component config —> ESP32-specific —> Main XTAL frequency.

Note: You can combine building, flashing and monitoring into one step as follows:

idf.py -p PORT flash monitor

Check the Section /DF Monitor for handy shortcuts and more details on using the monitor.
Check the Section idf.py for a full reference of 1df . py commands and options.
That’s all what you need to get started with ESP32!

Now you are ready to try some other examples, or go right to developing your own applications.

126 Chapter 2. Get Started (CMake)

https://github.com/espressif/esp-idf/tree/v3.3.1/examples

Read the Docs Template Documentation, Release v3.3.1

2.15 Updating ESP-IDF

You should update ESP-IDF from time to time, as newer versions fix bugs and provide new features. The simplest way
to do the update is to delete the existing esp-idf folder and clone it again, as if performing the initial installation
described in Step 2. Get ESP-IDF'.

If downloading to a new path, remember to Add IDF_PATH & idf.py PATH to User Profile (CMake) so that the
toolchain scripts know where to find the ESP-IDF in its release specific location.

Another solution is to update only what has changed. The update procedure depends on the version of ESP-IDF you
are using.

2.16 Related Documents

2.16.1 Add IDF_PATH & idf.py PATH to User Profile (CMake)

[l

Note: This is documentation for the CMake-based build system which is currently in preview release. If you encounter
any gaps or bugs, please report them in the Issues section of the ESP-IDF repository.

The CMake-based build system will become the default build system in ESP-IDF V4.0. The existing GNU Make
based build system will be deprecated in ESP-IDF V5.0.

To use the CMake-based build system and the idf.py tool, two modifications need to be made to system environment
variables:

e IDF_PATH needs to be set to the path of the directory containing ESP-IDF.
» System PATH variable to include the directory containing the 1 df . py tool (part of ESP-IDF).

To preserve setting of these variables between system restarts, add them to the user profile by following the instructions
below.

Note: If using an IDE, you can optionally set these environment variables in your IDE’s project environment rather
than from the command line as described below.

Note: If you don’t ever use the command line idf . py tool, but run cmake directly or via an IDE, then it is not
necessary to set the PATH variable - only IDF_PATH. However it can be useful to set both.

Note: If you only ever use the command line 1df . py tool, and never use cmake directly or via an IDE, then it is not
necessary to set the IDF_PATH variable - 1df . py will detect the directory it is contained within and set IDF_PATH
appropriately if it is missing.

Windows

To edit Environment Variables on Windows 10, search for “Edit Environment Variables” under the Start menu.

2.15. Updating ESP-IDF 127

../../../zh_CN/v3.3.1/get-started-cmake/add-idf_path-to-profile.html
https://github.com/espressif/esp-idf/issues

Read the Docs Template Documentation, Release v3.3.1

On earlier Windows versions, open the System Control Panel then choose “Advanced” and look for the Environment
Variables button.

You can set these environment variables for all users, or only for the current user, depending on whether other users of
your computer will be using ESP-IDF.

¢ Click New. . . to add a new system variable named IDF_PATH. Set the path to directory containing ESP-IDF,
for example C: \Users\user—name\esp\esp-idf.

* Locate the Path environment variable and double-click to edit it. Append the following to the end: ;
$IDF_PATH%\tools. This will allow you to run idf . py and other tools from Windows Command Prompt.

If you got here from Step 3. Set Environment Variables, while installing s/w for ESP32 development, then you can
continue with Step 4. Install the Required Python Packages.

Linux and MacOS

Set up IDF_PATH and add idf . py to the PATH by adding the following two lines to your ~/ .profile file:

export IDF_PATH=~/esp/esp-idf
export PATH="SIDF_PATH/tools:SPATH"

Note: ~/.profile means a file named .profile in your user’s home directory (which is abbreviated ~ in the
shell).

Log off and log in back to make this change effective.

Note: Not all shells use .profile. If you have /bin/bash and .bash_profile exists then update this file
instead. For zsh, update . zprofile. Other shells may use other profile files (consult the shell’s documentation).

Run the following command to check if IDF_PATH is set:

’printenv IDF_PATH

The path previously entered in ~/ . profile file (or set manually) should be printed out.

To verify 1df . py is now on the PATH, you can run the following:

’ which idf.py

A path like ${ IDF_PATH} /tools/idf.py should be printed.

If you do not like to have IDF_PATH or PATH modifications set, you can enter it manually in terminal window on
each restart or logout:

export IDF_PATH=~/esp/esp-idf
export PATH="SIDF_PATH/tools:SPATH"

If you got here from Step 3. Set Environment Variables, while installing s/w for ESP32 development, then you can
continue with Step 4. Install the Required Python Packages.

2.16.2 Establish Serial Connection with ESP32 (CMake)

[l

128 Chapter 2. Get Started (CMake)

../../../zh_CN/v3.3.1/get-started-cmake/establish-serial-connection.html

Read the Docs Template Documentation, Release v3.3.1

This section provides guidance how to establish serial connection between ESP32 and PC.

Connect ESP32 to PC

Connect the ESP32 board to the PC using the USB cable. If device driver does not install automatically, identify USB
to serial converter chip on your ESP32 board (or external converter dongle), search for drivers in internet and install
them.

Below are the links to drivers for ESP32 boards produced by Espressif:

Development Board USB Driver Remarks

ESP32-DevKitC CP210x

ESP32-LyraT CP210x

ESP32-LyraTD-MSC CP210x

ESP32-PICO-KIT CP210x

ESP-WROVER-KIT FTDI

ESP32 Demo Board FTDI

ESP-Prog FTDI Programmer board (w/o ESP32)
ESP32-MeshKit-Sense n/a Use with ESP-Prog
ESP32-Sense Kit n/a Use with ESP-Prog

e CP210x: CP210x USB to UART Bridge VCP Drivers
e FTDI: FTDI Virtual COM Port Drivers

The drivers above are primarily for reference. Under normal circumstances, the drivers should be bundled with and
operating system and automatically installed upon connecting one of the listed boards to the PC.

Check port on Windows
Check the list of identified COM ports in the Windows Device Manager. Disconnect ESP32 and connect it back, to
verify which port disappears from the list and then shows back again.

Figures below show serial port for ESP32 DevKitC and ESP32 WROVER KIT

Check port on Linux and MacOS

To check the device name for the serial port of your ESP32 board (or external converter dongle), run this command
two times, first with the board / dongle unplugged, then with plugged in. The port which appears the second time is
the one you need:

Linux

’ ls /dev/tty=

MacOS

’ls /dev/cu.

Note: MacOS users: if you don’t see the serial port then check you have the USB/serial drivers installed as shown in
the Getting Started guide for your particular development board. For MacOS High Sierra (10.13), you may also have
to explicitly allow the drivers to load. Open System Preferences -> Security & Privacy -> General and check if there

2.16. Related Documents 129

https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
https://www.espressif.com/en/products/hardware/esp32-lyrat
https://www.silabs.com/p<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>