Read the Docs Template

Documentation
Release v3.2.5

Read the Docs

Nov 04, 2020

Contents

1 Get Started

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14
1.15

2 Get Started (CMake)

2.1
2.2
2.3
24
25
2.6
2.7
2.8
29
2.10
2.11
2.12
2.13
2.14

Introduction

What You Need
Guides
Setup Toolchain

Get ESP-IDF

Setup Path to ESP-IDF
Install the Required Python Packages

Start a Project

Connect i it i
Configure
Build and Flash
Monitor

Updating ESP-IDF
Related Documents

Introduction

What You Need
Development Board Guides
Setup Toolchain

Get ESP-IDF

Setup Environment Variables

Start a Project

Connect. i it
Configure,
Build The Project

Flash To A Device
Monitor
Updating ESP-IDF
Related Documents

3 API Reference

3.1
3.2
33

Wi-FiAPI
MeshAPL.

Bluetooth API

A~ W W W

34 Ethernet APT L . e
3.5 Peripherals APL. e e e e e
3.6 Protocols APL. e
3.7 Provisioning APLo e
3.8 Storage APL L e e e e
3.9 System APL. . . . o e
3.10 Configuration OptonS v v v v i i e
3.11 Error Codes Reference e
ESP32 Hardware Reference

4.1 ESP32Modules and Boards e e e e e e e
4.2 Previous Versions of ESP32 Modulesand Boards,
API Guides

5.1 General Notes About ESP-IDF Programming,
5.2 Build System e e e e e e e
5.3 Build System (CMake) o o e e e e e e e
54 ErrorHandling e
5.5 Fatal Brrors oL e e
5.6 Deep Sleep Wake Stubs L e e e e e
5.7 ESP32Core Dump e e e e e e e
5.8 FlashEncryption e e
5.9 ESP-IDF FreeRTOS SMP Changes
5.10 Thread Local Storage e e e e
5.11 High-Level Interrupts o ot e e e e e e e e e e e e e e e
5.12 JTAG Debugging o o i e e e e e e e e e
5.13 Bootloader e e
5.14 Partition Tables e e e e e e e
5.15 Secure Boot L e e e e
5.16 ULP coprocessor programming v v v v v v v v v v e e e e e e e e e e e e e e
5.17 ULP coprocessor programming (CMake) i it
5.18 Unit Testingin ESP32 e
5.19 Unit Testing in ESP32 (CMake) 0 i e e e e
520 Consoleo L e e e e e e e e
521 ESP32ROMCOnSOIE . . . v v v i e
522 Wi-FiDriver o o e e
523 ESP-MESH e
524 BIuFi o e
5.25 Support forexternal RAM L
Contributions Guide

6.1 HowtoContribute L . e e e e e e e e
6.2 Before Contributing e
6.3 PullRequest Process e
6.4 LegalPart. e e e e e e
6.5 Related Documents L e e e e
ESP-IDF Versions

7.1 Releaseso o e e
7.2 Which Version Should I Start With?
7.3 Versioning Scheme
7.4 Checking The Current Version o 0 L v it vttt e e e e e e e
7.5 GitWorkflow e e
7.6 Updating ESP-IDF e e e e e e e e

8 Resources

9 Copyrights and Licenses
9.1 Software Copyrights L e e
9.2 ROM Source Code Copyrights o v v i i e e e e e e e e e e e e
9.3 Xtensalibhal MIT License oo i it e e e e
9.4 TinyBasicPlus MIT License i i et
9.5 TlpgDecLicense e

10 About

11 Switch Between Languages/

Index

1427

1429
1429
1430
1431
1431
1431

1433

1435

1437

Read the Docs Template Documentation, Release v3.2.5

[l

This is the documentation for Espressif IoT Development Framework (esp-idf). ESP-IDF is the official development
framework for the ESP32 chip.

Get Started API Reference H/W Reference

API Guides Contribute Resources

Contents 1

../../zh_CN/v3.2.5/index.html
https://github.com/espressif/esp-idf
https://espressif.com/en/products/hardware/esp32/overview
get-started/index.html
api-reference/index.html
hw-reference/index.html
get-started/index.html
api-reference/index.html
hw-reference/index.html
api-guides/index.html
contribute/index.html
resources.html
api-guides/index.html
contribute/index.html
resources.html

Read the Docs Template Documentation, Release v3.2.5

2 Contents

CHAPTER 1

Get Started

[l

This document is intended to help users set up the software environment for development of applications using
hardware based on the Espressif ESP32. Through a simple example we would like to illustrate how to use ESP-
IDF (Espressif IoT Development Framework), including the menu based configuration, compiling the ESP-IDF and
firmware download to ESP32 boards.

Note: This is documentation for stable version v3.2.5 of ESP-IDF. Other ESP-IDF Versions are also available.

1.1 Introduction

ESP32 integrates Wi-Fi (2.4 GHz band) and Bluetooth 4.2 solutions on a single chip, along with dual high performance
cores, Ultra Low Power co-processor and several peripherals. Powered by 40 nm technology, ESP32 provides a robust,
highly integrated platform to meet the continuous demands for efficient power usage, compact design, security, high
performance, and reliability.

Espressif provides the basic hardware and software resources that help application developers to build their ideas
around the ESP32 series hardware. The software development framework by Espressif is intended for rapidly de-
veloping Internet-of-Things (IoT) applications, with Wi-Fi, Bluetooth, power management and several other system
features.

1.2 What You Need

To develop applications for ESP32 you need:
* PC loaded with either Windows, Linux or Mac operating system
* Toolchain to build the Application for ESP32
« ESP-IDF that essentially contains API for ESP32 and scripts to operate the Toolchain

../../../zh_CN/v3.2.5/get-started/index.html

Read the Docs Template Documentation, Release v3.2.5

* A text editor to write programs (Projects) in C, e.g. Eclipse

¢ The ESP32 board itself and a USB cable to connect it to the PC

ESP-IDF

o Toolchain : §

Project : 5

i F\]ﬁmn
BUILD

lication

Fig. 1: Development of applications for ESP32

Preparation of development environment consists of three steps:
1. Setup of Toolchain
2. Getting of ESP-IDF from GitHub
3. Installation and configuration of Eclipse

You may skip the last step, if you prefer to use different editor.

Having environment set up, you are ready to start the most interesting part - the application development. This process
may be summarized in four steps:

1. Configuration of a Project and writing the code

2. Compilation of the Project and linking it to build an Application
3. Flashing (uploading) of the Application to ESP32

4. Monitoring / debugging of the Application

See instructions below that will walk you through these steps.

1.3 Guides

If you have one of ESP32 development boards listed below, click on provided links to get you up and running.

4 Chapter 1. Get Started

https://www.eclipse.org/

Read the Docs Template Documentation, Release v3.2.5

1.3.1 ESP32-DevKitC V4 Getting Started Guide

[l

This user guide shows how to get started with ESP32-DevKitC V4 development board. For description of other
versions of the ESP32-DevKitC check ESP32 Hardware Reference.

What You Need

e 1 x ESP32-DevKitC V4 board
e 1 x USB A/ micro USB B cable
¢ 1 x PC loaded with Windows, Linux or Mac OS

Overview

ESP32-DevKitC V4 is a small-sized ESP32-based development board produced by Espressif. Most of the I/O pins are
broken out to the pin headers on both sides for easy interfacing. Developers can connect these pins to peripherals as
needed. Standard headers also make development easy and convenient when using a breadboard.

The board supports various ESP32 modules, including ESP32-WROOM-32, ESP32-WROOM-32U, ESP32-WROOM-
32D, ESP32-SOLO-1, and ESP32-WROVER series.

Functional Description

The following list and figure below describe key components, interfaces and controls of ESP32-DevKitC V4 board.
ESP32-WROOM-32 ESP32-WROOM-32 module soldered to the ESP32-DevKitC V4 board.

Optional Space for ESP32-WROVER Longer ESP32-WROVER modules may be soldered instead of the ESP32-
WROOM-32.

USB-to-UART Bridge A single chip USB-to-UART bridge provides up to 3 Mbps transfers rates.

Boot Button Download button: holding down the Boot button and pressing the EN button initiates the firmware
download mode. Then user can download firmware through the serial port.

EN Button Reset button: pressing this button resets the system.

Micro USB Port USB interface. It functions as the power supply for the board and the communication interface
between PC and the ESP module.

5V Power On LED This LED lights when the USB or an external 5V power supply is applied to the board. For
details see schematic in Related Documents.

I/0 Connector Most of the pins on the ESP module are broken out to the pin headers on the board. Users can program
ESP32 to enable multiple functions such as PWM, ADC, DAC, 12C, 128, SPI, etc.

Note: Some of broken out pins are used internally by the ESP32-WROOM-32, ESP32-WROOM-32D/U and
ESP32-SOLO-1 modules to communicate with SPI memory. They are grouped on one side of the board besides
the USB connector and labeled CLK, DO, D1, D2, D3 and CMD (GPIO6 - GPIO11). In general these pins
should be left unconnected, otherwise access to the SPI flash memory / SPI RAM may be disturbed.

1.3. Guides 5

../../../zh_CN/v3.2.5/get-started/get-started-devkitc.html
https://espressif.com

Read the Docs Template Documentation, Release v3.2.5

5V Power On LED I/O Connector

CEEEREEEEEEE L EEEEEX)
NS OWD EQ Z0 ET OND ZT PT LZ 9T ST EE€ ZE SE ¥WE NA dA N3 ENE

EN Button E i - I.lilrnnunnluitlllli'

Micro USB Port ——— ESP32-WROOM-32

§§13331113

Boot Button Y o) Hisssnans :

USB-to-UART Bridge Optional Space for ESP32-WROVER

Fig. 2: ESP32-DevKitC V4 with ESP32-WROOM-32 module soldered

Power Supply Options

There following options are available to provide power supply to this board:
1. Micro USB port, this is default power supply connection
2. 5V / GND header pins
3. 3V3/ GND header pins

Warning: Above options are mutually exclusive, i.e. the power supply may be provided using only one of the
above options. Attempt to power the board using more than one connection at a time may damage the board and/or
the power supply source.

Note on C15

The C15, on the board of earlier batches of V4, may bring two issues:
1. The board may boot into download mode;
2. If users output clock on GPIOO0, C15 may impact the clock output.

As a result, if users believe that C15 will impact their use of the board, they can remove it completely (please refer
to the screenshot below for the precise location of C15 that is colored in yellow). Otherwise, users do not need to
concern about C15.

6 Chapter 1. Get Started

Read the Docs Template Documentation, Release v3.2.5

ST Ta ed 1

Fig. 3: Location of C15 (colored yellow) on ESP32-DevKitC V4 board

Start Application Development
Before powering up the ESP32-DevKitC, please make sure that the board has been received in good condition with no
obvious signs of damage.
To start development of applications, proceed to section Get Started, that will walk you through the following steps:
* Setup Toolchain in your PC to develop applications for ESP32 in C language
* Connect the module to the PC and verify if it is accessible
* Build and Flash an example application to the ESP32

* Monitor instantly what the application is doing

Board Dimensions

Related Documents

¢ ESP32-DevKitC V4 schematic (PDF)
e ESP32 Datasheet (PDF)
ESP32-WROOM-32 Datasheet (PDF)

ESP32-WROOM-32D/U Datasheet (PDF)

ESP32-DevKitC V2 Getting Started Guide

This user guide shows how to get started with ESP32-DevKitC development board.

What You Need

e 1 x ESP32-DevKitC V2 board
e 1 x USB A / micro USB B cable

1.3. Guides 7

https://dl.espressif.com/dl/schematics/esp32_devkitc_v4-sch-20180607a.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32d_esp32-wroom-32u_datasheet_en.pdf

Read the Docs Template Documentation, Release v3.2.5

LKD® D1 15 2 @ 4 16 17 5 18 19GND 21 RX TX 22 23 GND

& v

27.9 mm

CX4

-
-
&
g
ol
=
2
S

Fig. 4: ESP32-DevKitC board dimensions - back

¢ 1 x PC loaded with Windows, Linux or Mac OS

Overview

ESP32-DevKitC is a small-sized ESP32-based development board produced by Espressif. Most of the I/O pins are
broken out to the pin headers on both sides for easy interfacing. Developers can connect these pins to peripherals as
needed. Standard headers also make development easy and convenient when using a breadboard.

Functional Description

The following list and figure below describe key components, interfaces and controls of ESP32-DevKitC board.
ESP-WROOM-32 Standard ESP-WROOM-32 module soldered to the ESP32-DevKitC board.
EN Reset button: pressing this button resets the system.

Boot Download button: holding down the Boot button and pressing the EN button initiates the firmware download
mode. Then user can download firmware through the serial port.

USB USB interface. It functions as the power supply for the board and the communication interface between PC and
ESP-WROOM-32.

I/0 Most of the pins on the ESP-WROOMS-32 are broken out to the pin headers on the board. Users can program
ESP32 to enable multiple functions such as PWM, ADC, DAC, 12C, 12S, SPI, etc.

Power Supply Options

There following options are available to provide power supply to this board:

8 Chapter 1. Get Started

https://espressif.com
https://www.espressif.com/sites/default/files/documentation/esp-wroom-32_datasheet_en.pdf

Read the Docs Template Documentation, Release v3.2.5

ESP-WROOM-32

0000000000

OND 6101 BIOI SOI LIO1 3101 +O0 DO

Fig. 5: ESP32-DevKitC V2 board layout

1. Micro USB port, this is default power supply connection
2. 5V / GND header pins
3. 3V3/ GND header pins

Warning: Above options are mutually exclusive, i.e. the power supply may be provided using only one of the
above options. Attempt to power the board using more than one connection at a time may damage the board and/or
the power supply source.

Start Application Development

Before powering up the ESP32-DevKitC, please make sure that the board has been received in good condition with no
obvious signs of damage.

To start development of applications, proceed to section Get Started, that will walk you through the following steps:
e Setup Toolchain in your PC to develop applications for ESP32 in C language
¢ Connect the module to the PC and verify if it is accessible
* Build and Flash an example application to the ESP32

* Monitor instantly what the application is doing

Related Documents

e ESP32-DevKitC schematic (PDF)

1.3. Guides 9

https://dl.espressif.com/dl/schematics/ESP32-Core-Board-V2_sch.pdf

Read the Docs Template Documentation, Release v3.2.5

e ESP32 Datasheet (PDF)
¢ ESP-WROOM-32 Datasheet (PDF)

1.3.2 ESP-WROVER-KIT V4.1 Getting Started Guide

[l

This user guide shows how to get started with the ESP-WROVER-KIT V4.1 development board including description
of its functionality and configuration options. For descriptions of other versions of the ESP-WROVER-KIT check
ESP32 Hardware Reference.

If you would like to start using this board right now, go directly to the Start Application Development section.

What You Need

¢ 1 x ESP-WROVER-KIT V4.1 board
* 1 x Micro USB 2.0 Cable, Type A to Micro B
¢ 1 x PC loaded with Windows, Linux or Mac OS

Overview

The ESP-WROVER-KIT is a development board built around the ESP32 and produced by Espressif. This board
is compatible with multiple ESP32 modules, including the ESP32-WROOM-32, ESP32-WROVER and ESP32-
WROVER-B. The ESP-WROVER-KIT features support for an LCD and a MicroSD card. The I/O pins have been
broken out from the ESP32 module for easy extension. The board carries an advanced multi-protocol USB bridge
(the FTDI FT2232HL), enabling developers to use JTAG directly to debug the ESP32 through the USB interface. The
development board makes secondary development easy and cost-effective.

Functionality Overview

The block diagram below illustrates the ESP-WROVER-KIT’s main components and their interconnections.

Functional Description

The following lists and figures describe the key components, interfaces, and controls of ESP-WROVER-KIT board.

32.768 kHz An external precision 32.768 kHz crystal oscillator provides a low-power consumption clock used during
Deep-Sleep mode.

FT2232 The FT2232 chip is a multi-protocol USB-to-serial bridge. Users can control and program the FT2232 chip
through the USB interface to establish communication with ESP32. The FT2232 chip also features USB-to-
JTAG interface. USB-to-JTAG is available on channel A of the FT2232, whilst USB-to-serial is on channel B.
The embedded FT2232 chip is one of the distinguishing features of the ESP-WROVER-KIT. It enhances users’
convenience in terms of application development and debugging. In addition, users need not purchase a JTAG
debugger separately, which reduces the development cost, see ESP-WROVER-KIT V4.1 schematic.

OR A zero Ohm resistor intended as a placeholder for a current shunt. May be desoldered or replaced with a current
shunt to facilitate measurement of current required by ESP32 module depending on power mode.

10 Chapter 1. Get Started

https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://espressif.com/sites/default/files/documentation/esp-wroom-32_datasheet_en.pdf
../../../zh_CN/v3.2.5/get-started/get-started-wrover-kit.html
https://espressif.com
https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_V4_1.pdf

Read the Docs Template Documentation, Release v3.2.5

32.768KHz

crystal

110 expand

ChannelA LCD.

uUsBe 3.2inch
Connector
chennan [Somer
1 MicroSD
USB_5Y
= LDO:
EXT_5V o | +5V->43.3V . - RGB LED
g [en] |Kee|

Fig. 6: ESP-WROVER-KIT block diagram

ESP32-WROVER This version of ESP-WROVER-KIT board has ESP-WROVER-B module installed that integrates
64-Mbit PSRAM for flexible extended storage and data processing capabilities. The board can accommodate
other versions of ESP modules described under WROOM, SOLO and WROVER Modules.

Note: GPIO16 and GPIO17 are used as the CS and clock signal for PSRAM. To ensure reliable performance,
the two GPIOs are not broken out.

Diagnostic LEDs Four red LEDs connected to GPIO pins of the FT2232 chip. Intended for future use.

UART Serial port: the serial TX/RX signals on the FT2232HL and the ESP32 are broken out to each side of JP2. By
default, the two signals are connected with jumpers. To use the ESP32 module serial interface only, the jumpers
may be removed and the module can be connected to another external serial device.

SPI SPI interface used by ESP32 to access flash and PSRAM memories inside the module. Please note that the
voltage level on this interface depends on the module used.

CTS/RTS Serial port flow control signals: the pins are not connected to the circuitry by default. To enable them,
respective pins of JP14 must be shorted with jumpers.

JTAG JTAG interface: the JTAG signals on FT2232HL and ESP32 are broken out to the two sides of JP2. By default,
the two signals are disconnected. To enable JTAG, shorting jumpers are required on the signals as shown in
section Setup Options.

USB Port USB interface. It functions as the power supply for the board and the communication interface between
PC and ESP32 module.

EN Button Reset button: pressing this button resets the system.

Boot Button Download button: holding down the Boot button and pressing the EN button initiates the firmware
download mode. Then user can download firmware through the serial port.

Power Switch Power on/off button: toggling to the right powers the board on; toggling to the left powers the board
off.

1.3. Guides 1

Read the Docs Template Documentation, Release v3.2.5

Power Selector Power supply selection interface: the ESP-WROVER-KIT can be powered through the USB interface
or the 5V Input interface. The user can select the power supply with a jumper. More details can be found in
section Setup Options, jumper header JP7.

5V Input The 5V power supply interface is used as a backup power supply in case of full-load operation.

5V Power On LED This red LED indicates that a power supply (either from USB or 5V Input) is applied to the
board.

LDO NCPI1117(1A). 5V-t0-3.3V LDO. (There is an alternative pin-compatible LDO — LM317DCY, with an output
current of up to 1.5A). NCP1117 can provide a maximum current of 1A. The LDO solutions are available with
both fixed output voltage and variable output voltage. For details please refer to ESP-WROVER-KIT V4.1
schematic.

Camera Connector Camera interface: a standard OV7670 camera module is supported.

RGB LED Red, green and blue (RGB) light emitting diodes (LEDs), which may be controlled by pulse width modu-
lation (PWM).

I/0 Connector All the pins on the ESP32 module are led out to the pin headers on the ESP-WROVER-KIT. Users
can program ESP32 to enable multiple functions such as PWM, ADC, DAC, 12C, 12S, SPI, etc.

Micro SD Card Slot Develop applications that access Micro SD card for data storage and retrieval.

LCD ESP-WROVER-KIT supports mounting and interfacing a 3.2” SPI (standard 4-wire Serial Peripheral Interface)
LCD, as shown on figure ESP-WROVER-KIT board layout - back.

FT2232 32.768 kHz

Micro SD Card Slot OR

ESP32-WROVER
I/O Connector

Diagnostic LEDs

UART
RGB LED Sp|
Camera Connector CTS/RTS
LDO JTAG
5V Power On LED —
USB Port

5V Input

EN Button
Boot Button

Power Selector
Power Switch

Fig. 7: ESP-WROVER-KIT board layout - front

12 Chapter 1. Get Started

https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_V4_1.pdf
https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_V4_1.pdf

Read the Docs Template Documentation, Release v3.2.5

LCD

- FEET [

Fig. 8: ESP-WROVER-KIT board layout - back

Setup Options

There are three jumper headers available to set up the board functionality. Typical options to select from are listed in
table below.

1.3. Guides 13

Read the Docs Template Documentation, Release v3.2.5

Header

JP7

JP7

JpP2

14

Description of Functionality

Power ESP-WROVER-KIT board from an external
power supply

Power ESP-WROVER-KIT board from an USB port

Enable JTAG functionality

Chapter 1. Get Started

Read the Docs Template Documentation, Release v3.2.5

Allocation of ESP32 Pins
Several pins / terminals of ESP32 module are allocated to the on board hardware. Some of them, like GPIOO or

GPIO2, have multiple functions. If certain hardware is not installed, e.g. nothing is plugged in to the Camera / JP4
header, then selected GPIOs may be used for other purposes.

Main I/0 Connector / JP1

The JP1 connector is shown in two columns in the middle under “I/O” headers. The two columns “Shared With”
outside, describe where else on the board certain GPIO is used.

Shared With I/0 I/O Shared With
NC/XTAL 1032 | 1033 | NC/XTAL

JTAG, MicroSD 1012 | 1013 | JTAG, MicroSD

JTAG, MicroSD 1014 | 1027 | Camera

Camera 1026 | 1025 | Camera, LCD

Camera 1035 | 1034 | Camera

Camera 1039 | 1036 | Camera

JTAG EN 1023 | Camera, LCD

Camera, LCD 1022 | 1021 | Camera, LCD, MicroSD
Camera, LCD 1019 | 1018 | Camera, LCD

Camera, LCD 105 1017 | PSRAM

PSRAM 1016 | 104 LED, Camera, MicroSD
Camera, LED, Boot | 100 102 LED, MicroSD

JTAG, MicroSD 1015 | 5V

Legend:
e NC/XTAL - 32.768 kHz Oscillator
e JTAG - JTAG / JP8
* Boot - Boot button / SW2
» Camera - Camera / JP4
e LED - RGB LED
¢ MicroSD - MicroSD Card / J4
* LCD-LCD/ U5
¢ PSRAM - ESP32-WROVER’s PSRAM, if ESP32-WROVER is installed

32.768 kHz Oscillator

. | ESP32 Pin
1 | GPIO32
2 | GPIO33

Note: As GPIO32 and GPIO33 are connected to the oscillator, they are not connected to JP1 I/O expansion connector
to maintain signal integrity. This allocation may be changed from oscillator to JP1 by desoldering the OR resistors

1.3. Guides 15

Read the Docs Template Documentation, Release v3.2.5

from positions R11 / R23 and installing them in positions R12 / R24.

SPI Flash / JP2

ESP32 Pin

CLK / GPIO6

SDO0 / GPIO7

SD1 / GPIO8

SD2 / GPIO9

SD3/ GPIO10

QN | | WD =]

CMD / GPIO11

Important: The module’s flash bus is connected to the pin header JP2 through 0-Ohm resistors R140 ~ R145.
If the flash frequency needs to operate at 80 MHz for reasons such as improving the integrity of bus signals, it is
recommended that resistors R140 ~ R145 be desoldered. At this point, the module’s flash bus is disconnected with the

pin header JP2.

JTAG / JP2

ESP32 Pin

JTAG Signal

EN

TRST_N

MTMS / GPIO14

TMS

MTDO / GPIO15

TDO

MTDI/ GPIO12

TDI

(LN EOST N ST

MTCK / GPIO13

TCK

16

Chapter 1. Get Started

Read the Docs Template Documentation, Release v3.2.5

Camera / JP4

. ESP32 Pin | Camera Signal

1 n/a 3.3V

2 n/a Ground

3 GPIO27 SIO_C / SCCB Clock

4 GPIO26 SIO_D / SCCB Data

5 GPIO25 VSYNC / Vertical Sync

6 GPI10O23 HREF / Horizontal Reference
7 GPIO22 PCLK / Pixel Clock

8 GPIO21 XCLK / System Clock

9 GPIO35 D7 / Pixel Data Bit 7

10 | GP1IO34 D6 / Pixel Data Bit 6

11 | GPIO39 D5 / Pixel Data Bit 5

12 | GPIO36 D4 / Pixel Data Bit 4

13 | GPIO19 D3 / Pixel Data Bit 3

14 | GPIOI18 D2 / Pixel Data Bit 2

15 | GPIOS D1 / Pixel Data Bit 1

16 | GP1O4 DO / Pixel Data Bit 0

17 | GPIOO RESET / Camera Reset

18 | n/a PWDN / Camera Power Down

* Signals DO .. D7 denote camera data bus

RGB LED

MicroSD Card / J4

. | ESP32 Pin | RGB LED
1 | GPIOO Red
2 | GPIO2 Green
3 | GPIO4 Blue
. | ESP32 Pin MicroSD Signal
1 | MTDI/GPIO12 | DATA2
2 | MTCK/GPIO13 | CD/DATA3
3 | MTDO/GPIO15 | CMD
4 | MTMS /GPIO14 | CLK
5 | GPIO2 DATAO
6 | GPIO4 DATA1
7 | GPIO21 CD

1.3. Guides

17

Read the Docs Template Documentation, Release v3.2.5

LCD / U5
. | ESP32 Pin | LCD Signal
1 | GPIO18 RESET
2 | GPIO19 SCL
3 | GPIO21 D/C
4 | GPIO22 CS
5 | GP1023 SDA
6 | GPIO25 SDO
7 | GPIO5 Backlight

Start Application Development

Before powering up the ESP-WROVER-KIT, please make sure that the board has been received in good condition
with no obvious signs of damage.

Initial Setup

Select the source of power supply for the board by setting jumper JP7. The options are either USB port or an external
5V Input. For this application, the selection of the USB port is sufficient. Enable UART communication by installing
jumpers on JP2. Both selections are shown in table below.

Power up from USB port Enable UART communication
I] " W i B

it »

Do not install any other jumpers.

Turn the Power Switch on. The 5V Power On LED should turn on.

Now to Development

To start development of applications for ESP-WROVER-KIT, proceed to the Ger Started section which will walk you
through the following steps:

18 Chapter 1. Get Started

Read the Docs Template Documentation, Release v3.2.5

e Setup Toolchain in your PC to develop applications for ESP32 in C language

* Connect the module to the PC and verify if it is accessible

Build and Flash an example application to the ESP32

* Monitor instantly what the application is doing

Related Documents

ESP-WROVER-KIT V4.1 schematic (PDF)
e ESP32 Datasheet (PDF)
ESP32-WROVER-B Datasheet (PDF)

JTAG Debugging

ESP32 Hardware Reference

ESP-WROVER-KIT V3 Getting Started Guide

This user guide shows how to get started with the ESP-WROVER-KIT V3 development board including description
of its functionality and configuration options. For descriptions of other versions of the ESP-WROVER-KIT check
ESP32 Hardware Reference.

If you would like to start using this board right now, go directly to the Start Application Development section.

What You Need

¢ 1 x ESP-WROVER-KIT V3 board
* 1 x Micro USB 2.0 Cable, Type A to Micro B
¢ 1 x PC loaded with Windows, Linux or Mac OS

Overview

The ESP-WROVER-KIT is a development board built around the ESP32 and produced by Espressif. This board
is compatible with multiple ESP32 modules, including the ESP32-WROOM-32 and ESP32-WROVER. The ESP-
WROVER-KIT features support for an LCD and MicroSD card. The I/O pins have been broken out from the ESP32
module for easy extension. The board carries an advanced multi-protocol USB bridge (the FTDI FT2232HL), enabling
developers to use JTAG directly to debug the ESP32 through the USB interface. The development board makes
secondary development easy and cost-effective.

Note: ESP-WROVER-KIT V3 integrates the ESP32-WROVER module by default.

Functionality Overview

The block diagram below illustrates the ESP-WROVER-KIT’s main components and their interconnections.

1.3. Guides 19

https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_V4_1.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://espressif.com/sites/default/files/documentation/esp32-wrover-b_datasheet_en.pdf
https://espressif.com

Read the Docs Template Documentation, Release v3.2.5

32.768KHz

crystal

110 expand

ChannelA LCD.

uUsBe 3.2inch
Connector
chennan [Somer
1 MicroSD
USB_5Y
= LDO:
EXT_5V o | +5V->43.3V . - RGB LED
g [en] |Kee|

Fig. 9: ESP-WROVER-KIT block diagram

Functional Description

The following lists and figures describe the key components, interfaces, and controls of ESP-WROVER-KIT board.

32.768 kHz An external precision 32.768 kHz crystal oscillator provides a low-power consumption clock used during
Deep-Sleep mode.

OR A zero Ohm resistor intended as a placeholder for a current shunt. May be desoldered or replaced with a current
shunt to facilitate measurement of current required by ESP32 module depending on power mode.

ESP32 Module ESP-WROVER-KIT is compatible with both the ESP32-WROOM-32 and the ESP32-WROVER.
The ESP32-WROVER module features all the functions of ESP32-WROOM-32 and integrates an external 32-
Mbit PSRAM for flexible extended storage and data processing capabilities.

Note: GPIO16 and GPIO17 are used as the CS and clock signal for PSRAM. To ensure reliable performance,
the two GPIOs are not broken out.

FT2232 The FT2232 chip is a multi-protocol USB-to-serial bridge. Users can control and program the FT2232 chip
through the USB interface to establish communication with ESP32. The FT2232 chip also features USB-to-
JTAG interface. USB-to-JTAG is available on channel A of the FT2232, whilst USB-to-serial is on channel B.
The embedded FT2232 chip is one of the distinguishing features of the ESP-WROVER-KIT. It enhances users’
convenience in terms of application development and debugging. In addition, users need not purchase a JTAG
debugger separately, which reduces the development cost, see ESP-WROVER-KIT V3 schematic.

UART Serial port: the serial TX/RX signals on the FT2232HL and the ESP32 are broken out to each side of JP11. By
default, the two signals are connected with jumpers. To use the ESP32 module serial interface only, the jumpers
may be removed and the module can be connected to another external serial device.

SPI The SPI interface is used by the ESP32 to access flash and PSRAM memories within the module itself. To
interface with another SPI device, an extra CS signal is needed. Please note that the voltage level on this
interface depends on the module used (e.g 1.8V and 3.3V for the ESP32-WROVER and ESP32-WROOM-32
respectively).

20 Chapter 1. Get Started

https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_SCH-3.pdf

Read the Docs Template Documentation, Release v3.2.5

CTS/RTS Serial port flow control signals: the pins are not connected to the circuitry by default. To enable them,
respective pins of JP14 must be shorted with jumpers.

JTAG JTAG interface: the JTAG signals on FT2232HL and ESP32 are broken out to the two sides of JP8. By default,
the two signals are disconnected. To enable JTAG, shorting jumpers are required on the signals.

EN Reset button: pressing this button resets the system.

Boot Download button: holding down the Boot button and pressing the EN button initiates the firmware download
mode. Then user can download firmware through the serial port.

USB USB interface. It functions as the power supply for the board and the communication interface between PC and
ESP32 module.

Power Select Power supply selection interface: the ESP-WROVER-KIT can be powered through the USB interface
or the 5V Input interface. The user can select the power supply with a jumper. More details can be found in
section Setup Options, jumper header JP7.

Power Key Power on/off button: toggling to the right powers the board on; toggling to the left powers the board off.
5V Input The 5V power supply interface is used as a backup power supply in case of full-load operation.

LDO NCPI1117(1A). 5V-t0-3.3V LDO. (There is an alternative pin-compatible LDO — LM317DCY, with an output
current of up to 1.5A). NCP1117 can provide a maximum current of 1A. The LDO solutions are available
with both fixed output voltage and variable output voltage. For details please refer to ESP-WROVER-KIT V3
schematic.

Camera Camera interface: a standard OV7670 camera module is supported.

RGB Red, green and blue (RGB) light emitting diodes (LEDs), which may be controlled by pulse width modulation
(PWM).

I/O All the pins on the ESP32 module are led out to the pin headers on the ESP-WROVER-KIT. Users can program
ESP32 to enable multiple functions such as PWM, ADC, DAC, 12C, 128, SPI, etc.

Micro SD Card Develop applications that access Micro SD card for data storage and retrieval.

LCD ESP-WROVER-KIT supports mounting and interfacing a 3.2 SPI (standard 4-wire Serial Peripheral Interface)
LCD, as shown on figure ESP-WROVER-KIT board layout - back.

Setup Options

There are five jumper headers available to set up the board functionality. Typical options to select from are listed in
table below.

1.3. Guides 21

https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_SCH-3.pdf
https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_SCH-3.pdf

22

Read the Docs Template Documentation, Release v3.2.5

Micro
SD Card

11O

RGB
LED

Camera

LDO

5V
Input

Power
Select

) ESP-WROVER-KIT
@ ESP-WROVER-KIT, Espr

®-8 @

OR

ESP32
Module

FT2232

UART

SPI

CTS
RTS

JTAG

Key USB

Boot

EN

Fig. 10: ESP-WROVER-KIT board layout - front

Chapter 1. Get Started

Read the Docs Template Documentation, Release v3.2.5

®
oo D 23
&g
LCD Qe m
Fig. 11: ESP-WROVER-KIT board layout - back
1.3. Guides 23

Read the Docs Template Documentation, Release v3.2.5

Header

JP7

JP7

JP8

24

Jumper Setting

Description of Functionality

Power ESP-WROVER-KIT board from an external power
supply

Power ESP-WROVER-KIT board from an USB port

Enable JTAG functionality

Chapter 1. Get Started

Read the Docs Template Documentation, Release v3.2.5

Allocation of ESP32 Pins

Several pins / terminals of ESP32 module are allocated to the on board hardware. Some of them, like GPIOO or
GPIO2, have multiple functions. If certain hardware is not installed, e.g. nothing is plugged in to the Camera / JP4
header, then selected GPIOs may be used for other purposes.

Main I/O Connector / JP1

The JP1 connector is shown in two columns in the middle under “I/O” headers. The two columns “Shared With”
outside, describe where else on the board certain GPIO is used.

Shared With I/O I/0 Shared With
3.3V | GND
NC/XTAL 1032 | 1033 | NC/XTAL
JTAG, MicroSD 1012 | 1013 | JTAG, MicroSD
JTAG, MicroSD 1014 | 1027 | Camera
Camera 1026 | 1025 | Camera, LCD
Camera 1035 | 1034 | Camera
Camera 1039 | 1036 | Camera
JTAG EN 1023 | Camera, LCD
Camera, LCD 1022 | 1021 | Camera, LCD, MicroSD
Camera, LCD 1019 | 1018 | Camera, LCD
Camera, LCD 105 1017 | PSRAM
PSRAM 1016 | 104 LED, Camera, MicroSD
Camera, LED, Boot | 100 102 LED, MicroSD
JTAG, MicroSD 1015 | 5V

Legend:

NC/XTAL - 32.768 kHz Oscillator
JTAG - JTAG / JP§

Boot - Boot button / SW2

Camera - Camera / JP4

LED - RGB LED

MicroSD - MicroSD Card / J4
LCD-LCD /U5

PSRAM - ESP32-WROVER’s PSRAM, if ESP32-WROVER is installed

32.768 kHz Oscillator

ESP32 Pin

GPIO32

GPIO33

1.3. Guides

25

Read the Docs Template Documentation, Release v3.2.5

Note: As GPIO32 and GPIO33 are connected to the oscillator, they are not connected to JP1 I/O expansion connector
to maintain signal integrity. This allocation may be changed from oscillator to JP1 by desoldering the OR resistors
from positions R11 /R23 and installing them in positions R12 / R24.

SPI Flash / JP13

ESP32 Pin

CLK / GPIO6

SDO / GPIO7

SD1 / GPIO8

SD2 / GPIO9

SD3 / GPIO10

AN | | W =

CMD / GPIO11

Important:

The module’s flash bus is connected to the pin header JP13 through 0-Ohm resistors R140 ~ R145.

If the flash frequency needs to operate at 80 MHz for reasons such as improving the integrity of bus signals, it is
recommended that resistors R140 ~ R145 be desoldered. At this point, the module’s flash bus is disconnected with the

pin header JP13.

JTAG / JP8

ESP32 Pin JTAG Signal
1 | EN TRST_N
2 | MTDO/ GPIO15 | TDO
3 | MTDI/GPIO12 | TDI
4 | MTCK/GPIO13 | TCK
5 | MTMS /GPIO14 | TMS

26

Chapter 1. Get Started

Read the Docs Template Documentation, Release v3.2.5

Camera / JP4

RGB LED

MicroSD Card / J4

ESP32 Pin | Camera Signal
1 n/a 3.3V
2 n/a Ground
3 GPIO27 SIO_C / SCCB Clock
4 GPIO26 SIO_D / SCCB Data
5 GPIO25 VSYNC / Vertical Sync
6 GPI10O23 HREF / Horizontal Reference
7 GPIO22 PCLK / Pixel Clock
8 GPIO21 XCLK / System Clock
9 GPIO35 D7 / Pixel Data Bit 7
10 | GP1IO34 D6 / Pixel Data Bit 6
11 | GPIO39 D5 / Pixel Data Bit 5
12 | GPIO36 D4 / Pixel Data Bit 4
13 | GPIO19 D3 / Pixel Data Bit 3
14 | GPIOI18 D2 / Pixel Data Bit 2
15 | GPIOS D1 / Pixel Data Bit 1
16 | GP1O4 DO / Pixel Data Bit 0
17 | GPIOO RESET / Camera Reset
18 | n/a PWDN / Camera Power Down
ESP32 Pin | RGB LED
1 | GPIOO Red
2 | GPIO2 Green
3 | GPIO4 Blue
ESP32 Pin MicroSD Signal
1 | MTDI/GPIO12 | DATA2
2 | MTCK/GPIO13 | CD/DATA3
3 | MTDO/GPIO15 | CMD
4 | MTMS /GPIO14 | CLK
5 | GPIO2 DATAO
6 | GPIO4 DATA1
7 | GPIO21 CD

1.3. Guides

27

Read the Docs Template Documentation, Release v3.2.5

LCD / U5
ESP32 Pin | LCD Signal
1 | GPIO18 RESET
2 | GPIO19 SCL
3 | GPIO21 D/C
4 | GPIO22 CS
5 | GP1023 SDA
6 | GPIO25 SDO
7 | GPIO5 Backlight

Start Application Development

Before powering up the ESP-WROVER-KIT, please make sure that the board has been received in good condition
with no obvious signs of damage.

Initial Setup

Select the source of power supply for the board by setting jumper JP7. The options are either USB port or an external
power supply. For this application selection of USB port is sufficient. Enable UART communication by installing
jumpers on JP11. Both selections are shown in table below.

Enable UART communication

Do not install any other jumpers.

Now to Development

To start development of applications for ESP-WROVER-KIT, proceed to the Ger Started section which will walk you
through the following steps:

 Setup Toolchain in your PC to develop applications for ESP32 in C language

28 Chapter 1. Get Started

Read the Docs Template Documentation, Release v3.2.5

* Connect the module to the PC and verify if it is accessible
* Build and Flash an example application to the ESP32

* Monitor instantly what the application is doing

Related Documents

ESP-WROVER-KIT V3 schematic (PDF)
e ESP32 Datasheet (PDF)

ESP32-WROVER Datasheet (PDF)
ESP32-WROOM-32 Datasheet (PDF)
* JTAG Debugging

ESP32 Hardware Reference

ESP-WROVER-KIT V2 Getting Started Guide

This user guide shows how to get started with ESP-WROVER-KIT V2 development board including description of
its functionality and configuration options. For description of other versions of the ESP-WROVER-KIT check ESP32
Hardware Reference.

If you like to start using this board right now, go directly to section Start Application Development.

What You Need

* 1 x ESP-WROVER-KIT V2 board
* 1 x Micro USB 2.0 Cable, Type A to Micro B
¢ 1 x PC loaded with Windows, Linux or Mac OS

Overview

The ESP-WROVER-KIT is a development board produced by Espressif built around ESP32. This board is compatible
with ESP32 modules, including the ESP-WROOM-32 and ESP32-WROVER. The ESP-WROVER-KIT features sup-
port for an LCD and MicroSD card. The I/O pins have been broken out from the ESP32 module for easy extension.
The board carries an advanced multi-protocol USB bridge (the FTDI FT2232HL), enabling developers to use JTAG
directly to debug the ESP32 through the USB interface. The development board makes secondary development easy
and cost-effective.

Note: ESP-WROVER-KIT V2 integrates the ESP-WROOM-32 module by default.

Functionality Overview

Block diagram below presents main components of ESP-WROVER-KIT and interconnections between components.

1.3. Guides 29

https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_SCH-3.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://espressif.com/sites/default/files/documentation/esp32-wrover_datasheet_en.pdf
https://espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf
https://espressif.com

Read the Docs Template Documentation, Release v3.2.5

32.768KHz
crystal

110 expand
Channel& LCD.
uUsBe 3.2inch
Connector

cheme i

1 MicroSD

USB_5Y
= LDO:
EXT_5V o | +5V->43.3V . - RGB LED
g [en] [rer]

Fig. 12: ESP-WROVER-KIT block diagram

Functional Description

The following list and figures below describe key components, interfaces and controls of ESP-WROVER-KIT board.

32.768 kHz An external precision 32.768 kHz crystal oscillator provides the chip with a clock of low-power con-
sumption during the Deep-sleep mode.

ESP32 Module ESP-WROVER-KIT is compatible with both ESP-WROOM-32 and ESP32-WROVER. The ESP32-
WROVER module features all the functions of ESP-WROOM-32 and integrates an external 32-MBit PSRAM
for flexible extended storage and data processing capabilities.

Note: GPIO16 and GPIO17 are used as the CS and clock signal for PSRAM. To ensure reliable performance,
the two GPIOs are not broken out.

CTS/RTS Serial port flow control signals: the pins are not connected to the circuitry by default. To enable them,
respective pins of JP14 must be shorted with jumpers.

UART Serial port: the serial TX/RX signals on FT2232HL and ESP32 are broken out to the two sides of JP11. By
default, the two signals are connected with jumpers. To use the ESP32 module serial interface only, the jumpers
may be removed and the module can be connected to another external serial device.

SPI SPI interface: the SPI interface connects to an external flash (PSRAM). To interface another SPI device, an extra
CS signal is needed. If an ESP32-WROVER is being used, please note that the electrical level on the flash and
SRAM is 1.8V.

JTAG JTAG interface: the JTAG signals on FT2232HL and ESP32 are broken out to the two sides of JP8. By default,
the two signals are disconnected. To enable JTAG, shorting jumpers are required on the signals.

FT2232 FT2232 chip is a multi-protocol USB-to-serial bridge. The FT2232 chip features USB-to-UART and USB-
to-JTAG functionalities. Users can control and program the FT2232 chip through the USB interface to establish

communication with ESP32.

The embedded FT2232 chip is one of the distinguishing features of the ESP-WROVER-KIT. It enhances users’

30 Chapter 1. Get Started

Read the Docs Template Documentation, Release v3.2.5

convenience in terms of application development and debugging. In addition, uses do not need to buy a JTAG
debugger separately, which reduces the development cost, see ESP-WROVER-KIT V2 schematic.

EN Reset button: pressing this button resets the system.

Boot Download button: holding down the Boot button and pressing the EN button initiates the firmware download
mode. Then user can download firmware through the serial port.

USB USB interface. It functions as the power supply for the board and the communication interface between PC and
ESP32 module.

Power Select Power supply selection interface: the ESP-WROVER-KIT can be powered through the USB interface
or the 5V Input interface. The user can select the power supply with a jumper. More details can be found in
section Setup Options, jumper header JP7.

Power Key Power on/off button: toggling to the right powers the board on; toggling to the left powers the board off.
SV Input The 5V power supply interface is used as a backup power supply in case of full-load operation.

LDO NCP1117(1A). 5V-t0-3.3V LDO. (There is an alternative pin-compatible LDO — LM317DCY, with an output
current of up to 1.5A). NCP1117 can provide a maximum current of 1A. The LDO solutions are available
with both fixed output voltage and variable output voltage. For details please refer to ESP-WROVER-KIT V2
schematic.

Camera Camera interface: a standard OV7670 camera module is supported.

RGB Red, green and blue (RGB) light emitting diodes (LEDs), which may be controlled by pulse width modulation
(PWM).

I/0 All the pins on the ESP32 module are led out to the pin headers on the ESPWROVER-KIT. Users can program
ESP32 to enable multiple functions such as PWM, ADC, DAC, 12C, 12S, SPI, etc.

Micro SD Card Micro SD card slot for data storage: when ESP32 enters the download mode, GPIO2 cannot be held
high. However, a pull-up resistor is required on GPIO2 to enable the Micro SD Card. By default, GPIO2 and the
pull-up resistor R153 are disconnected. To enable the SD Card, use jumpers on JP1 as shown in section Serup
Options.

LCD ESP-WROVER-KIT supports mounting and interfacing a 3.2” SPI (standard 4-wire Serial Peripheral Interface)
LCD, as shown on figure ESP-WROVER-KIT board layout - back.

Setup Options

There are five jumper headers available to set up the board functionality. Typical options to select from are listed in
table below.

1.3. Guides 31

https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_SCH-2.pdf
https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_SCH-2.pdf
https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_SCH-2.pdf

Read the Docs Template Documentation, Release v3.2.5

Card

‘ o
RGE

Camera

Micro SD

LoD

Eﬂe :

T ey

32.T68K
Hz

| ESP3z
| Module

CTs

FT2232

5V
Input

Power

Key

Power
Select

UsSE

Boot EN ‘

Fig. 13: ESP-WROVER-KIT board layout - front

32

Chapter 1. Get Started

Read the Docs Template Documentation, Release v3.2.5

TSI FrSry.

L |
* 9
L N |
LA |

L I

ESP-WROVER-KIT
ISP = b KL T . Eapreas I, oo & & 8

L B B IR B BN BN BN B BE B B O B BN B B I R R B N O
[B BN IR B BN BN BN BN BE OB BN BN BN BN BN BN B BN AN BN NN B

°s

Fig. 14: ESP-WROVER-KIT board layout - back

1.3. Guides 33

Read the Docs Template Documentation, Release v3.2.5

Header

Jumper Setting

JP1

JP1

34

JP7

JP7

Description of Functionality

Enable pull up for the Micro SD Card

Assert GPIO2 low during each download (by jumping it to
GPIO0)

Power ESP-WROVER-KIT board from an external power supply

rjllr::-l JF 1.
i8[= #nSRST

157

i3 =i

Power ESP-WROVER-KIT board from an USB port

Chapter 1. Get Started

Read the Docs Template Documentation, Release v3.2.5

Start Application Development

Before powering up the ESP-WROVER-KIT, please make sure that the board has been received in good condition
with no obvious signs of damage.

Initial Setup

Select the source of power supply for the board by setting jumper JP7. The options are either USB port or an external
power supply. For this application selection of USB port is sufficient. Enable UART communication by installing
jumpers on JP11. Both selections are shown in table below.

Enable UART communication

Do not install any other jumpers.

Now to Development

To start development of applications for ESP32-DevKitC, proceed to section Ger Started, that will walk you through
the following steps:

 Setup Toolchain in your PC to develop applications for ESP32 in C language
* Connect the module to the PC and verify if it is accessible
* Build and Flash an example application to the ESP32

* Monitor instantly what the application is doing

Related Documents

ESP-WROVER-KIT V2 schematic (PDF)
ESP32 Datasheet (PDF)
ESP-WROOM-32 Datasheet (PDF)
ESP32-WROVER Datasheet (PDF)

» JTAG Debugging

ESP32 Hardware Reference

1.3. Guides 35

https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_SCH-2.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp-wroom-32_datasheet_en.pdf
https://espressif.com/sites/default/files/documentation/esp32-wrover_datasheet_en.pdf

Read the Docs Template Documentation, Release v3.2.5

1.3.3 ESP32-PICO-KIT V4 / V4.1 Getting Started Guide

[l

This user guide shows how to get started with the ESP32-PICO-KIT V4 / V4.1 mini development board. For descrip-
tion of other versions of the ESP32-PICO-KIT check ESP32 Hardware Reference.

Note: This particular description covers ESP32-PICO-KIT V4 and V4.1. The difference is USB-UART bridge that
has been changed from CP2102 in V4 to CP2102N in V4.1. The first provides up to 1 Mbps transfer rates, while the
later up to 3 Mbps transfer rates.

What You Need

e 1 x ESP32-PICO-KIT mini development board
* 1 x USB A/ Micro USB B cable
¢ 1 x PC loaded with Windows, Linux or Mac OS

If you like to start using this board right now, go directly to section Start Application Development.

Overview

ESP32-PICO-KIT is a mini development board produced by Espressif. At the core of this board is the ESP32-PICO-
D4, a System-in-Package (SiP) module with complete Wi-Fi and Bluetooth functionalities. Comparing to other ESP32
modules, the ESP32-PICO-D4 integrates several peripheral components in one single package, that otherwise would
need to be installed separately. This includes a 40 MHz crystal oscillator, a 4 MB flash, filter capacitors and RF
matching links in. This greatly reduces quantity and costs of additional components, subsequent assembly and testing
cost, as well as overall product complexity.

The development board integrates a USB-UART Bridge circuit, allowing the developers to connect the board to a PC’s
USB port for downloads and debugging.

For easy interfacing, all the 1O signals and system power on ESP32-PICO-D4 are led out through two rows of 20 x 0.1”
pitch header pads on both sides of the development board. To make the ESP32-PICO-KIT fit into mini breadboards,
the header pads are populated with two rows of 17 pin headers. Remaining 2 x 3 pads grouped on each side of the
board besides the antenna are not populated. The remaining 2 x 3 pin headers may be soldered later by the user.

Note: The 2 x 3 pads not populated with pin headers are internally connected to the flash memory embedded in the
ESP32-PICO-D4 SiP module. For more details see module’s datasheet in Related Documents.

The board dimensions are 52 x 20.3 x 10 mm (2.1” x 0.8” x 0.4”), see section Board Dimensions. An overview
functional block diagram is shown below.

Functional Description

The following list and figure below describe key components, interfaces and controls of ESP32-PICO-KIT board.

ESP32-PICO-D4 Standard ESP32-PICO-D4 module soldered to the ESP32-PICO-KIT board. The complete system
of the ESP32 chip has been integrated into the SiP module, requiring only external antenna with LC matching
network, decoupling capacitors and pull-up resistors for EN signals to function properly.

LDO 5V-to-3.3V Low dropout voltage regulator (LDO).

36 Chapter 1. Get Started

../../../zh_CN/v3.2.5/get-started/get-started-pico-kit.html
https://espressif.com

Read the Docs Template Documentation, Release v3.2.5

0000000000 OGSOOGOOGEOSO®O OGS
LLLLLL L L L L L L L L L LS Pin Header

USB Bridget

n
=
AR

USE Port

LDO Regulator

@ &) —

Powe
AR AR o
[BN BN BN BN BN BN BN BN BN BN BN M BN M N N N N N)

Pin Header

Fig. 15: ESP32-PICO-KIT functional block diagram

USB-UART Bridge A single chip USB-UART bridge: CP2102 in V4 of the board and CP2102N in V4.1. The first
provides up to 1 Mbps transfer rates, while the latter up to 3 Mbps transfers rates.

Micro USB Port USB interface. It functions as the power supply for the board and the communication interface
between PC and ESP32-PICO-KIT.

5V Power On LED This light emitting diode lits when the USB or an external 5V power supply is applied to the
board. For details see schematic in Related Documents.

I/O All the pins on ESP32-PICO-D4 are broken out to the pin headers on the board. Users can program ESP32 to
enable multiple functions such as PWM, ADC, DAC, 12C, 12S, SPI, etc. For details please see section Pin
Descriptions.

BOOT Button Holding down the Boot button and pressing the EN button initiates the firmware download mode.
Then user can download firmware through the serial port.

EN Button Reset button; pressing this button resets the system.

Power Supply Options

The following options are available to provide power supply to the ESP32-PICO-KIT:
1. Micro USB port, this is default power supply connection
2. 5V / GND header pins
3. 3V3/ GND header pins

1.3. Guides 37

Read the Docs Template Documentation, Release v3.2.5

| 3D Antenna ‘ ‘ ESP32-PICO-D4 ‘ ‘ LDO ‘ USB-UART Bridge ‘
|

...0‘&3@'!‘13&&01?@00@*&

D1 D3 CLK 21 22 19 23 18 &5/ 18 9 RXe TXe 35 34 |38 37 EM D 3V3

Wifs i 'EC.B_LE WU3B Bridoe

i
] -

s | .

Fig. 16: ESP32-PICO-KIT board layout

Warning: Above options are mutually exclusive, i.e. the power supply may be provided using only one of the
above options. Attempt to power the board using more than one connection at a time may damage the board and/or
the power supply source.

Start Application Development
Before powering up the ESP32-PICO-KIT, please make sure that the board has been received in good condition with
no obvious signs of damage.
To start development of applications, proceed to section Get Started, that will walk you through the following steps:
e Setup Toolchain in your PC to develop applications for ESP32 in C language
* Connect the module to the PC and verify if it is accessible
* Build and Flash an example application to the ESP32

* Monitor instantly what the application is doing

Pin Descriptions

The two tables below provide the Name and Function of I/O headers on both sides of the board, see ESP32-PICO-KIT
board layout. The pin numbering and header names are the same as on a schematic in Related Documents.

38 Chapter 1. Get Started

Read the Docs Template Documentation, Release v3.2.5

Header J2

No. Name Type Function

1 FLASH_SD1 (FSD1) /0

GPIOS, SD_DATAL,
SPID, HS1_DATAL1 (1),
U2CTS

2 FLASH_SD3 (FSD3) I/0

GPIO7, SD_DATAO,
SPIQ, HS1_DATAO (1),
U2RTS

3 FLASH_CLK (FCLK) /0

GPIO6, SD_CLK,
SPICLK, HS1_CLK (),
UICTS

4 1021 I/0

GPIO21, VSPIHD,
EMAC_TX_EN

5 1022 /0

GPIO22, VSPIWP,
UORTS, EMAC_TXD1

6 1019 /0

GPIO19, VSPIQ,
UOCTS, EMAC_TXDO

7 1023 /0

GPIO23, VSPID,
HS1_STROBE

8 1018 I/0

GPIO18, VSPICLK,
HS1_DATA7

9 105 I/0

GPIOS5, VSPICSO,
HS1_DATAGS,
EMAC_RX_CLK

10 1010 /0

GPIO10, SD_DATA3,
SPIWP, HS1_DATA3,
UITXD

11
T

1.3. Guides

)
\=]
=
)

GPIO9, SD_DATA2,
SPIHD, HS1_DATAZ2,
UIRXD

Read the Docs Template Documentation, Release v3.2.5

40

Chapter 1. Get Started

Read the Docs Template Documentation, Release v3.2.5

Header J3

Name

Type

Function

FLASH_CS (FCS)

I/0

GPIO16, HS1_DATA4
(1), U2RXD,
EMAC_CLK_OUT

FLASH_SDO (FSDO0)

I/0

GPIO17, HS1_DATAS5
(1), U2TXD,
EMAC_CLK_OUT_180

FLASH_SD2 (FSD2)

/0

GPIO11, SD_CMD,
SPICS0, HS1_CMD (1),
UIRTS

SENSOR_VP (FSVP)

GPIO36, ADC1_CHO,
ADC_PRE_AMP (2a),
RTC_GPIOO

SENSOR_VN (FSVN)

GPIO39, ADC1_CH3,
ADC_PRE_AMP (2b),
RTC_GPIO3

1025

I/0

GPIO25, DAC_1,
ADC2_CHS,
RTC_GPIOG,
EMAC_RXDO0

1026

I/0

GPIO26, DAC_2,
ADC2_CHO,
RTC_GPIO7,
EMAC_RXDI

1032

/0

32K_XP (3a),
ADC1_CH4, TOUCHY,
RTC_GPIO9

1033

/0

32K_XN (3b),
ADC1_CHS, TOUCHS,
RTC_GPIOS

10

1027

I/0

41

GPIO27, ADC2_CH7,
TOUCH7, RTC_GPIO17

Read the Docs Template Documentation, Release v3.2.5

Notes to Pin Descriptions
1. This pin is connected to the flash pin of ESP32-PICO-D4.

2. When used as ADC_PRE_AMP, connect 270 pF capacitors between: (a) SENSOR_VP and 1037, (b) SEN-
SOR_VN and 1038.

3. 32.768 kHz crystal oscillator: (a) input, (b) output.
4. This pin is connected to the pin of the USB bridge chip on the board.

5. The operating voltage of ESP32-PICO-KIT’s embedded SPI flash is 3.3V. Therefore, the strapping pin MTDI
should hold bit ”’0” during the module power-on reset.

Board Dimensions

Tk
=
=
ESPRCSSIF SYSTEHS (E o
(SHANGHALDPTE LTD S N (=]
. FOL 1D HET2-ESPTPICOCIT o
2-PICO-KIT _V4.1 = T
M,
Fig. 17: ESP32-PICO-KIT dimensions - back
S
=
=
(]
—
Y

L 52 mm _‘

Fig. 18: ESP32-PICO-KIT dimensions - side

42 Chapter 1. Get Started

Read the Docs Template Documentation, Release v3.2.5

For the board physical construction details please refer to Reference Design listed below.

Related Documents

e ESP32-PICO-KIT V4 schematic (PDF)
ESP32-PICO-KIT V4.1 schematic (PDF)

ESP32-PICO-KIT Reference Design containing OrCAD schematic, PCB layout, gerbers and BOM
ESP32-PICO-D4 Datasheet (PDF)
* ESP32 Hardware Reference

ESP32-PICO-KIT V3 Getting Started Guide

This user guide shows how to get started with the ESP32-PICO-KIT V3 mini development board. For description of
other versions of the ESP32-PICO-KIT check ESP32 Hardware Reference.

What You Need

* 1 x ESP32-PICO-KIT V3 mini development board
¢ 1 x USB A/ Micro USB B cable
¢ 1 x PC loaded with Windows, Linux or Mac OS

Overview

ESP32-PICO-KIT V3 is a mini development board based on the ESP32-PICO-D4 SIP module produced by Espressif.
All the 10 signals and system power on ESP32-PICO-D4 are led out through two standard 20 pin x 0.1” pitch headers
on both sides for easy interfacing. The development board integrates a USB-UART Bridge circuit, allowing the
developers to connect the development board to a PC’s USB port for downloads and debugging.

Functional Description

The following list and figure below describe key components, interfaces and controls of ESP32-PICO-KIT V3 board.

ESP32-PICO-D4 Standard ESP32-PICO-D4 module soldered to the ESP32-PICO-KIT V3 board. The complete
system of the ESP32 chip has been integrated into the SIP module, requiring only external antenna with LC
matching network, decoupling capacitors and pull-up resistors for EN signals to function properly.

USB-UART Bridge A single chip USB-UART bridge provides up to 1 Mbps transfers rates.

I/O All the pins on ESP32-PICO-D4 are broken out to the pin headers on the board. Users can program ESP32 to
enable multiple functions such as PWM, ADC, DAC, 12C, 128, SPI, etc.

Micro USB Port USB interface. It functions as the power supply for the board and the communication interface
between PC and ESP32-PICO-KIT V3.

EN Button Reset button; pressing this button resets the system.

BOOT Button Holding down the Boot button and pressing the EN button initiates the firmware download mode.
Then user can download firmware through the serial port.

1.3. Guides 43

https://dl.espressif.com/dl/schematics/esp32-pico-kit-v4_schematic.pdf
https://dl.espressif.com/dl/schematics/esp32-pico-kit-v4.1_schematic.pdf
https://www.espressif.com/en/support/download/documents?keys=ESP32-PICO-KIT+Reference+Design
http://espressif.com/sites/default/files/documentation/esp32-pico-d4_datasheet_en.pdf
https://espressif.com

Read the Docs Template Documentation, Release v3.2.5

" 3D Antenna | [ESP32-PICO-D4
|

SVP
1037
1038
SVN
1034

EN
1035
1025
1026

GND g

1032
1033
1027
1014
1012
1013
1015

102

104

100
/O

plig 8SN

P L GOLOELOEOIVOEOLOEGGEGLOEOOO

E

»
~
o
L
ﬁ ;
@ I
-
>
@
Sl
=1
>
.'3.
0
@
%
L7
/
Micro USB
Port

USB-UART
Bridge

Fig. 19: ESP32-PICO-KIT V3 board layout

ESP32-PICO-KIT V3

44

Chapter 1. Get Started

Read the Docs Template Documentation, Release v3.2.5

Start Application Development

Before powering up the ESP32-PICO-KIT V3, please make sure that the board has been received in good condition
with no obvious signs of damage.

To start development of applications, proceed to section Get Started, that will walk you through the following steps:
* Setup Toolchain in your PC to develop applications for ESP32 in C language
* Connect the module to the PC and verify if it is accessible
* Build and Flash an example application to the ESP32

* Monitor instantly what the application is doing

Related Documents

e ESP32-PICO-KIT V3 schematic (PDF)
¢ ESP32-PICO-D4 Datasheet (PDF)
e ESP32 Hardware Reference

If you have different board, move to sections below.

1.4 Setup Toolchain

The quickest way to start development with ESP32 is by installing a prebuilt toolchain. Pick up your OS below and
follow provided instructions.

1.4.1 Standard Setup of Toolchain for Windows

[l

Introduction

Windows doesn’t have a built-in “make” environment, so as well as installing the toolchain you will need a GNU-
compatible environment. We use the MSYS2 environment to provide this. You don’t need to use this environment all
the time (you can use Eclipse or some other front-end), but it runs behind the scenes.

Toolchain Setup

The quick setup is to download the Windows all-in-one toolchain & MSYS?2 zip file from dl.espressif.com:
https://dl.espressif.com/dl/esp32_win32_msys2_environment_and_gccS5_toolchain-20191220.zip

Unzip the zip file to C: \ (or some other location, but this guide assumes C : \) and it will create an msys32 directory
with a pre-prepared environment.

Important: If another toolchain location is used (different than the default C: \msys32), please ensure that the path
where the all-in-one toolchain gets unzipped is a plain ASCII, contains no spaces, symlinks or accents.

1.4. Setup Toolchain 45

https://dl.espressif.com/dl/schematics/esp32-pico-kit-v3_schematic.pdf
http://espressif.com/sites/default/files/documentation/esp32-pico-d4_datasheet_en.pdf
../../../zh_CN/v3.2.5/get-started/windows-setup.html
https://msys2.github.io/
https://dl.espressif.com/dl/esp32_win32_msys2_environment_and_gcc5_toolchain-20191220.zip

Read the Docs Template Documentation, Release v3.2.5

Check it Out

Open a MSYS2 MINGW32 terminal window by running C:\msys32\mingw32.exe. The environment in this
window is a bash shell. Create a directory named e sp that is a default location to develop ESP32 applications. To do
so, run the following shell command:

mkdir -p ~/esp

By typing cd ~/esp you can then move to the newly created directory. If there are no error messages you are done
with this step.

m ~fesp o | B

$ mkdir -p ~/esp

Fig. 20: MSYS2 MINGW32 shell window

Use this window in the following steps setting up development environment for ESP32.

Next Steps

To carry on with development environment setup, proceed to section Get ESP-IDF'.

Updating The Environment
When IDF is updated, sometimes new toolchains are required or new requirements are added to the Windows MSYS2
environment. To move any data from an old version of the precompiled environment to a new one:

e Take the old MSYS2 environment (ie C:\msys32) and move/rename it to a different directory (ie
C:\msys32_o1d).

* Download the new precompiled environment using the steps above.
* Unzip the new MSYS2 environment to C : \msys32 (or another location).
* Find the old C: \msys32_old\home directory and move this into C: \msys32.
* You can now delete the C: \msys32_o1d directory if you no longer need it.
You can have independent different MSYS2 environments on your system, as long as they are in different directories.

There are also steps to update the existing environment without downloading a new one, although this is more complex.

Related Documents

46 Chapter 1. Get Started

Read the Docs Template Documentation, Release v3.2.5

Setup Windows Toolchain from Scratch

Setting up the environment gives you some more control over the process, and also provides the information for
advanced users to customize the install. The pre-built environment, addressed to less experienced users, has been
prepared by following these steps.

To quickly setup the toolchain in standard way, using a prebuilt environment, proceed to section Standard Setup of
Toolchain for Windows.

Configure Toolchain & Environment from Scratch

This process involves installing MSYS2, then installing the MSYS2 and Python packages which ESP-IDF uses, and
finally downloading and installing the Xtensa toolchain.

* Navigate to the MSYS2 installer page and download the msys2-1686-xxxxxxx .exe installer executable
(we only support a 32-bit MSYS environment, it works on both 32-bit and 64-bit Windows.) At time of writing,
the latest installer is msys2-1686-20161025.exe.

* Run through the installer steps. Uncheck the “Run MSYS2 32-bit now” checkbox at the end.
* Once the installer exits, open Start Menu and find “MSYS2 MinGW 32-bit” to run the terminal.

(Why launch this different terminal? MSYS2 has the concept of different kinds of environments. The default
“MSYS” environment is Cygwin-like and uses a translation layer for all Windows API calls. We need the
“MinGW” environment in order to have a native Python which supports COM ports.)

e The ESP-IDF repository on github contains a script in the tools directory titled
windows_install_prerequisites.sh. If you haven’t got a local copy of the ESP-IDF yet, that’s OK -
you can just download that one file in Raw format from here: tools/windows/windows_install_prerequisites.sh.
Save it somewhere on your computer.

e Type the path to the shell script into the MSYS2 terminal window. You can type it as a normal Win-
dows path, but use forward-slashes instead of back-slashes. ie: C:/Users/myuser/Downloads/
windows_install_prerequisites.sh. You can read the script beforehand to check what it does.

e Thewindows_install_prerequisites. sh script will download and install packages for ESP-IDF sup-
port, and the ESP32 toolchain.

Troubleshooting

* While the install script runs, MSYS may update itself into a state where it can no longer operate. You may see
errors like the following:

«++ fatal error - cygheap base mismatch detected - 0x612E5408/0x612E4408. This_,
—problem is probably due to using incompatible versions of the cygwin DLL.

If you see errors like this, close the terminal window entirely (terminating the processes running there) and then
re-open a new terminal. Re-run windows_install_prerequisites.sh (tip: use the up arrow key to
see the last run command). The update process will resume after this step.

e MSYS2 is a “rolling” distribution so running the installer script may install newer packages than what is used in
the prebuilt environments. If you see any errors that appear to be related to installing MSYS2 packages, please
check the MSYS2-packages issues list for known issues. If you don’t see any relevant issues, please raise an
IDF issue.

1.4. Setup Toolchain 47

https://msys2.github.io/
https://msys2.github.io/
https://msys2.github.io/
https://github.com/espressif/esp-idf/raw/v3.2.5/tools/windows/windows_install_prerequisites.sh
https://github.com/Alexpux/MSYS2-packages/issues/
https://github.com/espressif/esp-idf/issues/new
https://github.com/espressif/esp-idf/issues/new

Read the Docs Template Documentation, Release v3.2.5

MSYS2 Mirrors in China

There are some (unofficial) MSYS2 mirrors inside China, which substantially improves download speeds inside China.

To add these mirrors, edit the following two MSYS2 mirrorlist files before running the setup script. The mirrorlist
files can be found in the /et c/pacman. d directory (i.e. c: \msys2\etc\pacman.d).

Add these lines at the top of mirrorlist.mingw32:

Server = https://mirrors.ustc.edu.cn/msys2/mingw/1686/
Server = http://mirror.bit.edu.cn/msys2/REPOS/MINGW/1686

Add these lines at the top of mirrorlist.msys:

Server = http://mirrors.ustc.edu.cn/msys2/msys/S$arch
http://mirror.bit.edu.cn/msys2/REPOS/MSYS2/S$arch

Server

HTTP Proxy

You can enable an HTTP proxy for MSYS and PIP downloads by setting the ht t p_proxy variable in the terminal
before running the setup script:

’export http_proxy='http://http.proxy.server :PORT'

Or with credentials:

’export http_proxy='http://user:password@http.proxy.server:PORT'

Add this lineto /etc/profile inthe MSYS directory in order to permanently enable the proxy when using MSYS.

Alternative Setup: Just download a toolchain

If you already have an MSYS2 install or want to do things differently, you can download just the toolchain here:

https://dl.espressif.com/dl/xtensa-esp32-elf-win32-1.22.0-80-g6c4433a-5.2.0.zip

Note: If you followed instructions Configure Toolchain & Environment from Scratch, you already have the toolchain
and you won’t need this download.

Important: Just having this toolchain is not enough to use ESP-IDF on Windows. You will need GNU make, bash,
and sed at minimum. The above environments provide all this, plus a host compiler (required for menuconfig support).

Next Steps

To carry on with development environment setup, proceed to section Get ESP-IDF'.

48 Chapter 1. Get Started

https://dl.espressif.com/dl/xtensa-esp32-elf-win32-1.22.0-80-g6c4433a-5.2.0.zip

Read the Docs Template Documentation, Release v3.2.5

Updating The Environment

When IDF is updated, sometimes new toolchains are required or new system requirements are added to the Windows
MSYS2 environment.

Rather than setting up a new environment, you can update an existing Windows environment & toolchain:
» Update IDF to the new version you want to use.

* Runthe tools/windows/windows_install_prerequisites. sh scriptinside IDF. This will install
any new software packages that weren’t previously installed, and download and replace the toolchain with the
latest version.

The script to update MSYS2 may also fail with the same errors mentioned under Troubleshooting.

If you need to support multiple IDF versions concurrently, you can have different independent MSYS2 environments
in different directories. Alternatively you can download multiple toolchains and unzip these to different directories,
then use the PATH environment variable to set which one is the default.

1.4.2 Standard Setup of Toolchain for Linux

[l

Install Prerequisites

To compile with ESP-IDF you need to get the following packages:
* CentOS 7:

sudo yum install gcc git wget make ncurses-devel flex bison gperf python python2-
—cryptography

¢ Ubuntu and Debian:

sudo apt-get install gcc git wget make libncurses-dev flex bison gperf python
—python-pip python-setuptools python-serial python-cryptography python-future
—libffi-dev libssl-dev

Arch:

sudo pacman -S —--needed gcc git make ncurses flex bison gperf python2-pyserial,
—python2-cryptography python2-future

Note: Some older Linux distributions may be missing some of the Python packages listed above (or may use
pyserial version 2.x which is not supported by ESP-IDF). It is possible to install these packages via pip instead -
as described in section Install the Required Python Packages.

Toolchain Setup

ESP32 toolchain for Linux is available for download from Espressif website:
e for 64-bit Linux:
https://dl.espressif.com/dl/xtensa-esp32-elf-linux64-1.22.0-80-g6c4433a-5.2.0.tar.gz

1.4. Setup Toolchain 49

../../../zh_CN/v3.2.5/get-started/linux-setup.html
https://dl.espressif.com/dl/xtensa-esp32-elf-linux64-1.22.0-80-g6c4433a-5.2.0.tar.gz

Read the Docs Template Documentation, Release v3.2.5

* for 32-bit Linux:
https://dl.espressif.com/dl/xtensa-esp32-elf-linux32-1.22.0-80-g6c4433a-5.2.0.tar.gz
1. Download this file, then extract it in ~ /e sp directory:

¢ for 64-bit Linux:

mkdir -p ~/esp
cd ~/esp
tar -xzf ~/Downloads/xtensa-esp32-elf-1linux64-1.22.0-80-g6cd4433a-5.2.0.tar.gz

¢ for 32-bit Linux:

mkdir -p ~/esp
cd ~/esp
tar -xzf ~/Downloads/xtensa-esp32-elf-1inux32-1.22.0-80-g6c4433a-5.2.0.tar.gz

2. The toolchain will be extracted into ~/esp/xtensa-esp32-elf/ directory.

To use it, you will need to update your PATH environment variable in ~/.profile file. To make
xtensa-esp32-elf available for all terminal sessions, add the following line to your ~/ .profile file:

export PATH="$HOME/esp/xtensa-esp32-elf/bin:S$SPATH"

Alternatively, you may create an alias for the above command. This way you can get the toolchain only when
you need it. To do this, add different line to your ~/ .profile file:

’alias get_esp32='export PATH="S$HOME/esp/xtensa-esp32-elf/bin:$PATH"'

Then when you need the toolchain you can type get_esp32 on the command line and the toolchain will be
added to your PATH.

Note: If you have /bin/bash set as login shell, and both .bash_profile and .profile exist, then
update .bash_profile instead. In CentOS, alias should setin .bashrc.

3. Log off and log in back to make the .profile changes effective. Run the following command to verify if
PATH is correctly set:

printenv PATH

You are looking for similar result containing toolchain’s path at the end of displayed string:

$ printenv PATH

/home/user—-name/bin: /home/user—-name/.local/bin:/usr/local/sbin:/usr/local/bin:/
—usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin:/home/user—
—name/esp/xtensa-esp32-elf/bin

Instead of /home /user-name there should be a home path specific to your installation.

Permission issues /dev/ttyUSB0

With some Linux distributions you may get the Failed to open port /dev/ttyUSBO error message when
flashing the ESP32. This can be solved by adding the current user to the dialout group.

50 Chapter 1. Get Started

https://dl.espressif.com/dl/xtensa-esp32-elf-linux32-1.22.0-80-g6c4433a-5.2.0.tar.gz

Read the Docs Template Documentation, Release v3.2.5

Arch Linux Users

To run the precompiled gdb (xtensa-esp32-elf-gdb) in Arch Linux requires ncurses 5, but Arch uses ncurses 6.
Backwards compatibility libraries are available in AUR for native and lib32 configurations:

* https://aur.archlinux.org/packages/ncursesS-compat-libs/

e https://aur.archlinux.org/packages/lib32-ncurses5-compat-libs/

Before installing these packages you might need to add the author’s public key to your keyring as described in the
“Comments” section at the links above.

Alternatively, use crosstool-NG to compile a gdb that links against ncurses 6.

Next Steps

To carry on with development environment setup, proceed to section Get ESP-IDF'.

Related Documents

Setup Linux Toolchain from Scratch

Note: Standard process for installing the toolchain is described here. See Customized Setup of Toolchain section for
some of the reasons why installing the toolchain from scratch may be necessary.

Install Prerequisites

To compile with ESP-IDF you need to get the following packages:
* Ubuntu and Debian:

sudo apt-get install gcc git wget make libncurses-dev flex bison gperf python
—python-pip python-setuptools python-serial python-cryptography python-future
—python-pyparsing libffi-dev libssl-dev

Arch:

sudo pacman —-S ——needed gcc git make ncurses flex bison gperf python2-pyserial
—python2-cryptography python2-future python2-pyparsing

Note: Some older (pre-2014) Linux distributions may use pyserial version 2.x which is not supported by ESP-
IDF. In this case please install a supported version via pip as it is described in section Install the Required Python
Packages.

Compile the Toolchain from Source

* Install dependencies:

— CentOS 7:

1.4. Setup Toolchain 51

https://wiki.archlinux.org/index.php/Arch_User_Repository
https://aur.archlinux.org/packages/ncurses5-compat-libs/
https://aur.archlinux.org/packages/lib32-ncurses5-compat-libs/

Read the Docs Template Documentation, Release v3.2.5

sudo yum install gawk gperf grep gettext ncurses-devel python python-devel
—automake bison flex texinfo help2man libtool

— Ubuntu pre-16.04:

sudo apt-get install gawk gperf grep gettext libncurses-dev python python-dev_
—automake bison flex texinfo help2Z2man libtool

— Ubuntu 16.04 or newer:

sudo apt-get install gawk gperf grep gettext python python-dev automake bison,
—flex texinfo help2man libtool libtool-bin

— Debian 9:

sudo apt-get install gawk gperf grep gettext libncurses-dev python python-dev
—automake bison flex texinfo helpZ2man libtool libtool-bin

Arch:

TODO

Create the working directory and go into it:

mkdir -p ~/esp
cd ~/esp

Download crosstool—-NG and build it:

git clone -b xtensa-1.22.x https://github.com/espressif/crosstool-NG.git
cd crosstool-NG
./bootstrap && ./configure —-enable-local && make install

Build the toolchain:

./ct-ng xtensa-esp32-elf
./ct-ng build
chmod -R u+w builds/xtensa-esp32-elf

Toolchain will be built in ~/esp/crosstool-NG/builds/xtensa-esp32-elf. Follow instructions for
standard setup to add the toolchain to your PATH.

Next Steps

To carry on with development environment setup, proceed to section Get ESP-IDF'.

1.4.3 Standard Setup of Toolchain for Mac OS

[l

Install Prerequisites

* install pip:

52 Chapter 1. Get Started

../../../zh_CN/v3.2.5/get-started/macos-setup.html

Read the Docs Template Documentation, Release v3.2.5

sudo easy_install pip

Note: pip will be used later for installing the required Python packages.

Toolchain Setup

ESP32 toolchain for macOS is available for download from Espressif website:
https://dl.espressif.com/dl/xtensa-esp32-elf-osx-1.22.0-80-gbc4433a-5.2.0.tar.gz

Download this file, then extract it in ~/esp directory:

mkdir -p ~/esp
cd ~/esp
tar -xzf ~/Downloads/xtensa-esp32-elf-osx-1.22.0-80-g6c4433a-5.2.0.tar.gz

The toolchain will be extracted into ~/esp/xtensa-esp32-elf/ directory.

To use it, you will need to update your PATH environment variable in ~/.profile file. To make
xtensa-esp32-elf available for all terminal sessions, add the following line to your ~/ .profile file:

’export PATH=$HOME/esp/xtensa-esp32-elf/bin:S$SPATH

Alternatively, you may create an alias for the above command. This way you can get the toolchain only when you
need it. To do this, add different line to your ~/ .profile file:

’alias get_esp32="export PATH=$HOME/esp/xtensa-esp32-elf/bin:S$SPATH"

Then when you need the toolchain you can type get_esp32 on the command line and the toolchain will be added to
your PATH.

Next Steps

To carry on with development environment setup, proceed to section Get ESP-IDF'.

Related Documents

Setup Toolchain for Mac OS from Scratch

Note: Standard process for installing the toolchain is described here. See Customized Setup of Toolchain section for
some of the reasons why installing the toolchain from scratch may be necessary.

Install Prerequisites

* install pip:

sudo easy_install pip

1.4. Setup Toolchain 53

https://dl.espressif.com/dl/xtensa-esp32-elf-osx-1.22.0-80-g6c4433a-5.2.0.tar.gz

Read the Docs Template Documentation, Release v3.2.5

Note: pip will be used later for installing the required Python packages.

Compile the Toolchain from Source

* Install dependencies:

— Install either MacPorts or homebrew package manager. MacPorts needs a full XCode installation, while
homebrew only needs XCode command line tools.

— with MacPorts:

sudo port install gsed gawk binutils gperf grep gettext wget libtool autoconf
—automake

with homebrew:

brew install gnu-sed gawk binutils gperftools gettext wget help2man libtool
—autoconf automake

Create a case-sensitive filesystem image:

’hdiutil create ~/esp/crosstool.dmg -volname "ctng" -size 10g —-fs "Case-sensitive HES+" ‘

Mount it:

’hdiutil mount ~/esp/crosstool.dmg ‘

Create a symlink to your work directory:

mkdir -p ~/esp
In -s /Volumes/ctng ~/esp/ctng-volume

Go into the newly created directory:

cd ~/esp/ctng-volume

Download crosstool-NG and build it:

git clone -b xtensa-1.22.x https://github.com/espressif/crosstool-NG.git
cd crosstool-NG
./bootstrap && ./configure --enable-local && make install

Build the toolchain:

./ct-ng xtensa-esp32-elf
./ct-ng build
chmod -R u+w builds/xtensa-esp32-elf

Toolchain will be built in ~/esp/ctng-volume/crosstool-NG/builds/xtensa-esp32-elf. Follow
instructions for standard setup to add the toolchain to your PATH.

Next Steps

To carry on with development environment setup, proceed to section Get ESP-IDF'.

54 Chapter 1. Get Started

https://www.macports.org/install.php
https://brew.sh/

Read the Docs Template Documentation, Release v3.2.5

Windows Linux Mac OS

Note: We are using ~/esp directory to install the prebuilt toolchain, ESP-IDF and sample applications. You can use
different directory, but need to adjust respective commands.

Depending on your experience and preferences, instead of using a prebuilt toolchain, you may want to customize your
environment. To set up the system your own way go to section Customized Setup of Toolchain.

Once you are done with setting up the toolchain then go to section Get ESP-IDF'.

1.5 Get ESP-IDF

Besides the toolchain (that contains programs to compile and build the application), you also need ESP32 specific API
/ libraries. They are provided by Espressif in ESP-IDF repository.

To obtain a local copy: open terminal, navigate to the directory you want to put ESP-IDF, and clone the repository
using git clone command:

cd ~/esp
git clone -b v3.2.5 —--recursive https://github.com/espressif/esp-idf.git

ESP-IDF will be downloaded into ~/esp/esp-idf.

Note: The git clone option -b v3.2.5 tells git to clone the tag in the ESP-IDF repository corresponding to
this version of the documentation.

Note: As a fallback, it is also possible to download a zip file of this stable release from the Releases page. Do not
download the “Source code” zip file(s) generated automatically by GitHub, they do not work with ESP-IDF.

Consult ESP-IDF Versions for information about which version of ESP-IDF to use in a given situation.

Note: Do not miss the ——recursive option. If you have already cloned ESP-IDF without this option, run another
command to get all the submodules:

cd ~/esp/esp-idf
git submodule update —--init --recursive

1.5. Get ESP-IDF 55

../get-started/windows-setup.html
../get-started/linux-setup.html
../get-started/macos-setup.html
../get-started/windows-setup.html
../get-started/linux-setup.html
../get-started/macos-setup.html
https://github.com/espressif/esp-idf
https://github.com/espressif/esp-idf/releases

Read the Docs Template Documentation, Release v3.2.5

1.6 Setup Path to ESP-IDF

The toolchain programs access ESP-IDF using IDF_PATH environment variable. This variable should be set up on
your PC, otherwise projects will not build. Setting may be done manually, each time PC is restarted. Another option
is to set up it permanently by defining IDF_PATH in user profile. To do so, follow instructions specific to Windows ,
Linux and MacOS in section Add IDF_PATH to User Profile.

1.7 Install the Required Python Packages

Python packages required by ESP-IDF are located in the $IDF_PATH/requirements.txt file. You can install
them by running:

’python -m pip install --user -r S$SIDF _PATH/requirements.txt

Note: Please invoke that version of the Python interpreter which you will be using with ESP-IDF. The version of the
interpreter can be checked by running command python --version and depending on the result, you might want
to use python2, python2. 7 or similar instead of python, e.g.:

’python2.7 -m pip install —--user -r SIDF_PATH/requirements.txt

1.8 Start a Project

Now you are ready to prepare your application for ESP32. To start off quickly, we will use get-started/hello_world
project from examples directory in IDF.

Copy get-started/hello_world to ~/esp directory:

cd ~/esp
cp -r SIDF_PATH/examples/get-started/hello_world .

You can also find a range of example projects under the examples directory in ESP-IDF. These example project
directories can be copied in the same way as presented above, to begin your own projects.

Important: The esp-idf build system does not support spaces in paths to esp-idf or to projects.

1.9 Connect

You are almost there. To be able to proceed further, connect ESP32 board to PC, check under what serial port the
board is visible and verify if serial communication works. If you are not sure how to do it, check instructions in
section Establish Serial Connection with ESP32. Note the port number, as it will be required in the next step.

56 Chapter 1. Get Started

https://github.com/espressif/esp-idf/tree/v3.2.5/examples/get-started/hello_world
https://github.com/espressif/esp-idf/tree/v3.2.5/examples
https://github.com/espressif/esp-idf/tree/v3.2.5/examples/get-started/hello_world
https://github.com/espressif/esp-idf/tree/v3.2.5/examples

Read the Docs Template Documentation, Release v3.2.5

1.10 Configure

Being in terminal window, go to directory of hello_world application by typing cd ~/esp/hello_world.
Then start project configuration utility menuconfig:

cd ~/esp/hello_world
make menuconfig

If previous steps have been done correctly, the following menu will be displayed:

Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty submenus ----). Highlighted
letters are hotkeys. Pressing <Y> includes, <N> excludes, <M> modularizes features. Press <Esc><Esc>
to exit, <?> for Help, </> for Search. Legend: [*] built-in [] excluded <M> module < > module
capable

DK tool configuration ---=
ootloader config --->
ecurity features --->
I
artition Table ---=>

ptimization level (Debug) ---=
omponent config ---=

< Exit > < Help > < Save > < Load >

Fig. 21: Project configuration - Home window

In the menu, navigate to Serial flasher config > Default serial port to configure the serial port,
where project will be loaded to. Confirm selection by pressing enter, save configuration by selecting < Save > and
then exit application by selecting < Exit >.

Note: On Windows, serial ports have names like COM1. On MacOS, they start with /dev/cu.. On Linux, they
start with /dev/tty. (See Establish Serial Connection with ESP32 for full details.)

Here are couple of tips on navigation and use of menuconfig:
e Use up & down arrow keys to navigate the menu.
* Use Enter key to go into a submenu, Escape key to go out or to exit.
* Type ? to see a help screen. Enter key exits the help screen.
» Use Space key, or Y and N keys to enable (Yes) and disable (No) configuration items with checkboxes “[x]”
* Pressing 2 while highlighting a configuration item displays help about that item.

* Type / to search the configuration items.

Note: If you are Arch Linux user, navigate to SDK tool configuration and change the name of Python 2
interpreter from python to python2.

Attention: When using ESP32-DevKitC board with ESP32-SOLO-1 module, enable single core mode (CON-
FIG_FREERTOS_UNICORE) in menuconfig before flashing example applications.

1.10. Configure 57

Read the Docs Template Documentation, Release v3.2.5

1.11 Build and Flash

Now you can build and flash the application. Run:

’make flash

This will compile the application and all the ESP-IDF components, generate bootloader, partition table, and application
binaries, and flash these binaries to your ESP32 board.

esptool.py v2.0-beta?2

Flashing binaries to serial port /dev/ttyUSBO (app at offset 0x10000)...
esptool.py v2.0-beta2

Connecting........
Uploading stub...
Running stub...
Stub running...
Changing baud rate to 921600

Changed.

Attaching SPI flash...

Configuring flash size...

Auto-detected Flash size: 4MB

Flash params set to 0x0220

Compressed 11616 bytes to 6695...

Wrote 11616 bytes (6695 compressed) at 0x00001000 in 0.1 seconds (effective 920.5
—kbit/s) ...

Hash of data verified.

Compressed 408096 bytes to 171625...

Wrote 408096 bytes (171625 compressed) at 0x00010000 in 3.9 seconds (effective 847.3
<—>kblt/S) “ e

Hash of data verified.

Compressed 3072 bytes to 82...

Wrote 3072 bytes (82 compressed) at 0x00008000 in 0.0 seconds (effective 8297.4 kbit/
<~>S) “ ..

Hash of data verified.

Leaving...
Hard resetting...

If there are no issues, at the end of build process, you should see messages describing progress of loading process.
Finally, the end module will be reset and “hello_world” application will start.

If you’d like to use the Eclipse IDE instead of running make, check out the Eclipse guide.

1.12 Monitor

To see if “hello_world” application is indeed running, type make monitor. This command is launching IDF Mon-
itor application:

S make monitor

MONITOR
——— 1idf_monitor on /dev/ttyUSBO 115200 ——-
—-—— Quit: Ctrl+] | Menu: Ctrl+T | Help: Ctrl+T followed by Ctrl+H —-—-—

ets Jun 8 2016 00:22:57

rst:0x1 (POWERON_RESET),boot:0x13 (SPI_FAST_FLASH_BOOT)

(continues on next page)

58 Chapter 1. Get Started

Read the Docs Template Documentation, Release v3.2.5

(continued from previous page)

ets Jun 8 2016 00:22:57

Several lines below, after start up and diagnostic log, you should see “Hello world!” printed out by the application.

Hello world!

Restarting in 10 seconds...

I (211) cpu_start: Starting scheduler on APP CPU.
Restarting in 9 seconds...

Restarting in 8 seconds...

Restarting in 7 seconds...

To exit the monitor use shortcut Ctrl+].

Note: If instead of the messages above, you see a random garbage similar to:

e) (Xn@y.! (PW+)Hn9%a/9!t5P~keea5jA
~zY¥Y (1,1 e) (XnQ@y.!DrzY (jpil|+z5Ymvp

or monitor fails shortly after upload, your board is likely using 26MHz crystal, while the ESP-IDF assumes default
of 40MHz. Exit the monitor, go back to the menuconfig, change CONFIG_ESP32_XTAL_FREQ_SEL to 26MHz,
then build and flash the application again. This is found under make menuconfig under Component config —>
ESP32-specific —> Main XTAL frequency.

To execute make flash and make monitor in one go, type make flash monitor. Check section /DF
Monitor for handy shortcuts and more details on using this application.

That’s all what you need to get started with ESP32!

Now you are ready to try some other examples, or go right to developing your own applications.

1.13 Environment Variables

Some environment variables can be specified whilst calling make allowing users to override arguments without
needing to reconfigure them using make menuconfig.

Variables | Description & Usage

ESPPORT | Overrides the serial port used in f1lash and monitor.

Examples: make flash ESPPORT=/dev/ttyUSB1l,make monitor ESPPORT=COM1
ESPBAUD | Overrides the serial baud rate when flashing the ESP32.

Example: make flash ESPBAUD=9600

MONITORBAWYerrides the serial baud rate used when monitoring.

Example: make monitor MONITORBAUD=9600

Note: Users can export environment variables (e.g. export ESPPORT=/dev/ttyUSB1). All subsequent calls
of make within the same terminal session will use the exported value given that the variable is not simultaneously
overridden.

1.13. Environment Variables 59

https://github.com/espressif/esp-idf/tree/v3.2.5/examples

Read the Docs Template Documentation, Release v3.2.5

1.14 Updating ESP-IDF

After some time of using ESP-IDF, you may want to update it to take advantage of new features or bug fixes. The
simplest way to do so is by deleting existing esp—1idf folder and cloning it again, exactly as when doing initial
installation described in sections Get ESP-IDF.

If downloading to a new path, remember to Add IDF_PATH to User Profile so that the toolchain scripts know where
to find the ESP-IDF in its release specific location.

Another solution is to update only what has changed. The update procedure depends on the version of ESP-IDF you
are using.

1.15 Related Documents

1.15.1 Add IDF_PATH to User Profile

[l

To preserve setting of IDF_PATH environment variable between system restarts, add it to the user profile, following
instructions below.

Windows
The user profile scripts are contained in C: /msys32/etc/profile.d/ directory. They are executed every time
you open an MSYS2 window.

1. Create a new script filein C: /msys32/etc/profile.d/ directory. Name it export_idf_path. sh.

2. Identify the path to ESP-IDF directory. It is specific to your system configuration and may look something like
C:\msys32\home\user—-name\esp\esp-idf

3. Add the export command to the script file, e.g.:

export IDF_PATH="C:/msys32/home/user—-name/esp/esp—1idf"

Remember to replace back-slashes with forward-slashes in the original Windows path.
4. Save the script file.
5. Close MSYS2 window and open it again. Check if IDF_PATH is set, by typing:

printenv IDF_PATH

The path previusly entered in the script file should be printed out.

If you do not like to have IDF_PATH set up permanently in user profile, you should enter it manually on opening of
an MSYS2 window:

export IDF_PATH="C:/msys32/home/user—-name/esp/esp-idf"

If you got here from section Setup Path to ESP-IDF, while installing s/w for ESP32 development, then go back to
section Start a Project.

60 Chapter 1. Get Started

../../../zh_CN/v3.2.5/get-started/add-idf_path-to-profile.html

Read the Docs Template Documentation, Release v3.2.5

Linux and MacOS

Set up IDF_PATH by adding the following line to ~/ .profile file:

export IDF_PATH=~/esp/esp-idf

Log off and log in back to make this change effective.

Note: If you have /bin/bash set as login shell, and both .bash_profile and .profile exist, then update
.bash_profile instead.

Run the following command to check if IDF_PATH is set:

printenv IDF_PATH

The path previously entered in ~/ .profile file (or set manually) should be printed out.

If you do not like to have IDF_PATH set up permanently, you should enter it manually in terminal window on each
restart or logout:

export IDF_PATH=~/esp/esp-idf

If you got here from section Setup Path to ESP-IDF, while installing s/w for ESP32 development, then go back to
section Start a Project.

1.15.2 Establish Serial Connection with ESP32

[l

This section provides guidance how to establish serial connection between ESP32 and PC.

Connect ESP32 to PC

Connect the ESP32 board to the PC using the USB cable. If device driver does not install automatically, identify USB
to serial converter chip on your ESP32 board (or external converter dongle), search for drivers in internet and install
them.

Below are the links to drivers for ESP32 and other boards produced by Espressif:

Development Board USB Driver Remarks

ESP32-DevKitC CP210x

ESP32-LyraT CP210x

ESP32-LyraTD-MSC CP210x

ESP32-PICO-KIT CP210x

ESP-WROVER-KIT FTDI

ESP32 Demo Board FTDI

ESP-Prog FTDI Programmer board (w/o ESP32)
ESP32-MeshKit-Sense n/a Use with ESP-Prog
ESP32-Sense Kit n/a Use with ESP-Prog

e CP210x: CP210x USB to UART Bridge VCP Drivers
e FTDI: FTDI Virtual COM Port Drivers

1.15. Related Documents 61

../../../zh_CN/v3.2.5/get-started/establish-serial-connection.html
https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
https://www.espressif.com/en/products/hardware/esp32-lyrat
https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
https://www.espressif.com/en/products/hardware/esp32-lyratd-msc
https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
http://www.ftdichip.com/Drivers/VCP.htm
http://www.ftdichip.com/Drivers/VCP.htm
https://github.com/espressif/esp-iot-solution/blob/master/documents/evaluation_boards/ESP-Prog_guide_en.md#introduction-to-the-esp-prog-board
http://www.ftdichip.com/Drivers/VCP.htm
https://github.com/espressif/esp-iot-solution/blob/master/documents/evaluation_boards/ESP32-MeshKit-Sense_guide_en.md#esp32-meshkit-sense-hardware-design-guidelines
https://github.com/espressif/esp-iot-solution/blob/master/documents/evaluation_boards/ESP-Prog_guide_en.md#introduction-to-the-esp-prog-board
https://github.com/espressif/esp-iot-solution/blob/master/documents/evaluation_boards/esp32_sense_kit_guide_en.md#guide-for-esp32-sense-development-kit
https://github.com/espressif/esp-iot-solution/blob/master/documents/evaluation_boards/ESP-Prog_guide_en.md#introduction-to-the-esp-prog-board
https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
http://www.ftdichip.com/Drivers/VCP.htm

Read the Docs Template Documentation, Release v3.2.5

The drivers above are primarily for reference. Under normal circumstances, the drivers should be bundled with and
operating system and automatically installed upon connecting one of the listed boards to the PC.

Check port on Windows

Check the list of identified COM ports in the Windows Device Manager. Disconnect ESP32 and connect it back, to
verify which port disappears from the list and then shows back again.

Figures below show serial port for ESP32 DevKitC and ESP32 WROVER KIT

=4 Device Manager ==
File Action View Help

&= = HE ®

a = tdk-kmb-op7al
- -8 Computer

b Disk drives

..M Display adapters

> -1} DVD/CD-ROM drives

E‘Lg'j Hurnan Interface Devices
g IDE ATASATAPI contrellers
= Keyboards

}3 Mice and cther pointing devices
- Monitors

-mF Network adapters

475" Ports (COM & LPT)

2 Processors
-% Sound, video and game controllers

» M Systemn devices
- i Universal Serial Bus controllers

Fig. 22: USB to UART bridge of ESP32-DevKitC in Windows Device Manager

Check port on Linux and MacOS

To check the device name for the serial port of your ESP32 board (or external converter dongle), run this command
two times, first with the board / dongle unplugged, then with plugged in. The port which appears the second time is
the one you need:

Linux

1ls /dev/tty=x

MacOS

62 Chapter 1. Get Started

Read the Docs Template Documentation, Release v3.2.5

£ .

= Device Manager (= [@][=]

File Action View Help

= BIEHE

a = tdk-kmb-op780
..M Computer

|£|

- w

- Disk drives

A Display adapters

ey DVD/CD-ROM drives

% Hurman Interface Devices

g IDE ATASATAPI controllers

= Keyboards

--,!'E! Mice and cther pointing devices
A Monitors

¥ Metwork adapters

473" Ports (COM & LPT)

R R W W " W W

- w

. 3 Processors

. -&% Sound, video and game controllers
» .M System devices

- i Universal Serial Bus controllers

Fig. 23: Two USB Serial Ports of ESP-WROVER-KIT in Windows Device Manager

1.15. Related Documents 63

Read the Docs Template Documentation, Release v3.2.5

ls /dev/cu.*

Adding user to dialout on Linux

The currently logged user should have read and write access the serial port over USB. On most Linux distributions,
this is done by adding the user to dialout group with the following command:

sudo usermod -a -G dialout S$USER

Make sure you re-login to enable read and write permissions for the serial port.

Verify serial connection

Now verify that the serial connection is operational. You can do this using a serial terminal program. In this example
we will use PuTTY SSH Client that is available for both Windows and Linux. You can use other serial program and
set communication parameters like below.

Run terminal, set identified serial port, baud rate = 115200, data bits = 8, stop bits = 1, and parity = N. Below are
example screen shots of setting the port and such transmission parameters (in short described as 115200-8-1-N) on
Windows and Linux. Remember to select exactly the same serial port you have identified in steps above.

ER PuTTY Configuration | 22 |
Categorny:

=~ Session Options cortroling local senal lines

Select a seral line
[=)- Terminal
- Keyboard Senal line to connect to COomMz2
- Bell

- Features
= Window Speed (baud) 115200
- Appearance
- Behaviour
- Tranglation Stop bits 1

- Selection Po
. Colours arity [MNone -]

£ Connection Flow corirol [XONAXOFF |

- Proxy
- Telnet
- Rlogin
- 55H
- Serial

Configure the serial line

Data bits]

About Cpen] [Cancel

Fig. 24: Setting Serial Communication in PuTTY on Windows

64 Chapter 1. Get Started

http://www.putty.org/

Read the Docs Template Documentation, Release v3.2.5

PuTTY Configuration

Category:
Logging

¥ Terminal
Keyboard
Bell
Features

¥ Window
Appearance
Behaviour
Translation
Selection
Colours
Fonks

¥ Connection
Data
Proxy
Telnet
Rlegin

* 55H

About

Options controlling local serial lines
Select a serial line

serial line to connect to Jdev/ttyUsBo
Configure the serial line

Speed (baud) 115200

Data bits 8

Stop bits 1

Parity Mone -
Flow control XON/XOFF =

Laopen) concel

Fig. 25: Setting Serial Communication in PuTTY on Linux

1.15. Related Documents

65

Read the Docs Template Documentation, Release v3.2.5

Then open serial port in terminal and check, if you see any log printed out by ESP32. The log contents will depend on
application loaded to ESP32. An example log by ESP32 is shown below.

ets Jun 8 2016 00:22:57

rst:0x5 (DEEPSLEEP_RESET) ,boot:0x13 (SPI_FAST_FLASH_BOOT)
ets Jun 8 2016 00:22:57

rst:0x7 (TGOWDT_SYS_RESET) ,boot:0x13 (SPI_FAST_FLASH_BOOT)
configsip: 0, SPIWP:0x00

clk_drv:0x00,g drv:0x00,d_drv:0x00,cs0_drv:0x00, hd_drv:0x00, wp_drv:0x00
mode:DIO, clock div:2

load:0x3fff0008, 1en:8

load:0x3fff0010,1len:3464

load:0x40078000,1len:7828

10ad:0x40080000, 1len:252

entry 0x40080034

I (44) boot: ESP-IDF v2.0-rcl-401-gf9fba35 2nd stage bootloader
I (45) boot: compile time 18:48:10

If you see some legible log, it means serial connection is working and you are ready to proceed with installation and
finally upload of application to ESP32.

Note: For some serial port wiring configurations, the serial RTS & DTR pins need to be disabled in the terminal
program before the ESP32 will boot and produce serial output. This depends on the hardware itself, most development
boards (including all Espressif boards) do not have this issue. The issue is present if RTS & DTR are wired directly to
the EN & GPIOO pins. See the esptool documentation for more details.

Note: Close serial terminal after verification that communication is working. In next step we are going to use another
application to upload ESP32. This application will not be able to access serial port while it is open in terminal.

If you got here from section Connect when installing s/w for ESP32 development, then go back to section Configure.

1.15.3 Build and Flash with Make

[l

Finding a project

As well as the esp-idf-template project, ESP-IDF comes with some example projects on github in the examples direc-
tory.

Once you’ve found the project you want to work with, change to its directory and you can configure and build it.

Configuring your project

make menuconfig

66 Chapter 1. Get Started

https://github.com/espressif/esptool/wiki/ESP32-Boot-Mode-Selection#automatic-bootloader
../../../zh_CN/v3.2.5/get-started/make-project.html
https://github.com/espressif/esp-idf-template
https://github.com/espressif/esp-idf/tree/v3.2.5/examples

Read the Docs Template Documentation, Release v3.2.5

Compiling your project

make all

. will compile app, bootloader and generate a partition table based on the config.

Flashing your project

When make all finishes, it will print a command line to use esptool.py to flash the chip. However you can also do
this from make by running:

make flash

This will flash the entire project (app, bootloader and partition table) to a new chip. Also if partition table has ota_data
then this command will flash a initial ota_data. It allows to run the newly loaded app from a factory partition (or the
first OTA partition, if factory partition is not present). The settings for serial port flashing can be configured with make
menuconfig.

You don’t need to run make all before running make flash,make flash will automatically rebuild anything
which needs it.

Compiling & Flashing Just the App

After the initial flash, you may just want to build and flash just your app, not the bootloader and partition table:
* make app - build just the app.
* make app-flash - flash just the app.

make app-flash will automatically rebuild the app if it needs it.

There’s no downside to reflashing the bootloader and partition table each time, if they haven’t changed.

The Partition Table
Once you’ve compiled your project, the “build” directory will contain a binary file with a name like “my_app.bin”.
This is an ESP32 image binary that can be loaded by the bootloader.

A single ESP32’s flash can contain multiple apps, as well as many kinds of data (calibration data, filesystems, param-
eter storage, etc). For this reason, a partition table is flashed to offset 0x8000 in the flash.

Each entry in the partition table has a name (label), type (app, data, or something else), subtype and the offset in flash
where the partition is loaded.

The simplest way to use the partition table is to make menuconfig and choose one of the simple predefined partition
tables:

» “Single factory app, no OTA”
* “Factory app, two OTA definitions”

In both cases the factory app is flashed at offset 0x10000. If you make partition_table then it will print a summary of
the partition table.

For more details about partition tables and how to create custom variations, view the documentation.

1.15. Related Documents 67

Read the Docs Template Documentation, Release v3.2.5

1.15.4 Build and Flash with Eclipse IDE

[l

Installing Eclipse IDE

The Eclipse IDE gives you a graphical integrated development environment for writing, compiling and debugging
ESP-IDF projects.

Start by installing the esp-idf for your platform (see files in this directory with steps for Windows, OS X, Linux).

We suggest building a project from the command line first, to get a feel for how that process works. You also
need to use the command line to configure your esp-idf project (viamake menuconfig), this is not currently
supported inside Eclipse.

Download the Eclipse Installer for your platform from eclipse.org.

When running the Eclipse Installer, choose “Eclipse for C/C++ Development” (in other places you’ll see this
referred to as CDT.)

Windows Users

Using ESP-IDF with Eclipse on Windows requires different configuration steps. See the Eclipse IDE on Windows

guide.

Setting up Eclipse

Once your new Eclipse installation launches, follow these steps:

Import New Project

Eclipse makes use of the Makefile support in ESP-IDF. This means you need to start by creating an ESP-IDF
project. You can use the idf-template project from github, or open one of the examples in the esp-idf examples
subdirectory.

Once Eclipse is running, choose File -> Import. ..
In the dialog that pops up, choose “C/C++” -> “Existing Code as Makefile Project” and click Next.

On the next page, enter “Existing Code Location” to be the directory of your IDF project. Don’t specify the
path to the ESP-IDF directory itself (that comes later). The directory you specify should contain a file named
“Makefile” (the project Makefile).

On the same page, under “Toolchain for Indexer Settings” choose “Cross GCC”. Then click Finish.

Project Properties

The new project will appear under Project Explorer. Right-click the project and choose Properties from the
context menu.

Click on the “Environment” properties page under “C/C++ Build”. Click “Add...” and enter name
BATCH_BUILD and value 1.

Click “Add...” again, and enter name IDF_PATH. The value should be the full path where ESP-IDF is installed.

68

Chapter 1. Get Started

../../../zh_CN/v3.2.5/get-started/eclipse-setup.html
https://www.eclipse.org/

Read the Docs Template Documentation, Release v3.2.5

» Edit the PATH environment variable. Keep the current value, and append the path to the Xtensa toolchain
installed as part of IDF setup, if this is not already listed on the PATH. A typical path to the toolchain looks
like /home/user-name/esp/xtensa-esp32-elf/bin. Note that you need to add a colon : before
the appended path.

¢ On macOS, add a PYTHONPATH environment variable and set it to /Library/Frameworks/Python.
framework/Versions/2.7/1ib/python2.7/site-packages. This is so that the system Python,
which has pyserial installed as part of the setup steps, overrides any built-in Eclipse Python.

Navigate to “C/C++ General” -> “Preprocessor Include Paths” property page:
* Click the “Providers” tab

¢ In the list of providers, click “CDT Cross GCC Built-in Compiler Settings”. Change “Command to get compiler
specs” to xtensa-esp32-elf-gcc ${FLAGS} -std=c++11 -E -P -v —-dD "${INPUTS}".

¢ In the list of providers, click “CDT GCC Build Output Parser” and change the “Compiler command pattern” to
xtensa-esp32-elf-(gcc|lg\+\+|c\+\+|cclcpplclang)

Navigate to “C/C++ General” -> “Indexer” property page:
* Check “Enable project specific settings” to enable the rest of the settings on this page.

* Uncheck “Allow heuristic resolution of includes”. When this option is enabled Eclipse sometimes fails to find
correct header directories.

Navigate to “C/C++ Build” -> “Behavior” property page:

* Check “Enable parallel build” to enable multiple build jobs in parallel.

Building in Eclipse

Before your project is first built, Eclipse may show a lot of errors and warnings about undefined values. This is because
some source files are automatically generated as part of the esp-idf build process. These errors and warnings will go
away after you build the project.

* Click OK to close the Properties dialog in Eclipse.

e Qutside Eclipse, open a command line prompt. Navigate to your project directory, and run make
menuconfig to configure your project’s esp-idf settings. This step currently has to be run outside Eclipse.

If you try to build without running a configuration step first, esp-idf will prompt for configuration on the command line
- but Eclipse is not able to deal with this, so the build will hang or fail.

* Back in Eclipse, choose Project -> Build to build your project.

TIP: If your project had already been built outside Eclipse, you may need to do a Project -> Clean before choosing
Project -> Build. This is so Eclipse can see the compiler arguments for all source files. It uses these to determine the
header include paths.

Flash from Eclipse

You can integrate the “make flash” target into your Eclipse project to flash using esptool.py from the Eclipse UI:

* Right-click your project in Project Explorer (important to make sure you select the project, not a directory in the
project, or Eclipse may find the wrong Makefile.)

* Select Build Targets -> Create. .. from the context menu.

* Type “flash” as the target name. Leave the other options as their defaults.

1.15. Related Documents 69

Read the Docs Template Documentation, Release v3.2.5

Now you can use Project -> Build Target -> Build (Shift+F9) to build the custom flash target, which will compile
and flash the project.

Note that you will need to use “make menuconfig” to set the serial port and other config options for flashing. “make
menuconfig” still requires a command line terminal (see the instructions for your platform.)

Follow the same steps to add bootloader and partition_table targets, if necessary.

Related Documents

Eclipse IDE on Windows

[l

Configuring Eclipse on Windows requires some different steps. The full configuration steps for Windows are shown
below.

(For OS X and Linux instructions, see the Eclipse IDE page.)

Installing Eclipse IDE

Follow the steps under Installing Eclipse IDE for all platforms.

Setting up Eclipse on Windows

Once your new Eclipse installation launches, follow these steps:

Import New Project

Note:

Eclipse makes use of the Makefile support in ESP-IDF. This means you need to start by creating an ESP-IDF
project. You can use the idf-template project from github, or open one of the examples in the esp-idf examples
subdirectory.

Once Eclipse is running, choose File -> Import. ..
In the dialog that pops up, choose “C/C++” -> “Existing Code as Makefile Project” and click Next.

On the next page, enter “Existing Code Location” to be the directory of your IDF project. Don’t specify the
path to the ESP-IDF directory itself (that comes later). The directory you specify should contain a file named
“Makefile” (the project Makefile).

On the same page, under “Toolchain for Indexer Settings” uncheck “Show only available toolchains that support
this platform”.

On the extended list that appears, choose “Cygwin GCC”. Then click Finish.

you may see warnings in the Ul that Cygwin GCC Toolchain could not be found. This is OK, we’re going to

reconfigure Eclipse to find our toolchain.

Project Properties

The new project will appear under Project Explorer. Right-click the project and choose Properties from the
context menu.

70

Chapter 1. Get Started

../../../zh_CN/v3.2.5/get-started/eclipse-setup-windows.html

Read the Docs Template Documentation, Release v3.2.5

* Click on the “C/C++ Build” properties page (top-level):

— Uncheck “Use default build command” and enter this for the custom build command: python
$S{IDF_PATH}/tools/windows/eclipse_make.py

¢ Click on the “Environment” properties page under “C/C++ Build”:
— Click “Add...” and enter name BATCH_BUILD and value 1.

— Click “Add...” again, and enter name IDF_PATH. The value should be the full path where ESP-IDF
is installed. The IDF_PATH directory should be specified using forwards slashes not backslashes, ie
C:/Users/user-name/Development/esp-idf.

— Edit the PATH environment variable. Delete the existing value and
replace it with C:\msys32\usr\bin;C:\msys32\mingw32\bin;
C:\msys32\opt\xtensa-esp32-elf\bin (If you installed msys32 to a different directory
then you’ll need to change these paths to match).

¢ Click on “C/C++ General” -> “Preprocessor Include Paths, Macros, etc.” property page:
— Click the “Providers” tab

* In the list of providers, click “CDT Cross GCC Built-in Compiler Settings”. Change “Command
to get compiler specs” to xtensa-esp32-elf-gcc ${FLAGS} -std=c++11 -E -P -v
-dD "S${INPUTS}".

% In the list of providers, click “CDT GCC Build Output Parser” and change the “Compiler command
pattern” to xtensa—esp32-elf- (gcc|g\+\+|c\+\+|cc|cpplclang)

Navigate to “C/C++ General” -> “Indexer” property page:
* Check “Enable project specific settings” to enable the rest of the settings on this page.

* Uncheck “Allow heuristic resolution of includes”. When this option is enabled Eclipse sometimes fails to find
correct header directories.

Navigate to “C/C++ Build” -> “Behavior” property page:
¢ Check “Enable parallel build” to enable multiple build jobs in parallel.

* Setting the number of jobs slightly higher than the “optimal” may give the absolute fastest builds under Win-
dows, depending on the specific hardware being used.

Building in Eclipse

Continue from Building in Eclipse for all platforms.

Technical Details

Of interest to Windows gurus or very curious parties, only.

Explanations of the technical reasons for some of these steps. You don’t need to know this to use esp-idf with Eclipse
on Windows, but it may be helpful background knowledge if you plan to do dig into the Eclipse support:

* The xtensa-esp32-elf-gcc cross-compiler is not a Cygwin toolchain, even though we tell Eclipse that it is one.
This is because msys2 uses Cygwin and supports Unix-style paths (of the type /c/blahinsteadof c: /blah or
c:\\blah). In particular, xtensa-esp32-elf-gcc reports to the Eclipse “built-in compiler settings” function that
its built-in include directories are all under /usr/, which is a Unix/Cygwin-style path that Eclipse otherwise
can’t resolve. By telling Eclipse the compiler is Cygwin, it resolves these paths internally using the cygpath
utility.

1.15. Related Documents 71

Read the Docs Template Documentation, Release v3.2.5

* The same problem occurs when parsing make output from esp-idf. Eclipse parses this output to find header
directories, but it can’t resolve include directories of the form /c/blah without using cygpath. There is a
heuristic that Eclipse Build Output Parser uses to determine whether it should call cygpath, but for currently
unknown reasons the esp-idf configuration doesn’t trigger it. For this reason, the eclipse_make . py wrapper
script is used to call make and then use cygpath to process the output for Eclipse.

1.15.5 IDF Monitor

[l

The IDF Monitor tool is a Python program which runs when the make monitor target is invoked in IDF.

It is mainly a serial terminal program which relays serial data to and from the target device’s serial port, but it has
some other IDF-specific features.

Interacting With IDF Monitor

e Ctrl-] will exit the monitor.
e Ctrl-T Ctrl-H will display a help menu with all other keyboard shortcuts.

* Any other key apart from Ctr1-] and Ctr1-T is sent through the serial port.

Automatically Decoding Addresses

Any time esp-idf prints a hexadecimal code address of the form 0x4 , IDF Monitor will use addr2line to
look up the source code location and function name.

When an esp-idf app crashes and panics a register dump and backtrace such as this is produced:

Guru Meditation Error of type StoreProhibited occurred on core 0. Exception was,
—unhandled.
Register dump:

PC : 0x400£360d PS : 0x00060330 A0 : 0x800dbf56 Al : 0x3ffb7e00
A2 : O0x3ffbl36c A3 : 0x00000005 A4 : 0x00000000 A5 : 0x00000000
A6 : 0x00000000 A7 : 0x00000080 A8 : 0x00000000 A9 : 0x3ffb7ddo0
AlQ : 0x00000003 All : 0x00060£23 Al2 : 0x00060£20 Al1l3 : 0x3ffba6d0l
Al4 : 0x00000047 AlS5 : 0x0000000f SAR : 0x00000019 EXCCAUSE: 0x0000001d
EXCVADDR: 0x00000000 LBEG : 0x4000c46c LEND : 0x4000c477 LCOUNT : 0x00000000

Backtrace: 0x400£360d:0x3ffb7e00 0x400dbf56:0x3ffb7e20 0x400dbfbe:0x3ffb7e40
—0x400dbf82:0x3ffb7e60 0x400d071d:0x3ffb7e90

IDF Monitor will augment the dump:

Guru Meditation Error of type StoreProhibited occurred on core 0. Exception was,,
—unhandled.

Register dump:

PC : 0x400£360d PS : 0x00060330 A0 : 0x800dbfb6 Al : 0x3ffb7e00
0x400£360d: do_something to_crash at /home/gus/esp/32/idf/examples/get-started/hello_
—world/main/./hello_world_main.c:57

(inlined by) inner_dont_crash at /home/gus/esp/32/idf/examples/get-started/hello_
—world/main/./hello_world_main.c:52

A2 : 0x3ffbl36c A3 : 0x00000005 A4 : 0x00000000 A5 : 0x00000000
A6 : 0x00000000 A7 : 0x00000080 A8 : 0x00000000 A9 : 0x3ffb7dd0
AlQ : 0x00000003 All : 0x00060£23 Al2 : 0x00060£20 Al1l3 : 0x3ffba6dol

(continues on next page)

72 Chapter 1. Get Started

../../../zh_CN/v3.2.5/get-started/idf-monitor.html
https://sourceware.org/binutils/docs/binutils/addr2line.html

Read the Docs Template Documentation, Release v3.2.5

(continued from previous page)

Al4 : 0x00000047 Al5 : 0x0000000f SAR : 0x00000019 EXCCAUSE: 0x0000001d
EXCVADDR: 0x00000000 LBEG : 0x4000c46c LEND : 0x4000c477 LCOUNT : 0x00000000

Backtrace: 0x400£360d:0x3ffb7e00 0x400dbf56:0x3ffb7e20 0x400dbfS5e:0x3ffb7e40
—0x400db£f82:0x3ffb7e60 0x400d071d:0x3ffb7e90

0x400£360d: do_something_to_crash at /home/gus/esp/32/idf/examples/get-started/hello_
—world/main/./hello_world_main.c:57

(inlined by) inner_dont_crash at /home/gus/esp/32/idf/examples/get—-started/hello_
—world/main/./hello_world_main.c:52

0x400dbf56: still_dont_crash at /home/gus/esp/32/idf/examples/get-started/hello_world/
—main/./hello_world_main.c:47

0x400dbf5e: dont_crash at /home/gus/esp/32/idf/examples/get-started/hello_world/main/.
—/hello_world_main.c:42

0x400dbf82: app_main at /home/gus/esp/32/idf/examples/get-started/hello_world/main/./
—hello_world_main.c:33

0x400d071d: main_task at /home/gus/esp/32/idf/components/esp32/./cpu_start.c:254

Behind the scenes, the command IDF Monitor runs to decode each address is:

xtensa-esp32-elf-addr2line -pfiaC -e build/PROJECT.elf ADDRESS

Launch GDB for GDBStub

By default, if an esp-idf app crashes then the panic handler prints registers and a stack dump as shown above, and then
resets.

Optionally, the panic handler can be configured to run a serial “gdb stub” which can communicate with a gdb debugger
program and allow memory to be read, variables and stack frames examined, etc. This is not as versatile as JTAG
debugging, but no special hardware is required.

To enable the gdbstub, run make menuconfig and set CONFIG_ESP32_PANIC option to Invoke GDBStub.

If this option is enabled and IDF Monitor sees the gdb stub has loaded, it will automatically pause serial monitoring
and run GDB with the correct arguments. After GDB exits, the board will be reset via the RTS serial line (if this is
connected.)

Behind the scenes, the command IDF Monitor runs is:

xtensa-esp32-elf-gdb -ex "set serial baud BAUD" -ex "target remote PORT" -ex
—interrupt build/PROJECT.elf

Quick Compile and Flash

The keyboard shortcut Ctr1-T Ctrl-F will pause IDF Monitor, run the make flash target, then resume IDF
Monitor. Any changed source files will be recompiled before re-flashing.

The keyboard shortcut Ctr1-T Ctrl-A will pause IDF Monitor, run the make app-flash target, then resume
IDF Monitor. This is similar to make flash, but only the main app is compiled and reflashed.

Quick Reset

The keyboard shortcut Ctr1-T Ctr1-R will reset the target board via the RTS line (if it is connected.)

1.15. Related Documents 73

https://sourceware.org/gdb/download/onlinedocs/

Read the Docs Template Documentation, Release v3.2.5

Pause the Application

The keyboard shortcut Ct r1-T Ctrl-P will reset the target into bootloader, so that the board will run nothing. This
is useful when you want to wait for another device to startup. Then shortcut Ct r1-T Ctrl1-R can be used to restart
the application.

Toggle Output Display

Sometimes you may want to stop new output printed to screen, to see the log before. The keyboard shortcut Ctr1-T
Ctrl-Y will toggle the display (discard all serial data when the display is off) so that you can stop to see the log, and
revert again quickly without quitting the monitor.

Filtering the Output

The IDF monitor can be invoked as make monitor PRINT_FILTER="" with specifying a custom
PRINT_FILTER option for filtering outputs. The default value is an empty string which means that everything
will be printed. Restrictions on what to print can be specified as a series of <tag>:<log_level> items where
<tag> is the tag string and <log_level> is a character from set {N, E, W, I, D, V, «} referring to a
level for logging. For example, PRINT_FILTER="tagl:W" will match and print (only) the outputs written with
ESP_LOGW ("tagl", ...) or at lower verbosity level, i.e. ESP_LOGE ("tagl", ...). Not specifying a
<log_level> orusing * defaults to Verbose level.

Note: The primary logging is set up at compilation time through the logging library. Output filtering by the IDF
monitor is only a secondary solution because one cannot filter something which has been disabled at compilation
time. The advantage of the secondary filtering is that one can use various filtering options without recompiling the
application.

A restriction applies to tags when one wants to use them together with output filtering: they cannot contain spaces,
asterisks = and semicolons :.

If the last line of the output is written without an end of line then the output filtering might get confused, i.e. the
monitor starts to print the line and only later finds out that the line should have not been written. This is a known
issue and can be avoided by always adding an end of line after printing something (especially when no output follows
immediately afterwards).

Examples Of Filtering Rules:

 Asterisk can be used to match any tags. However, specifying PRINT_FILTER="x:I tagl:E" will print
for tagl only errors because the rule for tagl has a precedence over the rule for «.

e The default (empty) rule is equivalent to = :V because matching every tag at level Verbose or lower means
matching everything.

* Rule "tagl:W tagl:E" is equivalent to "tagl:E" because any consequent occurrence of the same tag
name overwrites the previous one.

* Rule "tagl:I tag2:W" will print only tagl at verbosity level Info or lower and tag2 at verbosity level
Warning or lower.

* Rule "tagl:I tag2:W tag3:N" is essentially equivalent to the previous one because tag3 : N specifies
that t ag3 should not be printed.

74 Chapter 1. Get Started

Read the Docs Template Documentation, Release v3.2.5

* tag3:Ninrule "tagl:I tag2:W tag3:N x:V" is more meaningful because in this context the result
will be that tag3 will not be printed, tagl and tag2 will be at the specified (or lower) verbosity level and
everything else will be printed by default.

e "% :N" will suppress all outputs even prints made by something else than the logging functions, e.g. printf.
For printing those outputs one need to use * : E or higher verbosity level.

e Rules "tagl:V", "tagl:v", "tagl:", "tagl:*" and "tagl" are all equivalent ones.

A More Complex Filtering Example

The following log snippet was acquired using make monitor:

10oad:0x40078000, 1len:13564
entry 0x40078d4c

E (31) esp_image: image at 0x30000 has invalid magic byte

W (31) esp_image: image at 0x30000 has invalid SPI mode 255

E (39) boot: Factory app partition is not bootable

I (568) cpu_start: Pro cpu up.

I (569) heap_init: Initializing. RAM available for dynamic allocation:

I (603) cpu_start: Pro cpu start user code

D (309) light_driver: [light_init, 74]:status: 1, mode: 2

D (318) vfs: esp_vfs_register_fd_range is successful for range <54; 64) and VFS ID 1
I (328) wifi: wifi driver task: 3ffdbf84, prio:23, stack:4096, core=0

The captured output for make monitor PRINT_FILTER="wifi esp_image:E light_driver:I" is
the following:

E (31) esp_image: image at 0x30000 has invalid magic byte
I (328) wifi: wifi driver task: 3ffdbf84, prio:23, stack:4096, core=0

make monitor PRINT_FILTER="light_driver:D esp_image:N boot:N cpu_start:N vfs:N
wifi:N *:V" gives the following output:

10ad:0x40078000, 1len:13564

entry 0x40078d4c

I (569) heap_init: Initializing. RAM available for dynamic allocation:
D (309) light_driver: [light_init, 74]:status: 1, mode: 2

Simple Monitor

Earlier versions of ESP-IDF used the pySerial command line program miniterm as a serial console program.
This program can still be run, viamake simple_monitor.

IDF Monitor is based on miniterm and shares the same basic keyboard shortcuts.

Known Issues with IDF Monitor

Issues Observed on Windows

* If you are using the supported Windows environment and receive the error “winpty: command not found” then
run pacman —-S winpty to fix.

* Arrow keys and some other special keys in gdb don’t work, due to Windows Console limitations.

1.15. Related Documents 75

https://github.com/pyserial/pyserial
https://pyserial.readthedocs.org/en/latest/tools.html#module-serial.tools.miniterm

Read the Docs Template Documentation, Release v3.2.5

* Occasionally when “make” exits, it may stall for up to 30 seconds before idf_monitor resumes.

¢ QOccasionally when “gdb” is run, it may stall for a short time before it begins communicating with the gdbstub.

1.15.6 Customized Setup of Toolchain
Instead of downloading binary toolchain from Espressif website (see Setup Toolchain) you may build the toolchain
yourself.

If you can’t think of a reason why you need to build it yourself, then probably it’s better to stick with the binary
version. However, here are some of the reasons why you might want to compile it from source:

* if you want to customize toolchain build configuration

* if you want to use a different GCC version (such as 4.8.5)
* if you want to hack gcc or newlib or libstdc++

* if you are curious and/or have time to spare

* if you don’t trust binaries downloaded from the Internet

In any case, here are the instructions to compile the toolchain yourself.

76 Chapter 1. Get Started

CHAPTER 2

Get Started (CMake)

Note: This is documentation for the CMake-based build system which is currently in preview release. If you encounter
any gaps or bugs, please report them in the Issues section of the ESP-IDF repository.

The CMake-based build system will become the default build system in ESP-IDF V4.0. The existing GNU Make
based build system will be deprecated in ESP-IDF V5.0.

Important: The following features are not yet supported with the CMake-based build system:
* Eclipse IDE Documentation
* Secure Boot
¢ Flash Encryption

Support for these features will be available before CMake becomes the default build system.

This document is intended to help users set up the software environment for development of applications using
hardware based on the Espressif ESP32. Through a simple example we would like to illustrate how to use ESP-
IDF (Espressif IoT Development Framework), including the menu based configuration, compiling the ESP-IDF and
firmware download to ESP32 boards.

2.1 Introduction

ESP32 integrates Wi-Fi (2.4 GHz band) and Bluetooth 4.2 solutions on a single chip, along with dual high performance
cores, Ultra Low Power co-processor and several peripherals. Powered by 40 nm technology, ESP32 provides a robust,
highly integrated platform to meet the continuous demands for efficient power usage, compact design, security, high
performance, and reliability.

Espressif provides the basic hardware and software resources that help application developers to build their ideas
around the ESP32 series hardware. The software development framework by Espressif is intended for rapidly de-

77

https://github.com/espressif/esp-idf/issues

Read the Docs Template Documentation, Release v3.2.5

veloping Internet-of-Things (IoT) applications, with Wi-Fi, Bluetooth, power management and several other system
features.

2.2 What You Need

To develop applications for ESP32 you need:
* PC loaded with either Windows, Linux or Mac operating system
* Toolchain to compile code for ESP32
* Build tools CMake and Ninja to build a full Application for ESP32
» ESP-IDF that essentially contains API for ESP32 and scripts to operate the Toolchain
* A text editor to write programs (Projects) in C, e.g. Eclipse

The ESP32 board itself and a USB cable to connect it to the PC

Toolchain

Project

Application

i
Fig. 1: Development of applications for ESP32

Steps to set up Development Environment:
1. Setup of Toolchain
2. Getting ESP-IDF from GitHub
Once the development environment is set up, we will follow these steps to create an ESP-IDF application:
1. Configuration of a Project and writing the code
2. Compilation of the Project and linking it to build an Application
3. Flashing (uploading) the compiled Application to ESP32 over a USB/serial connection
4. Monitoring / debugging of the Application output via USB/serial

2.3 Development Board Guides
If you have one of ESP32 development boards listed below, click on the link for hardware setup:

2.3.1 ESP32-DevKitC V4 Getting Started Guide (CMake)

This user guide shows how to get started with ESP32-DevKitC V4 development board. For description of other
versions of the ESP32-DevKitC check ESP32 Hardware Reference.

78 Chapter 2. Get Started (CMake)

https://www.eclipse.org/

Read the Docs Template Documentation, Release v3.2.5

What You Need

e 1 x ESP32-DevKitC V4 board
e 1 x USB A/ micro USB B cable
¢ 1 x PC loaded with Windows, Linux or Mac OS

Overview

ESP32-DevKitC V4 is a small-sized ESP32-based development board produced by Espressif. Most of the I/O pins are
broken out to the pin headers on both sides for easy interfacing. Developers can connect these pins to peripherals as
needed. Standard headers also make development easy and convenient when using a breadboard.

The board supports various ESP32 modules, including ESP32-WROOM-32, ESP32-WROOM-32U, ESP32-WROOM-
32D and ESP32-SOLO-1.

Functional Description

The following list and figure below describe key components, interfaces and controls of ESP32-DevKitC V4 board.

ESP-WROOM-32 ESP32-WROOM-32 module soldered to the ESP32-DevKitC V4 board. Optionally ESP32-
WROOM-32D, ESP32-WROOM-32U or ESP32-SOLO-1 module may be soldered instead of the ESP32-
WROOM-32.

USB-UART Bridge A single chip USB-UART bridge provides up to 3 Mbps transfers rates.

Boot Download button: holding down the Boot button and pressing the EN button initiates the firmware download
mode. Then user can download firmware through the serial port.

Micro USB Port USB interface. It functions as the power supply for the board and the communication interface
between PC and the ESP module.

5V Power On LED This LED lights when the USB or an external 5V power supply is applied to the board. For
details see schematic in Related Documents.

EN Reset button: pressing this button resets the system.

I/0 Most of the pins on the ESP module are broken out to the pin headers on the board. Users can program ESP32 to
enable multiple functions such as PWM, ADC, DAC, 12C, 128, SPI, etc.

Note: Some of broken out pins are used internally be the ESP32 module to communicate with SPI memory.
They are grouped on one side of the board besides the USB connector and labeled DO, D1, D2, D3, CMD and
CLK. In general these pins should be left unconnected or access to the SPI flash memory / SPI RAM may be
disturbed.

Note: GPIO16 and 17 are used internally by the ESP32-WROVER module. They are broken out and avialable
for use only for boards that have the ESP-WROOM-32 module installed.

Power Supply Options

There following options are available to provide power supply to this board:

1. Micro USB port, this is default power supply connection

2.3. Development Board Guides 79

https://espressif.com

Read the Docs Template Documentation, Release v3.2.5

5V Power On LED I/O Connector

CEEEREEEEEEE L EEEEEX)
NS OWD EQ Z0 ET OND ZT PT LZ 9T ST EE€ ZE SE ¥WE NA dA N3 ENE

EN Button

Micro USB Port ——— ESP32-WROOM-32

Boot Button e T e | LTI :
USB-to-UART Bridge Optional Space for ESP32-WROVER

Fig. 2: ESP32-DevKitC V4 with ESP-WROOM-32 module soldered

2. 5V / GND header pins
3. 3V3/ GND header pins

Warning: Above options are mutually exclusive, i.e. the power supply may be provided using only one of the
above options. Attempt to power the board using more than one connection at a time may damage the board and/or
the power supply source.

Start Application Development
Before powering up the ESP32-DevKitC, please make sure that the board has been received in good condition with no
obvious signs of damage.

To start development of applications, proceed to section Get Started (CMake), that will walk you through the following
steps:

e Setup Toolchain in your PC to develop applications for ESP32 in C language
* Connect the module to the PC and verify if it is accessible

* Build The Project for an example application

* Flash To A Device to run code on the ESP32

* Monitor instantly what the application is doing

Board Dimensions

80 Chapter 2. Get Started (CMake)

Read the Docs Template Documentation, Release v3.2.5

CLEkD8 01 35 2 @ 4 16 17 5 18 19GND 21 RX TX 22 23 GND

¥
@ 27.9 mm

WS 'OWD E0 70 ET OMD ZT-9T LT 9T 57 ¢ PE NA dA NI EAE

-
v
-
~
<
%
-
0
‘e
r 3

Fig. 3: ESP32 DevKitC board dimensions - back

Related Documents

¢ ESP32-DevKitC V4 schematic (PDF)
e ESP32 Datasheet (PDF)

* ESP-WROOM-32 Datasheet (PDF)

¢ ESP32-WROVER Datasheet (PDF)

ESP32-DevKitC V2 Getting Started Guide (CMake)

This user guide shows how to get started with ESP32-DevKitC development board.

What You Need

e 1 x ESP32-DevKitC V2 board
¢ 1 x USB A/ micro USB B cable
¢] x PC loaded with Windows, Linux or Mac OS

Overview

ESP32-DevKitC is a small-sized ESP32-based development board produced by Espressif. Most of the I/O pins are
broken out to the pin headers on both sides for easy interfacing. Developers can connect these pins to peripherals as
needed. Standard headers also make development easy and convenient when using a breadboard.

2.3. Development Board Guides 81

https://dl.espressif.com/dl/schematics/esp32_devkitc_v4-sch.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://espressif.com/sites/default/files/documentation/esp-wroom-32_datasheet_en.pdf
https://espressif.com/sites/default/files/documentation/esp32-wrover_datasheet_en.pdf
https://espressif.com

Read the Docs Template Documentation, Release v3.2.5

Functional Description

The following list and figure below describe key components, interfaces and controls of ESP32-DevKitC board.
ESP-WROOM-32 Standard ESP-WROOM-32 module soldered to the ESP32-DevKitC board.
EN Reset button: pressing this button resets the system.

Boot Download button: holding down the Boot button and pressing the EN button initiates the firmware download
mode. Then user can download firmware through the serial port.

USB USB interface. It functions as the power supply for the board and the communication interface between PC and
ESP-WROOM-32.

I/0 Most of the pins on the ESP-WROOM-32 are broken out to the pin headers on the board. Users can program
ESP32 to enable multiple functions such as PWM, ADC, DAC, 12C, 12S, SPI, etc.

ESP-WROOM-32

f..ouor_;oooooooooooooo

| OND 6101 8101 GOI Z1DI 9101 #O0 001 TOW SI01 1OS l|'|..I

Fig. 4: ESP32-DevKitC V2 board layout

Power Supply Options

There following options are available to provide power supply to this board:
1. Micro USB port, this is default power supply connection
2. 5V / GND header pins
3. 3V3/ GND header pins

Warning: Above options are mutually exclusive, i.e. the power supply may be provided using only one of the
above options. Attempt to power the board using more than one connection at a time may damage the board and/or
the power supply source.

82 Chapter 2. Get Started (CMake)

https://www.espressif.com/sites/default/files/documentation/esp-wroom-32_datasheet_en.pdf

Read the Docs Template Documentation, Release v3.2.5

Start Application Development

Before powering up the ESP32-DevKitC, please make sure that the board has been received in good condition with no
obvious signs of damage.

To start development of applications, proceed to section Get Started (CMake), that will walk you through the following
steps:

e Setup Toolchain in your PC to develop applications for ESP32 in C language

* Connect the module to the PC and verify if it is accessible

Build The Project for an example application
e Flash To A Device to run code on the ESP32

* Monitor instantly what the application is doing

Related Documents

e ESP32-DevKitC schematic (PDF)
* ESP32 Datasheet (PDF)
¢ ESP-WROOM-32 Datasheet (PDF)

2.3.2 ESP-WROVER-KIT V3 Getting Started Guide (CMake)

This user guide shows how to get started with ESP-WROVER-KIT V3 development board including description of
its functionality and configuration options. For description of other versions of the ESP-WROVER-KIT check ESP32
Hardware Reference.

If you like to start using this board right now, go directly to section Start Application Development.

What You Need

e 1 x ESP-WROVER-KIT V3 board
* 1 x Micro USB 2.0 Cable, Type A to Micro B
¢ 1 x PC loaded with Windows, Linux or Mac OS

Overview

The ESP-WROVER-KIT is a development board produced by Espressif built around ESP32. This board is compatible
with ESP32 modules, including the ESP-WROOM-32 and ESP32-WROVER. The ESP-WROVER-KIT features sup-
port for an LCD and MicroSD card. The I/O pins have been broken out from the ESP32 module for easy extension.
The board carries an advanced multi-protocol USB bridge (the FTDI FT2232HL), enabling developers to use JTAG
directly to debug the ESP32 through the USB interface. The development board makes secondary development easy
and cost-effective.

Note: ESP-WROVER-KIT V3 integrates the ESP32-WROVER module by default.

2.3. Development Board Guides 83

https://dl.espressif.com/dl/schematics/ESP32-Core-Board-V2_sch.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://espressif.com/sites/default/files/documentation/esp-wroom-32_datasheet_en.pdf
https://espressif.com

Read the Docs Template Documentation, Release v3.2.5

Functionality Overview

Block diagram below presents main components of ESP-WROVER-KIT and interconnections between components.

32.768KHz
crystal

1110 expand
ChannelA LCD.
uUsBe | 3.2inch
Connector
t Camera
ChannelB
MicroSD
USB_&WY
= LDO:
EXT_5V _ | +5V->+3.3V 1 ' RGB LED
> [on] |Kez]

Fig. 5: ESP-WROVER-KIT block diagram

Functional Description

The following list and figures below describe key components, interfaces and controls of ESP-WROVER-KIT board.

32.768 kHz An external precision 32.768 kHz crystal oscillator provides the chip with a clock of low-power con-
sumption during the Deep-sleep mode.

OR A zero Ohm resistor intended as a placeholder for a current shunt. May be desoldered or replaced with a current
shunt to facilitate measurement of current required by ESP32 module depending on power mode.

ESP32 Module ESP-WROVER-KIT is compatible with both ESP-WROOM-32 and ESP32-WROVER. The ESP32-
WROVER module features all the functions of ESP-WROOM-32 and integrates an external 32-MBit PSRAM
for flexible extended storage and data processing capabilities.

Note: GPIO16 and GPIO17 are used as the CS and clock signal for PSRAM. To ensure reliable performance,
the two GPIOs are not broken out.

FT2232 The FT2232 chip is a multi-protocol USB-to-serial bridge. Users can control and program the FT2232 chip
through the USB interface to establish communication with ESP32. The FT2232 chip also features USB-to-
JTAG interface. USB-to-JTAG is available on channel A of FT2232, USB-to-serial on channel B. The embedded
FT2232 chip is one of the distinguishing features of the ESPWROVER-KIT. It enhances users’ convenience in
terms of application development and debugging. In addition, users do not need to buy a JTAG debugger
separately, which reduces the development cost, see ESP-WROVER-KIT V3 schematic.

UART Serial port: the serial TX/RX signals on FT2232HL and ESP32 are broken out to the two sides of JP11. By
default, the two signals are connected with jumpers. To use the ESP32 module serial interface only, the jumpers
may be removed and the module can be connected to another external serial device.

84 Chapter 2. Get Started (CMake)

https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_SCH-3.pdf

Read the Docs Template Documentation, Release v3.2.5

SPI SPI interface: the SPI interface connects to an external flash (PSRAM). To interface another SPI device, an extra
CS signal is needed. The electrical level on the flash of this module is 1.8V. If an ESP-WROOM-32 is being
used, please note that the electrical level on the flash of this module is 3.3V.

CTS/RTS Serial port flow control signals: the pins are not connected to the circuitry by default. To enable them,
respective pins of JP14 must be shorted with jumpers.

JTAG JTAG interface: the JTAG signals on FT2232HL and ESP32 are broken out to the two sides of JP8. By default,
the two signals are disconnected. To enable JTAG, shorting jumpers are required on the signals.

EN Reset button: pressing this button resets the system.

Boot Download button: holding down the Boot button and pressing the EN button initiates the firmware download
mode. Then user can download firmware through the serial port.

USB USB interface. It functions as the power supply for the board and the communication interface between PC and
ESP32 module.

Power Select Power supply selection interface: the ESP-WROVER-KIT can be powered through the USB interface
or the 5V Input interface. The user can select the power supply with a jumper. More details can be found in
section Setup Options, jumper header JP7.

Power Key Power on/off button: toggling to the right powers the board on; toggling to the left powers the board off.
5V Input The 5V power supply interface is used as a backup power supply in case of full-load operation.

LDO NCPI1117(1A). 5V-t0-3.3V LDO. (There is an alternative pin-compatible LDO — LM317DCY, with an output
current of up to 1.5A). NCP1117 can provide a maximum current of 1A. The LDO solutions are available
with both fixed output voltage and variable output voltage. For details please refer to ESP-WROVER-KIT V3
schematic.

Camera Camera interface: a standard OV7670 camera module is supported.

RGB Red, green and blue (RGB) light emitting diodes (LEDs), which may be controlled by pulse width modulation
(PWM).

I/0 All the pins on the ESP32 module are led out to the pin headers on the ESP~-WROVER-KIT. Users can program
ESP32 to enable multiple functions such as PWM, ADC, DAC, 12C, 12S, SPI, etc.

Micro SD Card Micro SD card slot for data storage.

LCD ESP-WROVER-KIT supports mounting and interfacing a 3.2” SPI (standard 4-wire Serial Peripheral Interface)
LCD, as shown on figure ESP-WROVER-KIT board layout - back.

Setup Options

There are five jumper headers available to set up the board functionality. Typical options to select from are listed in
table below.

2.3. Development Board Guides 85

https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_SCH-3.pdf
https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_SCH-3.pdf

86

Read the Docs Template Documentation, Release v3.2.5

Micro
SD Card

11O

RGB
LED

Camera

LDO

5V
Input

Power
Select

) ESP-WROVER-KIT
@ ESP-WROVER-KIT, Espr

®-8 @

Key USB

Boot

Fig. 6: ESP-WROVER-KIT board layout - front

OR

ESP32
Module

FT2232

UART

SPI

CTS
RTS

JTAG

EN

Chapter 2. Get Started (CMake)

Read the Docs Template Documentation, Release v3.2.5

LCD

Fig. 7: ESP-WROVER-KIT board layout - back

oo 5B 3.3
&9
Qe m

23.

Development Board Guides

87

Read the Docs Template Documentation, Release v3.2.5

Header

JP7

JP7

JP8

88

Jumper Setting

Description of Functionality

Power ESP-WROVER-KIT board from an external power
supply

Power ESP-WROVER-KIT board from an USB port

Enable JTAG functionality

Chapter 2. Get Started (CMake)

Read the Docs Template Documentation, Release v3.2.5

Allocation of ESP32 Pins

Several pins / terminals of ESP32 module are allocated to the on board hardware. Some of them, like GPIOO or
GPIO2, have multiple functions. If certain hardware is not installed, e.g. nothing is plugged in to the Camera / JP4
header, then selected GPIOs may be used for other purposes.

Main I/O Connector / JP1

The JP1 connector is shown in two columns in the middle under “I/O” headers. The two columns “Shared With”
outside, describe where else on the board certain GPIO is used.

Legend:

Shared With I/O I/O Shared With
3.3V | GND
NC/XTAL 1032 | 1033 | NC/XTAL
JTAG, MicroSD | 1012 | 1013 | JTAG, MicroSD
JTAG, MicroSD | 1014 | 1027 | Camera
Camera 1026 | 1025 | Camera, LCD
Camera 1035 | 1034 | Camera
Camera 1039 | 1036 | Camera
JTAG EN 1023 | Camera, LCD
Camera, LCD 1022 | 1021 | Camera, LCD, MicroSD
Camera, LCD 1019 | 1018 | Camera, LCD
Camera, LCD 105 1017 | PSRAM
PSRAM 1016 | 104 LED, Camera, MicroSD
LED, Boot 100 102 LED, Camera, MicroSD
JTAG, MicroSD | 1015 | 5V

e NC/XTAL - 32.768 kHz Oscillator

* JTAG - JTAG / JPS8

¢ Boot - Boot button / SW2

e Camera - Camera / JP4

e LED - RGB LED

e MicroSD - MicroSD Card / J4

* LCD-LCD /U5

* PSRAM - ESP32-WROVER’s PSRAM, if ESP32-WROVER is installed

32.768 kHz Oscillator

ESP32 Pin

GPIO32

GPIO33

2.3. Development Board Guides

89

Read the Docs Template Documentation, Release v3.2.5

Note: As GPIO32 and GPIO33 are connected to the oscillator, to maintain signal integrity, they are not connected to
JP1 I/O expansion connector. This allocation may be changed from oscillator to JP1 by desoldering OR resistors from

positions R11 /R23 and installing them in positions R12 / R24.

SPI Flash / JP13

ESP32 Pin

CLK / GPIO6

SDO / GPIO7

SD1 / GPIO8

SD2 / GPIO9

SD3 / GPIO10

QN N AW N —

CMD / GPIO11

Important: The module’s flash bus is connected to the pin header JP13 through 0-Ohm resistors R140 ~ R145. If
the flash frequency needs to operate at 80 MHz, to improve integrity of the bus signals, it is recommended to desolder
resistors R140 ~ R145. At this point, the module’s flash bus is disconnected with the pin header JP13.

JTAG / JP8
ESP32 Pin JTAG Signal
1 | EN TRST_N
2 | MTDO / GPIO15 | TDO
3 | MTDI/GPIO12 TDI
4 | MTCK/GPIO13 | TCK
5 | MTMS / GPIO14 | TMS
90 Chapter 2. Get Started (CMake)

Read the Docs Template Documentation, Release v3.2.5

Camera / JP4
ESP32 Pin | Camera Signal
1 GPI1027 SCCB Clock
2 GPIO26 SCCB Data
3 GPIO21 System Clock
4 | GPIO25 Vertical Sync
5 GPIO23 Horizontal Reference
6 GPIO22 Pixel Clock
7 GPIO4 Pixel Data Bit 0
8 GPIOS Pixel Data Bit 1
9 GPIO18 Pixel Data Bit 2
10 | GPIOI19 Pixel Data Bit 3
11 | GPIO36 Pixel Data Bit 4
11 | GPIO39 Pixel Data Bit 5
11 | GPIO34 Pixel Data Bit 6
11 | GPIO35 Pixel Data Bit 7
11 | GPIO2 Camera Reset
RGB LED
ESP32 Pin | RGB LED
1 | GPIOO Red
2 | GPIO2 Blue
3 | GPIO4 Green
MicroSD Card / J4
ESP32 Pin MicroSD Signal
1 | MTDI/GPIO12 | DATA2
2 | MTCK/GPIO13 | CD/DATA3
3 | MTDO/GPIO15 | CMD
4 | MTMS /GPIO14 | CLK
5 | GPIO2 DATAO
6 | GPIO4 DATA1
7 | GPIO21 CD

2.3. Development Board Guides

91

Read the Docs Template Documentation, Release v3.2.5

LCD / U5
ESP32 Pin | LCD Signal
1 | GPIO18 RESET
2 | GPIO19 SCL
3 | GPIO21 D/C
4 | GPIO22 CS
5 | GP1023 SDA
6 | GPIO25 SDO
7 | GPIO5 Backlight

Start Application Development

Before powering up the ESP-WROVER-KIT, please make sure that the board has been received in good condition
with no obvious signs of damage.

Initial Setup

Select the source of power supply for the board by setting jumper JP7. The options are either USB port or an external
power supply. For this application selection of USB port is sufficient. Enable UART communication by installing
jumpers on JP11. Both selections are shown in table below.

Enable UART communication

Power up from USB port
|- e

Do not install any other jumpers.

Now to Development

To start development of applications for ESP-WROVER-KIT, proceed to section Ger Started (CMake), that will walk
you through the following steps:

e Setup Toolchain in your PC to develop applications for ESP32 in C language

92 Chapter 2. Get Started (CMake)

Read the Docs Template Documentation, Release v3.2.5

* Connect the module to the PC and verify if it is accessible

Build The Project for an example application
e Flash To A Device to run code on the ESP32

* Monitor instantly what the application is doing

Related Documents

ESP-WROVER-KIT V3 schematic (PDF)
e ESP32 Datasheet (PDF)
ESP32-WROVER Datasheet (PDF)
ESP-WROOM-32 Datasheet (PDF)

* JTAG Debugging

ESP32 Hardware Reference

ESP-WROVER-KIT V2 Getting Started Guide (CMake)

This user guide shows how to get started with ESP-WROVER-KIT V2 development board including description of
its functionality and configuration options. For description of other versions of the ESP-WROVER-KIT check ESP32
Hardware Reference.

If you like to start using this board right now, go directly to section Start Application Development.

What You Need

¢ 1 x ESP-WROVER-KIT V2 board
* 1 x Micro USB 2.0 Cable, Type A to Micro B
¢ 1 x PC loaded with Windows, Linux or Mac OS

Overview

The ESP-WROVER-KIT is a development board produced by Espressif built around ESP32. This board is compatible
with ESP32 modules, including the ESP-WROOM-32 and ESP32-WROVER. The ESP-WROVER-KIT features sup-
port for an LCD and MicroSD card. The I/O pins have been broken out from the ESP32 module for easy extension.
The board carries an advanced multi-protocol USB bridge (the FTDI FT2232HL), enabling developers to use JTAG
directly to debug the ESP32 through the USB interface. The development board makes secondary development easy
and cost-effective.

Note: ESP-WROVER-KIT V2 integrates the ESP-WROOM-32 module by default.

Functionality Overview

Block diagram below presents main components of ESP-WROVER-KIT and interconnections between components.

2.3. Development Board Guides 93

https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_SCH-3.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://espressif.com/sites/default/files/documentation/esp32-wrover_datasheet_en.pdf
https://espressif.com/sites/default/files/documentation/esp-wroom-32_datasheet_en.pdf
https://espressif.com

Read the Docs Template Documentation, Release v3.2.5

32.768KHz
crystal

110 expand
Channel& LCD.
uUsBe 3.2inch
Connector

cheme i

1 MicroSD

USB_5Y
= LDO:
EXT_5V o | +5V->43.3V . - RGB LED
g [en] [rer]

Fig. 8: ESP-WROVER-KIT block diagram

Functional Description

The following list and figures below describe key components, interfaces and controls of ESP-WROVER-KIT board.

32.768 kHz An external precision 32.768 kHz crystal oscillator provides the chip with a clock of low-power con-
sumption during the Deep-sleep mode.

ESP32 Module ESP-WROVER-KIT is compatible with both ESP-WROOM-32 and ESP32-WROVER. The ESP32-
WROVER module features all the functions of ESP-WROOM-32 and integrates an external 32-MBit PSRAM
for flexible extended storage and data processing capabilities.

Note: GPIO16 and GPIO17 are used as the CS and clock signal for PSRAM. To ensure reliable performance,
the two GPIOs are not broken out.

CTS/RTS Serial port flow control signals: the pins are not connected to the circuitry by default. To enable them,
respective pins of JP14 must be shorted with jumpers.

UART Serial port: the serial TX/RX signals on FT2232HL and ESP32 are broken out to the two sides of JP11. By
default, the two signals are connected with jumpers. To use the ESP32 module serial interface only, the jumpers
may be removed and the module can be connected to another external serial device.

SPI SPI interface: the SPI interface connects to an external flash (PSRAM). To interface another SPI device, an extra
CS signal is needed. If an ESP32-WROVER is being used, please note that the electrical level on the flash and
SRAM is 1.8V.

JTAG JTAG interface: the JTAG signals on FT2232HL and ESP32 are broken out to the two sides of JP8. By default,
the two signals are disconnected. To enable JTAG, shorting jumpers are required on the signals.

FT2232 FT2232 chip is a multi-protocol USB-to-serial bridge. The FT2232 chip features USB-to-UART and USB-
to-JTAG functionalities. Users can control and program the FT2232 chip through the USB interface to establish

communication with ESP32.

The embedded FT2232 chip is one of the distinguishing features of the ESP-WROVER-KIT. It enhances users’

94 Chapter 2. Get Started (CMake)

Read the Docs Template Documentation, Release v3.2.5

convenience in terms of application development and debugging. In addition, uses do not need to buy a JTAG
debugger separately, which reduces the development cost, see ESP-WROVER-KIT V2 schematic.

EN Reset button: pressing this button resets the system.

Boot Download button: holding down the Boot button and pressing the EN button initiates the firmware download
mode. Then user can download firmware through the serial port.

USB USB interface. It functions as the power supply for the board and the communication interface between PC and
ESP32 module.

Power Select Power supply selection interface: the ESP-WROVER-KIT can be powered through the USB interface
or the 5V Input interface. The user can select the power supply with a jumper. More details can be found in
section Setup Options, jumper header JP7.

Power Key Power on/off button: toggling to the right powers the board on; toggling to the left powers the board off.
SV Input The 5V power supply interface is used as a backup power supply in case of full-load operation.

LDO NCP1117(1A). 5V-t0-3.3V LDO. (There is an alternative pin-compatible LDO — LM317DCY, with an output
current of up to 1.5A). NCP1117 can provide a maximum current of 1A. The LDO solutions are available
with both fixed output voltage and variable output voltage. For details please refer to ESP-WROVER-KIT V2
schematic.

Camera Camera interface: a standard OV7670 camera module is supported.

RGB Red, green and blue (RGB) light emitting diodes (LEDs), which may be controlled by pulse width modulation
(PWM).

I/0 All the pins on the ESP32 module are led out to the pin headers on the ESPWROVER-KIT. Users can program
ESP32 to enable multiple functions such as PWM, ADC, DAC, 12C, 12S, SPI, etc.

Micro SD Card Micro SD card slot for data storage: when ESP32 enters the download mode, GPIO2 cannot be held
high. However, a pull-up resistor is required on GPIO2 to enable the Micro SD Card. By default, GPIO2 and the
pull-up resistor R153 are disconnected. To enable the SD Card, use jumpers on JP1 as shown in section Serup
Options.

LCD ESP-WROVER-KIT supports mounting and interfacing a 3.2” SPI (standard 4-wire Serial Peripheral Interface)
LCD, as shown on figure ESP-WROVER-KIT board layout - back.

Setup Options

There are five jumper headers available to set up the board functionality. Typical options to select from are listed in
table below.

2.3. Development Board Guides 95

https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_SCH-2.pdf
https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_SCH-2.pdf
https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_SCH-2.pdf

Read the Docs Template Documentation, Release v3.2.5

Card

‘ o
RGE

Camera

Micro SD

LoD

Eﬂe :

T ey

32.T68K
Hz

| ESP3z
| Module

CTs

FT2232

5V
Input

Power

Key

Power
Select

UsSE

Boot EN ‘

Fig. 9: ESP-WROVER-KIT board layout - front

96

Chapter 2. Get Started (CMake)

Read the Docs Template Documentation, Release v3.2.5

TSI FrSry.

L |
* 9
L N |
LA |

L I

ESP-WROVER-KIT
ISP = b KL T . Eapreas I, oo & & 8

L B B IR B BN BN BN B BE B B O B BN B B I R R B N O
[B BN IR B BN BN BN BN BE OB BN BN BN BN BN BN B BN AN BN NN B

°s

Fig. 10: ESP-WROVER-KIT board layout - back

2.3. Development Board Guides 97

Read the Docs Template Documentation, Release v3.2.5

Header

Jumper Setting

JP1

JP1

JP7

JP7

Description of Functionality

Enable pull up for the Micro SD Card

Assert GPIO2 low during each download (by jumping it to
GPIO0)

Power ESP-WROVER-KIT board from an external power supply

rjllr::-l JF 1.
i8[= #nSRST

157

[I
08 ;

Power ESP-WROVER-KIT board from an USB port

Chapter 2. Get Started (CMake)

Read the Docs Template Documentation, Release v3.2.5

Start Application Development

Before powering up the ESP-WROVER-KIT, please make sure that the board has been received in good condition
with no obvious signs of damage.

Initial Setup

Select the source of power supply for the board by setting jumper JP7. The options are either USB port or an external
power supply. For this application selection of USB port is sufficient. Enable UART communication by installing
jumpers on JP11. Both selections are shown in table below.

Enable UART communication

Power up from USB port

Do not install any other jumpers.

Now to Development

To start development of applications for ESP32-DevKitC, proceed to section Get Started (CMake), that will walk you
through the following steps:

* Setup Toolchain in your PC to develop applications for ESP32 in C language
* Connect the module to the PC and verify if it is accessible

* Build The Project for an example application

* Flash To A Device to run code on the ESP32

* Monitor instantly what the application is doing

Related Documents

ESP-WROVER-KIT V2 schematic (PDF)
e ESP32 Datasheet (PDF)
ESP-WROOM-32 Datasheet (PDF)
ESP32-WROVER Datasheet (PDF)

* JTAG Debugging

ESP32 Hardware Reference

2.3. Development Board Guides 99

https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_SCH-2.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp-wroom-32_datasheet_en.pdf
https://espressif.com/sites/default/files/documentation/esp32-wrover_datasheet_en.pdf

Read the Docs Template Documentation, Release v3.2.5

2.3.3 ESP32-PICO-KIT V4 Getting Started Guide (CMake)

This user guide shows how to get started with the ESP32-PICO-KIT V4 mini development board. For description of
other versions of the ESP32-PICO-KIT check ESP32 Hardware Reference.

What You Need

e 1 x ESP32-PICO-KIT V4 mini development board
* 1 x USB A /Micro USB B cable
¢ 1 x PC loaded with Windows, Linux or Mac OS

If you like to start using this board right now, go directly to section Start Application Development.

Overview

ESP32-PICO-KIT V4 is a mini development board produced by Espressif. At the core of this board is the ESP32-
PICO-D4, a System-in-Package (SIP) module with complete Wi-Fi and Bluetooth functionalities. Comparing to other
ESP32 chips, the ESP32-PICO-D4 integrates several peripheral components in one single package, that otherwise
would need to be installed separately. This includes a 40 MHz crystal oscillator, 4 MB flash, filter capacitors and RF
matching links in. This greatly reduces quantity and costs of additional components, subsequent assembly and testing
cost, as well as overall product complexity.

The development board integrates a USB-UART Bridge circuit, allowing the developers to connect the board to a PC’s
USB port for downloads and debugging.

For easy interfacing, all the IO signals and system power on ESP32-PICO-D4 are led out through two rows of 20
x 0.1” pitch header pads on both sides of the development board. To make the ESP32-PICO-KIT V4 fit into mini
breadboards, the header pads are populated with two rows of 17 pin headers. Remaining 2 x 3 pads grouped on each
side of the board besides the antenna are not populated. The remaining 2 x 3 pin headers may be soldered later by the
user.

Note: The 2 x 3 pads not populated with pin headers are internally connected to the flash memory embedded in the
ESP32-PICO-D4 SIP module. For more details see module’s datasheet in Related Documents.

The board dimensions are 52 x 20.3 x 10 mm (2.1” x 0.8” x 0.4”), see section Board Dimensions. An overview
functional block diagram is shown below.

Functional Description

The following list and figure below describe key components, interfaces and controls of ESP32-PICO-KIT V4 board.

ESP32-PICO-D4 Standard ESP32-PICO-D4 module soldered to the ESP32-PICO-KIT V4 board. The complete
system of the ESP32 chip has been integrated into the SIP module, requiring only external antenna with LC
matching network, decoupling capacitors and pull-up resistors for EN signals to function properly.

LDO 5V-t0-3.3V Low dropout voltage regulator (LDO).
USB-UART Bridge A single chip USB-UART bridge provides up to 1 Mbps transfers rates.

Micro USB Port USB interface. It functions as the power supply for the board and the communication interface
between PC and ESP32-PICO-KIT V4.

5V Power On LED This light emitting diode lits when the USB or an external 5V power supply is applied to the
board. For details see schematic in Related Documents.

100 Chapter 2. Get Started (CMake)

https://espressif.com

Read the Docs Template Documentation, Release v3.2.5

0000000000 OGSOOGOOGEOSO®O OGS
LLLLLL L L L L L L L L L LS Pin Header

USB Bridget

n
=
AR

USE Port

LDO Regulator

@ &) —

Powe
AR o
[BN BN BN BN BN BN BN BN BN BN BN M BN M N N N N N)

Pin Header

Fig. 11: ESP32-PICO-KIT V4 functional block diagram

I/0 All the pins on ESP32-PICO-D4 are broken out to the pin headers on the board. Users can program ESP32 to
enable multiple functions such as PWM, ADC, DAC, 12C, 12S, SPI, etc. For details please see section Pin
Descriptions.

BOOT Button Holding down the Boot button and pressing the EN button initiates the firmware download mode.
Then user can download firmware through the serial port.

EN Button Reset button; pressing this button resets the system.

Power Supply Options

There following options are available to provide power supply to the ESP32-PICO-KIT V4:
1. Micro USB port, this is default power supply connection
2. 5V / GND header pins
3. 3V3/ GND header pins

Warning: Above options are mutually exclusive, i.e. the power supply may be provided using only one of the
above options. Attempt to power the board using more than one connection at a time may damage the board and/or
the power supply source.

Start Application Development

Before powering up the ESP32-PICO-KIT V4, please make sure that the board has been received in good condition
with no obvious signs of damage.

2.3. Development Board Guides 101

Read the Docs Template Documentation, Release v3.2.5

3D Antenna ‘ ‘ ESP32-PICO-D4 ‘ ‘ LDO ‘ lUSB—UART Bridge |
|

B EEEEETEREN NN NNEEN N.

1021 1022 1019 1023 108 105 1010 09 RX0 TXO M035 K034 1034 057 EN GND 3V3

AWCD
N\ a!

LA EERNEAE

P
i, T
ST EE

s

RNRRREN 507 VP Svk K025 1028 1037 1033 1027 1014 JOTT 1013 U015 102 104 100 3V3 OMD Y
B 00 DGO WIIDOISwSe e &

Fig. 12: ESP32-PICO-KIT V4 board layout

To start development of applications, proceed to section Get Started (CMake), that will walk you through the following
steps:

e Setup Toolchain in your PC to develop applications for ESP32 in C language

* Connect the module to the PC and verify if it is accessible

Build The Project for an example application
e Flash To A Device to run code on the ESP32

* Monitor instantly what the application is doing

Pin Descriptions

The two tables below provide the Name and Function of I/O headers on both sides of the board, see ESP32-PICO-KIT
V4 board layout. The pin numbering and header names are the same as on a schematic in Related Documents.

102 Chapter 2. Get Started (CMake)

Read the Docs Template Documentation, Release v3.2.5

Header J2

No. Name Type Function

1 FLASH_SDI1 (FSD1) /0
GPIOS, SD_DATAL,
SPID, HS1_DATA1 (1),
U2CTS

2 FLASH_SD3 (FSD3) /O
GPIO7, SD_DATAO,
SPIQ, HS1_DATAO (/) ,
U2RTS

3 FLASH_CLK (FCLK) 1/0
GPIO6, SD_CLK,
SPICLK, HS1_CLK (/),
UICTS

4 1021 1/0
GPIO21, VSPIHD,
EMAC_TX_EN

5 1022 1/0
GPIO22, VSPIWP,
UORTS, EMAC_TXD1

6 1019 /0
GPIO19, VSPIQ,
UOCTS, EMAC_TXDO

7 1023 /0
GPIO23, VSPID,
HS1_STROBE

8 1018 1e}
GPIO18, VSPICLK,
HS1_DATA7

9 105 /O
GPIO5, VSPICSO,
HS1_DATAG®,
EMAC_RX_CLK

10 1010 1/0
GPIO10, SD_DATA3,
SPIWP, HS1_DATA3,
U1TXD

H 109 /O

2.3. Development Board Guides 103

GPIO9, SD_DATA2,
SPIHD, HS1_DATAZ2,
UIRXD

Read the Docs Template Documentation, Release v3.2.5

104 Chapter 2. Get Started (CMake)

Read the Docs Template Documentation, Release v3.2.5

Header J3

No. Name Type Function

1 FLASH_CS (FCS) I/0

GPIO16, HS1_DATA4
(1), U2RXD,
EMAC_CLK_OUT

2 FLASH_SDO (FSDO0) I/0

GPIO17, HS1_DATAS5
(1), U2TXD,
EMAC_CLK_OUT_180

3 FLASH_SD2 (FSD2) /0

GPIO11, SD_CMD,
SPICS0, HS1_CMD (1),
UIRTS

4 SENSOR_VP (FSVP) I

GPIO36, ADC1_CHO,
ADC_PRE_AMP (2a),
RTC_GPIOO

5 SENSOR_VN (FSVN) I

GPIO39, ADC1_CH3,
ADC_PRE_AMP (2b),
RTC_GPIO3

6 1025 I/0

GPIO25, DAC_1,
ADC2_CHS,
RTC_GPIOG,
EMAC_RXDO0

7 1026 I/0

GPIO26, DAC_2,
ADC2_CHO,
RTC_GPIO7,
EMAC_RXDI

8 1032 /0

32K_XP (3a),
ADC1_CH4, TOUCHY,
RTC_GPIO9

9 1033 /0

32K_XN (3b),
ADC1_CHS, TOUCHS,
RTC_GPIOS

%DevelopmenLBoardﬁg&des 10
10 27 /O

GPIO27, ADC2_CH7,
TOUCH7, RTC_GPIO17

Read the Docs Template Documentation, Release v3.2.5

Notes to Pin Descriptions

1. This pin is connected to the flash pin of ESP32-PICO-D4.

2. When used as ADC_PRE_AMP, connect 270 pF capacitors between: (a) SENSOR_VP and 1037, (b) SEN-

SOR_VN and 1038.
3. 32.768 kHz crystal oscillator: (a) input, (b) output.
4. This pin is connected to the pin of the USB bridge chip on the board.

5. The operating voltage of ESP32-PICO-KIT’s embedded SPI flash is 3.3V. Therefore, the strapping pin MTDI

should hold bit ”’0” during the module power-on reset.

Board Dimensions

ESP32-PICO-KIT

A @ g "r ESPRESEIF
hiad " ' ESPRESSIF STSTEHS(E

(SHANGHAI)PTE LTR

© © [ESPI2-PICO-KIT V4 FCC |D:2ACT2-ESPIPICOKIT

.3mm

Fig. 13: ESP32-PICO-KIT V4 dimensions - back

Related Documents

e ESP32-PICO-KIT V4 schematic (PDF)
e ESP32-PICO-D4 Datasheet (PDF)
* ESP32 Hardware Reference

ESP32-PICO-KIT V3 Getting Started Guide (CMake)

This user guide shows how to get started with the ESP32-PICO-KIT V3 mini development board. For description of

other versions of the ESP32-PICO-KIT check ESP32 Hardware Reference.

106 Chapter 2. Get Started (CMake)

https://dl.espressif.com/dl/schematics/esp32-pico-kit-v4_schematic.pdf
http://espressif.com/sites/default/files/documentation/esp32-pico-d4_datasheet_en.pdf

Read the Docs Template Documentation, Release v3.2.5

L 52 mm J

Fig. 14: ESP32-PICO-KIT V4 dimensions - side

What You Need

* 1 x ESP32-PICO-KIT V3 mini development board
¢ 1 x USB A /Micro USB B cable
¢ 1 x PC loaded with Windows, Linux or Mac OS

Overview

ESP32-PICO-KIT V3 is a mini development board based on the ESP32-PICO-D4 SIP module produced by Espressif.
All the 10 signals and system power on ESP32-PICO-D4 are led out through two standard 20 pin x 0.1” pitch headers
on both sides for easy interfacing. The development board integrates a USB-UART Bridge circuit, allowing the
developers to connect the development board to a PC’s USB port for downloads and debugging.

Functional Description

The following list and figure below describe key components, interfaces and controls of ESP32-PICO-KIT V3 board.

ESP32-PICO-D4 Standard ESP32-PICO-D4 module soldered to the ESP32-PICO-KIT V3 board. The complete
system of the ESP32 chip has been integrated into the SIP module, requiring only external antenna with LC
matching network, decoupling capacitors and pull-up resistors for EN signals to function properly.

USB-UART Bridge A single chip USB-UART bridge provides up to 1 Mbps transfers rates.

I/0 All the pins on ESP32-PICO-D4 are broken out to the pin headers on the board. Users can program ESP32 to
enable multiple functions such as PWM, ADC, DAC, 12C, 128, SPI, etc.

Micro USB Port USB interface. It functions as the power supply for the board and the communication interface
between PC and ESP32-PICO-KIT V3.

EN Button Reset button; pressing this button resets the system.

BOOT Button Holding down the Boot button and pressing the EN button initiates the firmware download mode.
Then user can download firmware through the serial port.

2.3. Development Board Guides 107

https://espressif.com

Read the Docs Template Documentation, Release v3.2.5

" 3D Antenna | [ESP32-PICO-D4
|

SVP
1037
1038
SVN
1034

EN
1035
1025
1026

GND g

1032
1033
1027
1014
1012
1013
1015

102

104

100
/O

plig 8SN

P L GOLOELOEOIVOEOLOEGGEGLOEOOO

E

»
~
o
L
ﬁ ;
@ I
-
>
@
G
=1
>
.'3.
0
@
%
L7
/
Micro USB
Port

USB-UART
Bridge

ESP32-PICO-KIT V3

Fig. 15: ESP32-PICO-KIT V3 board layout

108

Chapter 2. Get Started (CMake)

Read the Docs Template Documentation, Release v3.2.5

Start Application Development

Before powering up the ESP32-PICO-KIT V3, please make sure that the board has been received in good condition
with no obvious signs of damage.

To start development of applications, proceed to section Get Started (CMake), that will walk you through the following
steps:

e Setup Toolchain in your PC to develop applications for ESP32 in C language

* Connect the module to the PC and verify if it is accessible

Build The Project for an example application
e Flash To A Device to run code on the ESP32

* Monitor instantly what the application is doing

Related Documents

» ESP32-PICO-KIT V3 schematic (PDF)
* ESP32-PICO-D4 Datasheet (PDF)
* ESP32 Hardware Reference

If you have different board, move to sections below.

2.4 Setup Toolchain

The quickest way to start development with ESP32 is by installing a prebuilt toolchain. Pick up your OS below and
follow provided instructions.

2.4.1 Standard Setup of Toolchain for Windows (CMake)

Note: This is documentation for the CMake-based build system which is currently in preview release. If you encounter
any gaps or bugs, please report them in the Issues section of the ESP-IDF repository.

The CMake-based build system will become the default build system in ESP-IDF V4.0. The existing GNU Make
based build system will be deprecated in ESP-IDF V5.0.

Note: The CMake-based build system is only supported on 64-bit versions of Windows.

Introduction
ESP-IDF requires some prerequisite tools to be installed so you can build firmware for the ESP32. The prerequisite
tools include Git, a cross-compiler and the CMake build tool. We’ll go over each one in this document.

For this Getting Started we’re going to use a command prompt, but after ESP-IDF is installed you can use Eclipse or
another graphical IDE with CMake support instead.

2.4. Setup Toolchain 109

https://dl.espressif.com/dl/schematics/esp32-pico-kit-v3_schematic.pdf
http://espressif.com/sites/default/files/documentation/esp32-pico-d4_datasheet_en.pdf
https://github.com/espressif/esp-idf/issues

Read the Docs Template Documentation, Release v3.2.5

Note: The GNU Make based build system requires the MSYS2 Unix compatibility environment on Windows. The
CMake-based build system does not require this environment.

ESP-IDF Tools Installer

The easiest way to install ESP-IDF’s prerequisites is to download the ESP-IDF Tools installer from this URL:
https://dl.espressif.com/dl/esp-idf-tools-setup-1.2.exe

The installer will automatically install the ESP32 Xtensa gcc toolchain, Ninja build tool, and a configuration tool
called mconf-idf. The installer can also download and run installers for CMake and Python 2.7 if these are not already
installed on the computer.

By default, the installer updates the Windows Path environment variable so all of these tools can be run from any-
where. If you disable this option, you will need to configure the environment where you are using ESP-IDF (terminal
or chosen IDE) with the correct paths.

Note that this installer is for the ESP-IDF Tools package, it doesn’t include ESP-IDF itself.

Installing Git

The ESP-IDF tools installer does not install Git. By default, the getting started guide assumes you will be using Git
on the command line. You can download and install a command line Git for Windows (along with the “Git Bash”
terminal) from Git For Windows.

If you prefer to use a different graphical Git client, then you can install one such as Github Desktop. You will need to
translate the Git commands in the Getting Started guide for use with your chosen Git client.

Using a Terminal
For the remaining Getting Started steps, we’re going to use a terminal command prompt. It doesn’t matter which
command prompt you use:

* You can use the built-in Windows Command Prompt, under the Start menu. All Windows command line in-
structions in this documentation are “batch” commands for use with the Windows Command Prompt.

* You can use the “Git Bash” terminal which is part of Git for Windows. This uses the same “bash” command
prompt syntax as is given for Mac OS or Linux. You can find it in the Start menu once installed.

e If you have MSYS?2 installed (maybe from a previous ESP-IDF version), then you can also use the MSYS
terminal.

Next Steps

To carry on with development environment setup, proceed to section Get ESP-IDF'.

Related Documents

For advanced users who want to customize the install process:

110 Chapter 2. Get Started (CMake)

https://msys2.github.io/
https://dl.espressif.com/dl/esp-idf-tools-setup-1.2.exe
https://ninja-build.org/
https://github.com/espressif/kconfig-frontends/releases/
https://cmake.org/download/
https://www.python.org/downloads/windows/
https://gitforwindows.org/
https://gitforwindows.org/
https://msys2.github.io/

Read the Docs Template Documentation, Release v3.2.5

Setup Windows Toolchain from Scratch (CMake)

Note: This is documentation for the CMake-based build system which is currently in preview release. If you encounter
any gaps or bugs, please report them in the Issues section of the ESP-IDF repository.

The CMake-based build system will become the default build system in ESP-IDF V4.0. The existing GNU Make
based build system will be deprecated in ESP-IDF V5.0.

This is a step-by-step alternative to running the ESP-IDF Tools Installer for the CMake-based build system. Installing
all of the tools by hand allows more control over the process, and also provides the information for advanced users to
customize the install.

To quickly setup the toolchain and other tools in standard way, using the ESP-IDF Tools installer, proceed to section
Standard Setup of Toolchain for Windows (CMake).

Note: The GNU Make based build system requires the MSYS2 Unix compatibility environment on Windows. The
CMake-based build system does not require this environment.

Tools
cmake

Download the latest stable release of CMake for Windows and run the installer.

When the installer asks for Install Options, choose either “Add CMake to the system PATH for all users” or “Add
CMake to the system PATH for the current user”.

Ninja build

Note: Ninja currently only provides binaries for 64-bit Windows. It is possible to use CMake and idf . py with other
build tools, such as mingw-make, on 32-bit windows. However this is currently undocumented.

Download the ninja latest stable Windows release from the (download page).

The Ninja for Windows download is a .zip file containing a single ninja.exe file which needs to be unzipped to a
directory which is then added to your Path (or you can choose a directory which is already on your Path).

Python 2.x

Download the latest Python 2.7 for Windows installer, and run it.

The “Customise” step of the Python installer gives a list of options. The last option is “Add python.exe to Path”.
Change this option to select “Will be installed”.

Once Python is installed, open a Windows Command Prompt from the Start menu and run the following command:

pip install —-user pyserial

2.4. Setup Toolchain 111

https://github.com/espressif/esp-idf/issues
https://msys2.github.io/
https://ninja-build.org/
https://www.python.org/downloads/windows/

Read the Docs Template Documentation, Release v3.2.5

MConf for IDF

Download the configuration tool mconf-idf from the kconfig-frontends releases page. This is the mcon £ configuration
tool with some minor customizations for ESP-IDF.

This tool will also need to be unzipped to a directory which is then added to your Path.

Toolchain Setup

Download the precompiled Windows toolchain:
https://dl.espressif.com/dl/xtensa-esp32-elf-win32-1.22.0-80-g6c4433a-5.2.0.zip

Unzip the zip file to C:\Program Files (or some other location). The zip file contains a single directory
xtensa-esp32-elf.

Next, the bin subdirectory of this directory must be added to your Path. For example, the directory to add may be
C:\Program Files\xtensa-esp32-elf\bin.

Note: If you already have the MSYS2 environment (for use with the “GNU Make” build system) installed, you
can skip the separate download and add the directory C: \msys32\opt\xtensa-esp32-elf\bin to the Path
instead, as the toolchain is included in the MSYS2 environment.

Adding Directory to Path

To add any new directory to your Windows Path environment variable:

Open the System control panel and navigate to the Environment Variables dialog. (On Windows 10, this is found
under Advanced System Settings).

Double-click the Path variable (either User or System Path, depending if you want other users to have this directory
on their path.) Go to the end of the value, and append ; <new value>.
Next Steps

To carry on with development environment setup, proceed to section Get ESP-IDF'.

2.4.2 Standard Setup of Toolchain for Linux (CMake)

Note: This is documentation for the CMake-based build system which is currently in preview release. If you encounter
any gaps or bugs, please report them in the Issues section of the ESP-IDF repository.

The CMake-based build system will become the default build system in ESP-IDF V4.0. The existing GNU Make
based build system will be deprecated in ESP-IDF V5.0.

Install Prerequisites

To compile with ESP-IDF you need to get the following packages:
e CentOS 7:

112 Chapter 2. Get Started (CMake)

https://dl.espressif.com/dl/xtensa-esp32-elf-win32-1.22.0-80-g6c4433a-5.2.0.zip
https://github.com/espressif/esp-idf/issues

Read the Docs Template Documentation, Release v3.2.5

sudo yum install git wget ncurses-devel flex bison gperf python pyserial cmake
—ninja-build ccache

Ubuntu and Debian:

sudo apt-get install git wget libncurses-dev flex bison gperf python python-pip,
—python-setuptools python-serial python-cryptography python-future python-
—pyparsing cmake ninja-build ccache libffi-dev libssl-dev

Arch:

sudo pacman —-S —--needed gcc git make ncurses flex bison gperf python2-pyserial,
—python2-cryptography python2-future python2-pyparsing cmake ninja ccache

Note: CMake version 3.5 or newer is required for use with ESP-IDF. Older Linux distributions may require updating,
enabling of a “backports” repository, or installing of a “cmake3” package rather than “cmake”.

Toolchain Setup

ESP32 toolchain for Linux is available for download from Espressif website:
e for 64-bit Linux:
https://dl.espressif.com/dl/xtensa-esp32-elf-linux64-1.22.0-80-g6c4433a-5.2.0.tar.gz
e for 32-bit Linux:
https://dl.espressif.com/dl/xtensa-esp32-elf-linux32-1.22.0-80-g6c4433a-5.2.0.tar.gz
1. Download this file, then extract it in ~ /e sp directory:

¢ for 64-bit Linux:

mkdir -p ~/esp
cd ~/esp
tar —xzf ~/Downloads/xtensa-esp32-elf-1linux64-1.22.0-80-g6c4433a-5.2.0.tar.gz

for 32-bit Linux:

mkdir -p ~/esp
cd ~/esp
tar -xzf ~/Downloads/xtensa-esp32-elf-1inux32-1.22.0-80-g6c4433a-5.2.0.tar.gz

2. The toolchain will be extracted into ~/esp/xtensa-esp32-elf/ directory.

To use it, you will need to update your PATH environment variable in ~/.profile file. To make
xtensa-esp32-elf available for all terminal sessions, add the following line to your ~/ .profile file:

’export PATH="$HOME/esp/xtensa-esp32-elf/bin:S$SPATH"

Alternatively, you may create an alias for the above command. This way you can get the toolchain only when
you need it. To do this, add different line to your ~/ .profile file:

’alias get_esp32="export PATH="SHOME/esp/xtensa-esp32-elf/bin:$PATH"'

2.4. Setup Toolchain 113

https://dl.espressif.com/dl/xtensa-esp32-elf-linux64-1.22.0-80-g6c4433a-5.2.0.tar.gz
https://dl.espressif.com/dl/xtensa-esp32-elf-linux32-1.22.0-80-g6c4433a-5.2.0.tar.gz

Read the Docs Template Documentation, Release v3.2.5

Then when you need the toolchain you can type get_esp32 on the command line and the toolchain will be
added to your PATH.

Note: If you have /bin/bash set as login shell, and both .bash_profile and .profile exist, then
update .bash_profile instead.

3. Log off and log in back to make the .profile changes effective. Run the following command to verify if
PATH is correctly set:

printenv PATH

You are looking for similar result containing toolchain’s path at the end of displayed string:

$ printenv PATH

/home/user-name/bin: /home/user-name/.local/bin:/usr/local/sbin:/usr/local/bin:/
—usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin:/home/user—
—name/esp/xtensa-esp32-elf/bin

Instead of /home /user-name there should be a home path specific to your installation.

Permission issues /dev/ttyUSB0

With some Linux distributions you may get the Failed to open port /dev/ttyUSBO error message when
flashing the ESP32. This can be solved by adding the current user to the dialout group.

Arch Linux Users

To run the precompiled gdb (xtensa-esp32-elf-gdb) in Arch Linux requires ncurses 5, but Arch uses ncurses 6.
Backwards compatibility libraries are available in AUR for native and lib32 configurations:

* https://aur.archlinux.org/packages/ncurses5-compat-libs/

e https://aur.archlinux.org/packages/lib32-ncurses5-compat-libs/

Before installing these packages you might need to add the author’s public key to your keyring as described in the
“Comments” section at the links above.

Alternatively, use crosstool-NG to compile a gdb that links against ncurses 6.

Next Steps

To carry on with development environment setup, proceed to section Get ESP-IDF'.

Related Documents

Setup Linux Toolchain from Scratch (CMake)

Note: This is documentation for the CMake-based build system which is currently in preview release. If you encounter
any gaps or bugs, please report them in the Issues section of the ESP-IDF repository.

114 Chapter 2. Get Started (CMake)

https://wiki.archlinux.org/index.php/Arch_User_Repository
https://aur.archlinux.org/packages/ncurses5-compat-libs/
https://aur.archlinux.org/packages/lib32-ncurses5-compat-libs/
https://github.com/espressif/esp-idf/issues

Read the Docs Template Documentation, Release v3.2.5

The CMake-based build system will become the default build system in ESP-IDF V4.0. The existing GNU Make
based build system will be deprecated in ESP-IDF V5.0.

The following instructions are alternative to downloading binary toolchain from Espressif website. To quickly setup
the binary toolchain, instead of compiling it yourself, backup and proceed to section Standard Setup of Toolchain for
Linux (CMake).

Install Prerequisites

To compile with ESP-IDF you need to get the following packages:
e CentOS 7:

sudo yum install git wget ncurses-devel flex bison gperf python pyserial cmake
—ninja-build ccache

¢ Ubuntu and Debian:

sudo apt-get install git wget libncurses-dev flex bison gperf python python-pip,,
—python-setuptools python-serial python-cryptography python-future python-
—pyparsing cmake ninja-build ccache libffi-dev libssl-dev

Arch:

sudo pacman -S —--needed gcc git make ncurses flex bison gperf python2-pyserial,
—python2-cryptography python2-future python2-pyparsing cmake ninja ccache

Note: CMake version 3.5 or newer is required for use with ESP-IDF. Older Linux distributions may require updating,
enabling of a “backports” repository, or installing of a “cmake3” package rather than “cmake”.

Compile the Toolchain from Source

¢ Install dependencies:

CentOS 7:

sudo yum install gawk gperf grep gettext ncurses-devel python python-devel
—automake bison flex texinfo helpZman libtool make

— Ubuntu pre-16.04:

sudo apt-get install gawk gperf grep gettext libncurses-dev python python-dev,_,
—automake bison flex texinfo helpZman libtool make

— Ubuntu 16.04 or newer:

sudo apt-get install gawk gperf grep gettext python python-dev automake bison,
—flex texinfo helpZman libtool libtool-bin make

— Debian 9:

sudo apt-get install gawk gperf grep gettext libncurses-dev python python-dev
—automake bison flex texinfo help2man libtool libtool-bin make

2.4. Setup Toolchain 115

Read the Docs Template Documentation, Release v3.2.5

— Arch:

TODO

Create the working directory and go into it:

mkdir -p ~/esp
cd ~/esp

Download crosstool-NG and build it:

git clone -b xtensa-1.22.x https://github.com/espressif/crosstool-NG.git
cd crosstool-NG
./bootstrap && ./configure —-enable-local && make install

Build the toolchain:

./ct-ng xtensa-esp32-elf
./ct-ng build
chmod -R u+w builds/xtensa-esp32-elf

Toolchain will be built in ~/esp/crosstool-NG/builds/xtensa-esp32-elf. Follow instructions for
standard setup to add the toolchain to your PATH.

Next Steps

To carry on with development environment setup, proceed to section Get ESP-IDF'.

2.4.3 Standard Setup of Toolchain for Mac OS (CMake)

Note: This is documentation for the CMake-based build system which is currently in preview release. If you encounter
any gaps or bugs, please report them in the Issues section of the ESP-IDF repository.

The CMake-based build system will become the default build system in ESP-IDF V4.0. The existing GNU Make
based build system will be deprecated in ESP-IDF V5.0.

Install Prerequisites

ESP-IDF will use the version of Python installed by default on Mac OS.

* install pip:

’sudo easy_install pip

* install pyserial:

’pip install --user pyserial

* install CMake & Ninja build:

— If you have HomeBrew, you can run:

116 Chapter 2. Get Started (CMake)

https://github.com/espressif/esp-idf/issues
https://brew.sh/

Read the Docs Template Documentation, Release v3.2.5

’brew install cmake ninja

— If you have MacPorts, you can run:

sudo port install cmake ninja

— Otherwise, consult the CMake and Ninja home pages for Mac OS installation downloads.

* It is strongly recommended to also install ccache for faster builds. If you have HomeBrew, this can be done via
brew install ccacheor sudo port install ccache on MacPorts.

Note: If an error like this is shown during any step:

xcrun: error: invalid active developer path (/Library/Developer/CommandLineTools),
—missing xcrun at: /Library/Developer/CommandLineTools/usr/bin/xcrun

Then you will need to install the XCode command line tools to continue. You can,,
—~install these by running "~ xcode-select —--install’ .

Toolchain Setup

ESP32 toolchain for macOS is available for download from Espressif website:
https://dl.espressif.com/dl/xtensa-esp32-elf-osx-1.22.0-80-gbc4433a-5.2.0.tar.gz

Download this file, then extract it in ~/esp directory:

mkdir -p ~/esp
cd ~/esp
tar -xzf ~/Downloads/xtensa-esp32-elf-osx-1.22.0-80-g6c4433a-5.2.0.tar.gz

The toolchain will be extracted into ~/esp/xtensa-esp32-elf/ directory.

To use it, you will need to update your PATH environment variable in ~/.profile file. To make
xtensa-esp32-elf available for all terminal sessions, add the following line to your ~/ .profile file:

’export PATH=$HOME/esp/xtensa-esp32-elf/bin:S$PATH

Alternatively, you may create an alias for the above command. This way you can get the toolchain only when you
need it. To do this, add different line to your ~/ .profile file:

’alias get_esp32="export PATH=$HOME/esp/xtensa-esp32-elf/bin:S$SPATH"

Then when you need the toolchain you can type get_esp32 on the command line and the toolchain will be added to
your PATH.

Log off and log in back to make the . profile changes effective. Run the following command to verify if PATH is
correctly set:

printenv PATH

Next Steps

To carry on with development environment setup, proceed to section Get ESP-IDF'.

2.4. Setup Toolchain 117

https://www.macports.org/install.php
https://cmake.org/
https://ninja-build.org/
https://ccache.samba.org/
https://brew.sh/
https://www.macports.org/install.php
https://dl.espressif.com/dl/xtensa-esp32-elf-osx-1.22.0-80-g6c4433a-5.2.0.tar.gz

Read the Docs Template Documentation, Release v3.2.5

Related Documents

Setup Toolchain for Mac OS from Scratch (CMake)

Note: This is documentation for the CMake-based build system which is currently in preview release. If you encounter
any gaps or bugs, please report them in the Issues section of the ESP-IDF repository.

The CMake-based build system will become the default build system in ESP-IDF V4.0. The existing GNU Make
based build system will be deprecated in ESP-IDF V5.0.

Package Manager

To set up the toolchain from scratch, rather than downloading a pre-compiled toolchain, you will need to install either
the MacPorts or homebrew package manager.

MacPorts needs a full XCode installation, while homebrew only needs XCode command line tools.

See Customized Setup of Toolchain section for some of the reasons why installing the toolchain from scratch may be
necessary.

Install Prerequisites

* install pip:

’sudo easy_install pip

* install pyserial:

’pip install —--user pyserial

* install CMake & Ninja build:

— If you have HomeBrew, you can run:

’brew install cmake ninja

— If you have MacPorts, you can run:

sudo port install cmake ninja

Compile the Toolchain from Source

* Install dependencies:

— with MacPorts:

sudo port install gsed gawk binutils gperf grep gettext wget libtool autoconf
—automake make

— with homebrew:

118 Chapter 2. Get Started (CMake)

https://github.com/espressif/esp-idf/issues
https://www.macports.org/install.php
https://brew.sh/

Read the Docs Template Documentation, Release v3.2.5

brew install gnu-sed gawk binutils gperftools gettext wget helpZman libtool
—autoconf automake make

Create a case-sensitive filesystem image:

hdiutil create ~/esp/crosstool.dmg -volname "ctng" -size 10g —-fs "Case-sensitive HES+"

Mount it:

hdiutil mount ~/esp/crosstool.dmg

Create a symlink to your work directory:

mkdir -p ~/esp
In -s /Volumes/ctng ~/esp/ctng-volume

Go into the newly created directory:

cd ~/esp/ctng-volume

Download crosstool—-NG and build it:

git clone -b xtensa-1.22.x https://github.com/espressif/crosstool-NG.git
cd crosstool-NG
./bootstrap && ./configure --enable-local && make install

Build the toolchain:

./ct-ng xtensa-esp32-elf
./ct-ng build
chmod -R u+w builds/xtensa-esp32-elf

Toolchain will be built in ~/esp/ctng-volume/crosstool-NG/builds/xtensa-esp32-elf. Follow
instructions for standard setup to add the toolchain to your PATH.

Next Steps

To carry on with development environment setup, proceed to section Get ESP-IDF.

Windows Linux Mac OS

2.4. Setup Toolchain 119

../get-started-cmake/windows-setup.html
../get-started-cmake/linux-setup.html
../get-started-cmake/macos-setup.html
../get-started-cmake/windows-setup.html
../get-started-cmake/linux-setup.html
../get-started-cmake/macos-setup.html

Read the Docs Template Documentation, Release v3.2.5

Note: We are an using esp subdirectory in your user’s home directory (~/esp on Linux and MacOS,
$userprofile%\esp on Windows) to install everything needed for ESP-IDF. You can use any different direc-
tory, but will need to adjust the respective commands.

Depending on your experience and preferences, instead of using a prebuilt toolchain, you may want to customize your
environment. To set up the system your own way go to section Customized Setup of Toolchain (CMake).

Once you are done with setting up the toolchain then go to section Get ESP-IDF.

2.5 Get ESP-IDF

Besides the toolchain (that contains programs to compile and build the application), you also need ESP32 specific API
/ libraries. They are provided by Espressif in ESP-IDF repository. To get it, open terminal, navigate to the directory
you want to put ESP-IDF, and clone it using git clone command.

2.5.1 Linux and MacOS

mkdir -p ~/esp
cd ~/esp
git clone —--recursive https://github.com/espressif/esp-idf.git

ESP-IDF will be downloaded into ~/esp/esp—idf.

2.5.2 Windows Command Prompt

mkdir % profile%\esp
cd Suser file%\esp
git clone —--recursive https://github.com/espressif/esp-idf.git

Note: Do not miss the ——recursive option. If you have already cloned ESP-IDF without this option, run another
command to get all the submodules:

cd esp-idf
git submodule update —--init

2.6 Setup Environment Variables

ESP-IDF requires two environment variables to be set for normal operation:

e IDF_PATH should be set to the path to the ESP-IDF root directory.

* PATH should include the path to the t ools directory inside the same IDF_PATH directory.
These two variables should be set up on your PC, otherwise projects will not build.

Setting may be done manually, each time PC is restarted. Another option is to set them permanently in user profile.
To do this, follow instructions specific to Windows , Linux and MacOS in section Add IDF_PATH & idf.py PATH to
User Profile (CMake).

120 Chapter 2. Get Started (CMake)

https://github.com/espressif/esp-idf

Read the Docs Template Documentation, Release v3.2.5

2.7 Start a Project

Now you are ready to prepare your application for ESP32. To start off quickly, we will use get-started/hello_world
project from examples directory in IDF.

Copy get-started/hello_world to ~/esp directory:

2.7.1 Linux and MacOS

cd ~/esp
cp -r SIDF_PATH/examples/get-started/hello_world .

2.7.2 Windows Command Prompt

cd Suserprofile%\esp
xcopy /e /i %IDF_PATH%\examples\get-started\hello_world hello_world

You can also find a range of example projects under the examples directory in ESP-IDF. These example project
directories can be copied in the same way as presented above, to begin your own projects.

It is also possible to build examples in-place, without copying them first.

Important: The esp-idf build system does not support spaces in the path to either esp-idf or to projects.

2.8 Connect

You are almost there. To be able to proceed further, connect ESP32 board to PC, check under what serial port the
board is visible and verify if serial communication works. If you are not sure how to do it, check instructions in
section Establish Serial Connection with ESP32 (CMake). Note the port number, as it will be required in the next step.

2.9 Configure

Naviagate to the directory of the hello_world application copy, and run the menuconfig project configuration
utility:

2.9.1 Linux and MacOS

cd ~/esp/hello_world
idf.py menuconfig

2.9.2 Windows Command Prompt

cd Suserprofile%\esp\hello_world
idf.py menuconfig

2.7. Start a Project 121

https://github.com/espressif/esp-idf/tree/v3.2.5/examples/get-started/hello_world
https://github.com/espressif/esp-idf/tree/v3.2.5/examples
https://github.com/espressif/esp-idf/tree/v3.2.5/examples/get-started/hello_world
https://github.com/espressif/esp-idf/tree/v3.2.5/examples

Read the Docs Template Documentation, Release v3.2.5

Note: If you get an error about idf . py not being found, check the t ools directory is part of your Path as described
above in Setup Environment Variables. If there is no 1df.py in the tools directory, check you have the correct
branch for the CMake preview as shown under Get ESP-IDF'.

Note: Windows users, the Python 2.7 installer will try to configure Windows to associate files with a . py extension
with Python 2. If a separate installed program (such as Visual Studio Python Tools) has created an association with a
different version of Python, then running idf . py may not work (it opens the file in Visual Studio instead). You can
either run C:\Python27\python idf.py each time instead, or change the association that Windows uses for
.py files.

Note: Linux users, if your default version of Python is 3.x then you may need to run python2 idf.py instead.

If previous steps have been done correctly, the following menu will be displayed:

Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty submenus ----). Highlighted
letters are hotkeys. Pressing <Y> includes, <N> excludes, <M> modularizes features. Press <Esc><Esc>
to exit, <?> for Help, </> for Search. Legend: [*] built-in [] excluded <M> module < > module
capable

DK tool configuration ---=
ootloader config --->
ecurity features ---=>
I
artition Table ---=>

ptimization level (Debug) ---=
omponent config ---=

< Exit > < Help > < Save > < Load >

Fig. 16: Project configuration - Home window

Here are couple of tips on navigation and use of menuconfig:

* Use up & down arrow keys to navigate the menu.

» Use Enter key to go into a submenu, Escape key to go up a level or exit.

* Type ? to see a help screen. Enter key exits the help screen.

» Use Space key, or Y and N keys to enable (Yes) and disable (No) configuration items with checkboxes “[x]”
* Pressing ? while highlighting a configuration item displays help about that item.

* Type / to search the configuration items.

Attention: When using ESP32-DevKitC board with ESP32-SOLO-1 module, enable single core mode (CON-
FIG_FREERTOS_UNICORE) in menuconfig before flashing example applications.

122 Chapter 2. Get Started (CMake)

Read the Docs Template Documentation, Release v3.2.5

2.10 Build The Project

Now you can build the project. Run:

idf.py build

This command will compile the application and all the ESP-IDF components, generate bootloader, partition table, and
application binaries.

$ idf.py build

Running cmake in directory /path/to/hello_world/build

Executing "cmake -G Ninja —--warn-uninitialized /path/to/hello_world"...
Warn about uninitialized values.

-— Found Git: /usr/bin/git (found version "2.17.0")

—— Building empty aws_iot component due to configuration

—— Component names:

—— Component paths:

(more lines of build system output)

[527/527] Generating hello-world.bin
esptool.py v2.3.1

Project build complete. To flash, run this command:
./../../components/esptool_py/esptool/esptool.py -p (PORT) -b 921600 write_flash --
—flash_mode dio --flash_size detect --flash_freq 40m 0x10000 build/hello-world.bin
—build 0x1000 build/bootloader/bootloader.bin 0x8000 build/partition_table/partition-
—~table.bin

or run 'idf.py -p PORT flash'

If there are no errors, the build will finish by generating the firmware binary .bin file.

2.11 Flash To A Device

Now you can flash the application to the ESP32 board. Run:

idf.py -p PORT flash

Replace PORT with the name of your ESP32 board’s serial port. On Windows, serial ports have names like COM1.
On MacOS, they start with /dev/cu.. On Linux, they start with /dev/tty. See Establish Serial Connection with
ESP32 (CMake) for full details.

This step will flash the binaries that you just built to your ESP32 board.

Note: Running idf.py buildbefore idf.py flash isnotactually necessary, the flash step will automatically
build the project if required before flashing.

Running esptool.py in directory [...]/esp/hello_world

Executing "python [...]/esp-idf/components/esptool_py/esptool/esptool.py —-b 460800,
—write_flash @flash_project_args"...

esptool.py -b 460800 write_flash --flash _mode dio --flash_size detect —--flash_freq,,
—40m 0x1000 bootloader/bootloader.bin 0x8000 partition_table/partition-table.bin
—0x10000 hello-world.bin

(continues on next page)

2.10. Build The Project 123

Read the Docs Template Documentation, Release v3.2.5

(continued from previous page)

esptool.py v2.3.1

Connecting....

Detecting chip type... ESP32

Chip is ESP32DOWDQ6 (revision 1)

Features: WiFi, BT, Dual Core

Uploading stub...

Running stub...

Stub running...

Changing baud rate to 460800

Changed.

Configuring flash size...

Auto-detected Flash size: 4MB

Flash params set to 0x0220

Compressed 22992 bytes to 13019...

Wrote 22992 bytes (13019 compressed) at 0x00001000 in 0.3 seconds (effective 558.9
—kbit/s) ...

Hash of data verified.

Compressed 3072 bytes to 82...

Wrote 3072 bytes (82 compressed) at 0x00008000 in 0.0 seconds (effective 5789.3 kbit/
<~>S) oo

Hash of data verified.

Compressed 136672 bytes to 67544...

Wrote 136672 bytes (67544 compressed) at 0x00010000 in 1.9 seconds (effective 567.5
<—>kblt/S) “ e

Hash of data verified.

Leaving...
Hard resetting via RTS pin...

If there are no issues, at the end of flash process, the module will be reset and “hello_world” application will be
running there.

2.12 Monitor

To see if “hello_world” application is indeed running, type idf .py —-p PORT monitor. This command is launch-
ing IDF Monitor application:

$ idf.py -p /dev/ttyUSBO monitor

Running idf_monitor in directory [...]/esp/hello_world/build

Executing "python [...]/esp-idf/tools/idf_monitor.py -b 115200 [...]/esp/hello_world/
—build/hello-world.elf"...

—-—— 1df_monitor on /dev/ttyUSBO 115200 —---

—-—— Quit: Ctrl+] | Menu: Ctrl+T | Help: Ctrl+T followed by Ctrl+H ——-

ets Jun 8 2016 00:22:57

rst:0x1 (POWERON_RESET),boot:0x13 (SPI_FAST_FLASH_BOOT)
ets Jun 8 2016 00:22:57

Several lines below, after start up and diagnostic log, you should see “Hello world!” printed out by the application.

Hello world!
Restarting in 10 seconds...

(continues on next page)

124 Chapter 2. Get Started (CMake)

Read the Docs Template Documentation, Release v3.2.5

(continued from previous page)

I (211) cpu_start: Starting scheduler on APP CPU.
Restarting in 9 seconds...
Restarting in 8 seconds...
Restarting in 7 seconds...

To exit the monitor use shortcut Ctr1+].

Note: If instead of the messages above, you see a random garbage similar to:

e) (XnQy.! (PW+)Hn%a/9!t5P~keea5jA
~zY¥YY (1,1 e) (Xn@y.!Drz¥Y (jpi|+z5¥mvp

or monitor fails shortly after upload, your board is likely using 26MHz crystal. Most development board designs
use 40MHz and the ESP-IDF uses this default value. Exit the monitor, go back to the menuconfig, change CON-
FIG_ESP32_XTAL_FREQ_SEL to 26MHz, then build and flash the application again. This is found under 1df.py
menuconfig under Component config —> ESP32-specific —> Main XTAL frequency.

Note: You can combine building, flashing and monitoring into one step as follows:

idf.py -p PORT flash monitor

Check the section /DF Monitor for handy shortcuts and more details on using the monitor.
Check the section idf.py for a full reference of idf . py commands and options.
That’s all what you need to get started with ESP32!

Now you are ready to try some other examples, or go right to developing your own applications.

2.13 Updating ESP-IDF

After some time of using ESP-IDF, you may want to update it to take advantage of new features or bug fixes. The
simplest way to do so is by deleting existing esp—idf folder and cloning it again, exactly as when doing initial
installation described in sections Get ESP-IDF.

Another solution is to update only what has changed. This method is useful if you have a slow connection to GitHub.
To do the update run the following commands:

2.13.1 Linux and MacOS

cd ~/esp/esp-idf
git pull
git submodule update —--init --recursive

2.13.2 Windows Command Prompt

2.13. Updating ESP-IDF 125

https://github.com/espressif/esp-idf/tree/v3.2.5/examples

Read the Docs Template Documentation, Release v3.2.5

cd Suserprofile%\espl\esp-idf
git pull
git submodule update —--init —--recursive

The git pull command is fetching and merging changes from ESP-IDF repository on GitHub. Then git
submodule update --init —--recursive is updating existing submodules or getting a fresh copy of new
ones. On GitHub the submodules are represented as links to other repositories and require this additional command to
get them onto your PC.

It is also possible to check out a specific release of ESP-IDF, e.g. v2.1.

2.13.3 Linux and MacOS

cd ~/esp

git clone https://github.com/espressif/esp-idf.git esp-idf-v2.1
cd esp-idf-v2.1/

git checkout v2.1

git submodule update —--init --recursive

2.13.4 Windows Command Prompt

cd %userprofile%\esp

git clone https://github.com/espressif/esp-idf.git esp-idf-v2.1
cd esp-idf-v2.1/

git checkout v2.1

git submodule update --init --recursive

After that remember to Add IDF_PATH & idf.py PATH to User Profile (CMake), so the toolchain scripts know where
to find the ESP-IDF in it’s release specific location.

Note: Different versions of ESP-IDF may have different setup or prerequisite requirements, or require different
toolchain versions. If you experience any problems, carefully check the Getting Started documentation for the version
you are switching to.

2.14 Related Documents

2.14.1 Add IDF_PATH & idf.py PATH to User Profile (CMake)

Note: This is documentation for the CMake-based build system which is currently in preview release. If you encounter
any gaps or bugs, please report them in the Issues section of the ESP-IDF repository.

The CMake-based build system will become the default build system in ESP-IDF V4.0. The existing GNU Make
based build system will be deprecated in ESP-IDF V5.0.

To use the CMake-based build system and the idf.py tool, two modifications need to be made to system environment
variables:

e IDF_PATH needs to be set to the path of the directory containing ESP-IDF.

126 Chapter 2. Get Started (CMake)

https://github.com/espressif/esp-idf/issues

Read the Docs Template Documentation, Release v3.2.5

» System PATH variable to include the directory containing the 1df . py tool (part of ESP-IDF).

To preserve setting of these variables between system restarts, add them to the user profile by following the instructions
below.

Note: If using an IDE, you can optionally set these environment variables in your IDE’s project environment rather
than from the command line as described below.

Note: If you don’t ever use the command line idf . py tool, but run cmake directly or via an IDE, then it is not
necessary to set the PATH variable - only IDF_PATH. However it can be useful to set both.

Note: If you only ever use the command line idf . py tool, and never use cmake directly or via an IDE, then it is not
necessary to set the IDF_PATH variable - 1df . py will detect the directory it is contained within and set IDF_PATH
appropriately if it is missing.

Windows

To edit Environment Variables on Windows 10, search for “Edit Environment Variables” under the Start menu.

On earlier Windows versions, open the System Control Panel then choose “Advanced” and look for the Environment
Variables button.

You can set these environment variables for all users, or only for the current user, depending on whether other users of
your computer will be using ESP-IDF.

* Click New. . . to add a new system variable named IDF_PATH. Set the path to directory containing ESP-IDF,
for example C: \Users\user—name\esp\esp-idf.

* Locate the Path environment variable and double-click to edit it. Append the following to the end: ;
$IDF_PATH%\tools. This will allow you to run i1df . py and other tools from Windows Command Prompt.

If you got here from section Setup Environment Variables, while installing s/w for ESP32 development, then go back
to section Start a Project.

Linux and MacOS

Set up IDF_PATH and add idf . py to the PATH by adding the following two lines to your ~/ .profile file:

export IDF_PATH=~/esp/esp-idf
export PATH="SIDF_PATH/tools:SPATH"

Note: ~/.profile means a file named .profile in your user’s home directory (which is abbreviated ~ in the
shell).

Log off and log in back to make this change effective.

Note: Not all shells use .profile. If you have /bin/bash and .bash_profile exists then update this file
instead. For zsh, update . zprofile. Other shells may use other profile files (consult the shell’s documentation).

2.14. Related Documents 127

Read the Docs Template Documentation, Release v3.2.5

Run the following command to check if IDF_PATH is set:

’printenv IDF_PATH

The path previously entered in ~/ . profile file (or set manually) should be printed out.

To verify idf.py is now on the PATH, you can run the following:

’which idf.py

A path like ${ IDF_PATH} /tools/idf.py should be printed.

If you do not like to have IDF_PATH or PATH modifications set, you can enter it manually in terminal window on
each restart or logout:

export IDF_PATH=~/esp/esp-idf
export PATH="SIDF_PATH/tools:SPATH"

If you got here from section Setup Environment Variables, while installing s/w for ESP32 development, then go back
to section Start a Project.

2.14.2 Establish Serial Connection with ESP32 (CMake)

This section provides guidance how to establish serial connection between ESP32 and PC.

Connect ESP32 to PC

Connect the ESP32 board to the PC using the USB cable. If device driver does not install automatically, identify USB
to serial converter chip on your ESP32 board (or external converter dongle), search for drivers in internet and install
them.

Below are the links to drivers for ESP32 boards produced by Espressif:
» ESP32-PICO-KIT and ESP32-DevKitC - CP210x USB to UART Bridge VCP Drivers
¢ ESP32-WROVER-KIT and ESP32 Demo Board - FTDI Virtual COM Port Drivers

Above drivers are primarily for reference. They should already be bundled with the operating system and installed
automatically once one of listed boards is connected to the PC.

Check port on Windows
Check the list of identified COM ports in the Windows Device Manager. Disconnect ESP32 and connect it back, to
verify which port disappears from the list and then shows back again.

Figures below show serial port for ESP32 DevKitC and ESP32 WROVER KIT

Check port on Linux and MacOS

To check the device name for the serial port of your ESP32 board (or external converter dongle), run this command
two times, first with the board / dongle unplugged, then with plugged in. The port which appears the second time is
the one you need:

Linux

128 Chapter 2. Get Started (CMake)

https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
http://www.ftdichip.com/Drivers/VCP.htm

Read the Docs Template Documentation, Release v3.2.5

o

=4 Device Manager EI@

File Action View Help

&= = HE "

4 = tdk-kmb-op780
- .M Computer

s = Disk drives

- B Display adapters

» 1—_-.|L? DVDYCD-ROM drives

Eﬁ Human Interface Devices
= IDE ATASATAPT controllers
s - Keyboards

o

s --ﬂ Mice and other pointing devices
> ‘_g_. Manitors

b -F Network adapters

473 Ports (COM & LPT)

> n Processors

b -% Sound, video and game controllers
> .M System devices

p - E Universal Serial Bus controllers

Fig. 17: USB to UART bridge of ESP32-DevKitC in Windows Device Manager

2.14. Related Documents 129

Read the Docs Template Documentation, Release v3.2.5

P

=y Device Manager
File Action View Help

= BIEHE

el

0
@
)

a = tdk-kmb-op780

M Computer

s = Disk drives

- B Display adapters

» ey DVD/CD-ROM drives

s l'..r'lﬁ} Hurman Interface Devices
g IDE ATASATAPI controllers
= Keyboards
--ﬂ Mice and cther pointing devices
- Monitors
¥ Metwork adapters
473" Ports (COM & LPT)

B AR R R

- w

. 3 Processors

. -&% Sound, video and game controllers
. M| Systern devices

- i Universal Serial Bus controllers

Fig. 18: Two USB Serial Ports of ESP-WROVER-KIT in Windows Device Manager

130

Chapter 2. Get Started (CMake)

Read the Docs Template Documentation, Release v3.2.5

’ls /dev/tty*

MacOS

’ls /dev/cu. *

Adding user to dialout on Linux

The currently logged user should have read and write access the serial port over USB. On most Linux distributions,
this is done by adding the user to dialout group with the following command:

sudo usermod —-a -G dialout S$USER

Make sure you re-login to enable read and write permissions for the serial port.

Verify serial connection

Now verify that the serial connection is operational. You can do this using a serial terminal program. In this example
we will use PuTTY SSH Client that is available for both Windows and Linux. You can use other serial program and
set communication parameters like below.

Run terminal, set identified serial port, baud rate = 115200, data bits = 8, stop bits = 1, and parity = N. Below are
example screen shots of setting the port and such transmission parameters (in short described as 115200-8-1-N) on
Windows and Linux. Remember to select exactly the same serial port you have identified in steps above.

Then open serial port in terminal and check, if you see any log printed out by ESP32. The log contents will depend on
application loaded to ESP32. An example log by ESP32 is shown below.

ets Jun 8 2016 00:22:57

rst:0x5 (DEEPSLEEP_RESET),boot:0x13 (SPI_FAST_FLASH_BOOT)
ets Jun 8 2016 00:22:57

rst:0x7 (TGOWDT_SYS_RESET) ,boot:0x13 (SPI_FAST_FLASH_BOOT)
configsip: 0, SPIWP:0x00

clk_drv:0x00,g drv:0x00,d_drv:0x00,cs0_drv:0x00,hd_drv:0x00, wp_drv:0x00
mode:DIO, clock div:2

load:0x3fff0008, 1len:8

load:0x3ff£f0010,1len:3464

load:0x40078000, 1en:7828

10ad:0x40080000, 1en:252

entry 0x40080034

I (44) boot: ESP-IDF v2.0-rcl-401-gf9fba35 2nd stage bootloader
I (45) boot: compile time 18:48:10

If you see some legible log, it means serial connection is working and you are ready to proceed with installation and
finally upload of application to ESP32.

Note: For some serial port wiring configurations, the serial RTS & DTR pins need to be disabled in the terminal
program before the ESP32 will boot and produce serial output. This depends on the hardware itself, most development
boards (including all Espressif boards) do not have this issue. The issue is present if RTS & DTR are wired directly to
the EN & GPIOO pins. See the esptool documentation for more details.

2.14. Related Documents 131

http://www.putty.org/
https://github.com/espressif/esptool/wiki/ESP32-Boot-Mode-Selection#automatic-bootloader

Read the Docs Template Documentation, Release v3.2.5

ﬁ PuTTY Configuration
Categony:

=l Sgssinn

[=J- Terminal
- Keyboard
- Bell
- Features
[=- Window

- Appearance
- Behaviour
- Tranglation
- Selection
- Colours
[=- Connection
- Data
- Proxy
- Telnet
- Blogin
- 55H
- Senal

About

=]
Options cortroling local senal lines
Select a seral line
Serial line to connect to ComM12
Corfigure the sedal line
Speed (baud) 115200
Diata bits 3
Stop bits 1
Parity [Nnne v]
Flows cortrol [KDN;"XD EE ,]
Open] [Cancel

Fig. 19: Setting Serial Communication in PuTTY on Windows

132

Chapter 2. Get Started (CMake)

Read the Docs Template Documentation, Release v3.2.5

PuTTY Configuration

Category:
Logging

¥ Terminal
Keyboard
Bell
Features

¥ Window
Appearance
Behaviour
Translation
Selection
Colours
Fonks

¥ Connection
Data
Proxy
Telnet
Rlegin

* 55H

About

Options controlling local serial lines
Select a serial line

serial line to connect to Jdev/ttyUsBo
Configure the serial line

Speed (baud) 115200

Data bits 8

Stop bits 1

Parity Mone -
Flow control XON/XOFF =

Laopen) concel

Fig. 20: Setting Serial Communication in PuTTY on Linux

2.14. Related Documents

133

Read the Docs Template Documentation, Release v3.2.5

Note: Close serial terminal after verification that communication is working. In next step we are going to use another
application to upload ESP32. This application will not be able to access serial port while it is open in terminal.

If you got here from section Connect when installing s/w for ESP32 development, then go back to section Configure.

2.14.3 Build and Flash with Eclipse IDE (CMake)

Note: This is documentation for the CMake-based build system which is currently in preview release. If you encounter
any gaps or bugs, please report them in the Issues section of the ESP-IDF repository.

The CMake-based build system will become the default build system in ESP-IDF V4.0. The existing GNU Make
based build system will be deprecated in ESP-IDF V5.0.

Documentation for Eclipse setup with CMake-based build system and Eclipse CDT is coming soon.

2.14.4 IDF Monitor (CMake)

The idf_monitor tool is a Python program which runs when the 1df .py monitor target is invoked in IDF.

It is mainly a serial terminal program which relays serial data to and from the target device’s serial port, but it has
some other IDF-specific features.

Interacting With IDF Monitor

e Ctrl-] will exit the monitor.
e Ctrl-T Ctrl-H will display a help menu with all other keyboard shortcuts.

* Any other key apart from Ctr1-] and Ctr1-T is sent through the serial port.

Automatically Decoding Addresses

Any time esp-idf prints a hexadecimal code address of the form 0x4 , IDF Monitor will use addr2line to
look up the source code location and function name.

When an esp-idf app crashes and panics a register dump and backtrace such as this is produced:

Guru Meditation Error of type StoreProhibited occurred on core 0. Exception was,
—unhandled.
Register dump:

PC : 0x400£360d PS : 0x00060330 A0 : 0x800dbf56 Al : 0x3ffb7e00
A2 : O0x3ffbl36c A3 : 0x00000005 A4 : 0x00000000 A5 : 0x00000000
A6 : 0x00000000 A7 : 0x00000080 A8 : 0x00000000 A9 : 0x3ffb7ddo0
AlQ : 0x00000003 All : 0x00060£23 Al2 : 0x00060£20 Al1l3 : 0x3ffba6d0l
Al4 : 0x00000047 AlS5 : 0x0000000f SAR : 0x00000019 EXCCAUSE: 0x0000001d
EXCVADDR: 0x00000000 LBEG : 0x4000c46c LEND : 0x4000c477 LCOUNT : 0x00000000

Backtrace: 0x400£360d:0x3ffb7e00 0x400dbf56:0x3ffb7e20 0x400dbf5e:0x3ffb7e40
—0x400dbf82:0x3ffb7e60 0x400d071d:0x3ffb7e90

IDF Monitor will augment the dump:

134 Chapter 2. Get Started (CMake)

https://github.com/espressif/esp-idf/issues
https://sourceware.org/binutils/docs/binutils/addr2line.html

Read the Docs Template Documentation, Release v3.2.5

Guru Meditation Error of type StoreProhibited occurred on core 0. Exception was,
—unhandled.

Register dump:

PC : 0x400£360d PS : 0x00060330 A0 : 0x800dbf56 Al : 0x3ffb7e00
0x400£360d: do_something_to_crash at /home/gus/esp/32/idf/examples/get-started/hello_
—world/main/./hello_world_main.c:57

(inlined by) inner_dont_crash at /home/gus/esp/32/idf/examples/get-started/hello_
—world/main/./hello_world_main.c:52

A2 : 0x3ffbl36c A3 : 0x00000005 A4 : 0x00000000 A5 : 0x00000000
A6 : 0x00000000 A7 : 0x00000080 A8 : 0x00000000 A9 : 0x3ffb7dd0
AlQ : 0x00000003 All : 0x00060£23 Al2 : 0x00060£20 Al1l3 : 0x3ffba6dol
Al4 : 0x00000047 Al5 : 0x0000000f SAR : 0x00000019 EXCCAUSE: 0x0000001d
EXCVADDR: 0x00000000 LBEG : 0x4000c46c LEND : 0x4000c477 LCOUNT : 0x00000000

Backtrace: 0x400£360d:0x3ffb7e00 0x400dbf56:0x3ffb7e20 0x400dbf5e:0x3ffb7e40
—0x400dbf82:0x3ffb7e60 0x400d4071d:0x3ffb7e90

0x400£360d: do_something_to_crash at /home/gus/esp/32/idf/examples/get-started/hello_
—world/main/./hello_world_main.c:57

(inlined by) inner_dont_crash at /home/gus/esp/32/idf/examples/get-started/hello_
—world/main/./hello_world_main.c:52

0x400dbf56: still_dont_crash at /home/gus/esp/32/idf/examples/get-started/hello_world/
—main/./hello_world_main.c:47

0x400dbf5e: dont_crash at /home/gus/esp/32/idf/examples/get-started/hello_world/main/.
—/hello_world_main.c:42

0x400dbf82: app_main at /home/gus/esp/32/idf/examples/get-started/hello_world/main/./
—~hello_world_main.c:33

0x400d071d: main_task at /home/gus/esp/32/idf/components/esp32/./cpu_start.c:254

Behind the scenes, the command IDF Monitor runs to decode each address is:

xtensa-esp32-elf-addr2line -pfiaC -e build/PROJECT.elf ADDRESS

Launch GDB for GDBStub

By default, if an esp-idf app crashes then the panic handler prints registers and a stack dump as shown above, and then
resets.

Optionally, the panic handler can be configured to run a serial “gdb stub”” which can communicate with a gdb debugger
program and allow memory to be read, variables and stack frames examined, etc. This is not as versatile as JTAG
debugging, but no special hardware is required.

To enable the gdbstub, run 1df . py menuconfigandset CONFIG_ESP32_PANIC optionto Invoke GDBStub.

If this option is enabled and IDF Monitor sees the gdb stub has loaded, it will automatically pause serial monitoring
and run GDB with the correct arguments. After GDB exits, the board will be reset via the RTS serial line (if this is
connected.)

Behind the scenes, the command IDF Monitor runs is:

xtensa-esp32-elf-gdb -ex "set serial baud BAUD" -ex "target remote PORT" -ex_,
—interrupt build/PROJECT.elf

Quick Compile and Flash

The keyboard shortcut Ctr1-T Ctrl-F will pause idf_monitor, run the idf.py flash target, then resume
idf_monitor. Any changed source files will be recompiled before re-flashing.

2.14. Related Documents 135

https://sourceware.org/gdb/download/onlinedocs/

Read the Docs Template Documentation, Release v3.2.5

The keyboard shortcut Ct r1-T Ctr1-A will pause idf-monitor, run the idf .py app-flash target, then resume
idf_monitor. This is similar to idf.py flash, but only the main app is compiled and reflashed.

Quick Reset

The keyboard shortcut Ct r1-T Ctrl-R will reset the target board via the RTS line (if it is connected.)

Pause the Application

The keyboard shortcut Ct r1-T Ctrl-P will reset the target into bootloader, so that the board will run nothing. This
is useful when you want to wait for another device to startup. Then shortcut Ctr1-T Ctr1-R can be used to restart
the application.

Toggle Output Display

Sometimes you may want to stop new output printed to screen, to see the log before. The keyboard shortcut Ctr1-T
Ctrl-Y will toggle the display (discard all serial data when the display is off) so that you can stop to see the log, and
revert again quickly without quitting the monitor.

Simple Monitor

Earlier versions of ESP-IDF used the pySerial command line program miniterm as a serial console program.
This program can still be run, viamake simple_monitor.

IDF Monitor is based on miniterm and shares the same basic keyboard shortcuts.

Note: This target only works in the GNU Make based build system, not the CMake-based build system preview.

Known Issues with IDF Monitor

Issues Observed on Windows

* If you are using the supported Windows environment and receive the error “winpty: command not found” then
run pacman -S winpty to fix.

* Arrow keys and some other special keys in gdb don’t work, due to Windows Console limitations.
¢ QOccasionally when “make” exits, it may stall for up to 30 seconds before idf_monitor resumes.

* QOccasionally when “gdb” is run, it may stall for a short time before it begins communicating with the gdbstub.

2.14.5 Customized Setup of Toolchain (CMake)

Instead of downloading binary toolchain from Espressif website (see Setup Toolchain) you may build the toolchain
yourself.

If you can’t think of a reason why you need to build it yourself, then probably it’s better to stick with the binary
version. However, here are some of the reasons why you might want to compile it from source:

* if you want to customize toolchain build configuration

136 Chapter 2. Get Started (CMake)

https://github.com/pyserial/pyserial
https://pyserial.readthedocs.org/en/latest/tools.html#module-serial.tools.miniterm

Read the Docs Template Documentation, Release v3.2.5

* if you want to use a different GCC version (such as 4.8.5)
* if you want to hack gcc or newlib or libstdc++

« if you are curious and/or have time to spare

* if you don’t trust binaries downloaded from the Internet

In any case, here are the instructions to compile the toolchain yourself.

2.14. Related Documents 137

Read the Docs Template Documentation, Release v3.2.5

138 Chapter 2. Get Started (CMake)

CHAPTER 3

API Reference

3.1 Wi-Fi API

3.1.1 Wi-Fi

Introduction
The WiFi libraries provide support for configuring and monitoring the ESP32 WiFi networking functionality. This
includes configuration for:

* Station mode (aka STA mode or WiFi client mode). ESP32 connects to an access point.

* AP mode (aka Soft-AP mode or Access Point mode). Stations connect to the ESP32.

e Combined AP-STA mode (ESP32 is concurrently an access point and a station connected to another access
point).

* Various security modes for the above (WPA, WPA2, WEP, etc.)
» Scanning for access points (active & passive scanning).

¢ Promiscuous mode monitoring of IEEE802.11 WiFi packets.

Application Examples

See wifi directory of ESP-IDF examples that contains the following applications:
» Simple application showing how to connect ESP32 module to an Access Point - esp-idf-template.

 Using power save mode of Wi-Fi - wifi/power_save.

API Reference

139

https://github.com/espressif/esp-idf/tree/v3.2.5/examples/wifi
https://github.com/espressif/esp-idf-template
https://github.com/espressif/esp-idf/tree/v3.2.5/examples/wifi/power_save

Read the Docs Template Documentation, Release v3.2.5

Header File

* esp32/include/esp_wifi.h

Functions

esp_err_tesp_wifi_init (const wifi_init_config_t *config)
Init WiFi Alloc resource for WiFi driver, such as WiFi control structure, RX/TX buffer, WiFi NVS structure etc,
this WiFi also start WiFi task.
Attention 1. This API must be called before all other WiFi API can be called

Attention 2. Always use WIFI_INIT_CONFIG_DEFAULT macro to init the config to default values, this
can guarantee all the fields got correct value when more fields are added into wifi_init_config_t in fu-
ture release. If you want to set your owner initial values, overwrite the default values which are set by
WIFI_INIT_CONFIG_DEFAULT, please be notified that the field ‘magic’ of wifi_init_config_t should
always be WIFI_INIT_CONFIG_MAGIC!

Return
¢ ESP_OK: succeed
e ESP_ERR_NO_MEM: out of memory
* others: refer to error code esp_err.h
Parameters
* config: pointer to WiFi init configuration structure; can point to a temporary variable.
esp_err_tesp_wifi_deinit (void)
Deinit WiFi Free all resource allocated in esp_wifi_init and stop WiFi task.
Attention 1. This API should be called if you want to remove WiFi driver from the system
Return
e ESP_OK: succeed
» ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
esp_err_t esp_wifi_set_mode (wifi_mode_t mode)
Set the WiFi operating mode.

Set the WiFi operating mode as station, soft-AP or station+soft-AP, The default mode is soft-AP mode.

Return
e ESP_OK: succeed
o ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
e ESP_ERR_INVALID_ARG: invalid argument
* others: refer to error code in esp_err.h
Parameters

* mode: WiFi operating mode

140 Chapter 3. API Reference

https://github.com/espressif/esp-idf/blob/v3.2.5/components/esp32/include/esp_wifi.h

Read the Docs Template Documentation, Release v3.2.5

esp_err_t esp_wifi_get_mode (wifi_mode_t *mode)
Get current operating mode of WiFi.
Return
e ESP_OK: succeed
e ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
e ESP_ERR_INVALID_ARG: invalid argument
Parameters
* mode: store current WiFi mode
esp_err_t esp_wifi_start (void)
Start WiFi according to current configuration If mode is WIFI_MODE_STA, it create station control block
and start station If mode is WIFI._ MODE_AP, it create soft-AP control block and start soft-AP If mode is
WIFI_MODE_APSTA, it create soft-AP and station control block and start soft-AP and station.
Return
¢ ESP_OK: succeed
o ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
e ESP_ERR_INVALID_ARG: invalid argument
e ESP_ERR_NO_MEM: out of memory
ESP_ERR_WIFI_CONN: WiFi internal error, station or soft-AP control block wrong
ESP_FAIL: other WiFi internal errors

esp_err_t esp_wifi_stop (void)
Stop WiFi If mode is WIFI_MODE_STA, it stop station and free station control block If mode is
WIFI_MODE_AP, it stop soft-AP and free soft-AP control block If mode is WIFI_MODE_APSTA, it stop
station/soft-AP and free station/soft-AP control block.
Return
e ESP_OK: succeed
o ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
esp_err_t esp_wifi_restore (void)
Restore WiFi stack persistent settings to default values.
This function will reset settings made using the following APIs:
* esp_wifi_get_auto_connect,
e esp_wifi_set_protocol,
* esp_wifi_set_config related

* esp_wifi_set_mode

Return
¢ ESP_OK: succeed
o ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init

3.1. Wi-Fi API 141

Read the Docs Template Documentation, Release v3.2.5

esp_err_t esp_wifi_connect (void)

Connect the ESP32 WiFi station to the AP.

Attention 1. This API only impact WIFI_MODE_STA or WIFI_MODE_APSTA mode
Attention 2. If the ESP32 is connected to an AP, call esp_wifi_disconnect to disconnect.

Attention 3. The scanning triggered by esp_wifi_start_scan() will not be effective until connection between
ESP32 and the AP is established. If ESP32 is scanning and connecting at the same time, ESP32 will abort
scanning and return a warning message and error number ESP_ERR_WIFI_STATE. If you want to do
reconnection after ESP32 received disconnect event, remember to add the maximum retry time, otherwise
the called scan will not work. This is especially true when the AP doesn’t exist, and you still try reconnec-
tion after ESP32 received disconnect event with the reason code WIFI_REASON_NO_AP_FOUND.

Return
e ESP_OK: succeed
o ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
o ESP_ERR_WIFI_NOT_START: WiFi is not started by esp_wifi_start
* ESP_ERR_WIFI_CONN: WiFi internal error, station or soft-AP control block wrong

ESP_ERR_WIFI_SSID: SSID of AP which station connects is invalid

esp_err_t esp_wifi_disconnect (void)

Disconnect the ESP32 WiFi station from the AP.

Return
e ESP_OK: succeed
e ESP_ERR_WIFI_NOT_INIT: WiFi was not initialized by esp_wifi_init
e ESP_ERR_WIFI_NOT_STARTED: WiFi was not started by esp_wifi_start
e ESP_FAIL: other WiFi internal errors

esp_err_t esp_wifi_clear_fast_connect (void)

Currently this API is just an stub APIL.

Return
e ESP_OK: succeed

e others: fail

esp_err_t esp_wifi_deauth_sta (uintl6_t aid)

deauthenticate all stations or associated id equals to aid

Return
e ESP_OK: succeed
o ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
* ESP_ERR_WIFI_NOT_STARTED: WiFi was not started by esp_wifi_start
e ESP_ERR_INVALID_ARG: invalid argument
* ESP_ERR_WIFI_MODE: WiFi mode is wrong

Parameters

142

Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

¢ aid: when aid is 0, deauthenticate all stations, otherwise deauthenticate station whose associated id
is aid
esp_err_t esp_wifi_scan_start (const wifi_scan_config_t *config, bool block)

Scan all available APs.

Attention If this API is called, the found APs are stored in WiFi driver dynamic allocated memory and the will
be freed in esp_wifi_scan_get_ap_records, so generally, call esp_wifi_scan_get_ap_records to cause the
memory to be freed once the scan is done

Attention The values of maximum active scan time and passive scan time per channel are limited to 1500
milliseconds. Values above 1500ms may cause station to disconnect from AP and are not recommended.

Return
e ESP_OK: succeed
ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
¢ ESP_ERR_WIFI_NOT_STARTED: WiFi was not started by esp_wifi_start

* ESP_ERR_WIFI_TIMEOUT: blocking scan is timeout
o ESP_ERR_WIFI_STATE: wifi still connecting when invoke esp_wifi_scan_start
* others: refer to error code in esp_err.h
Parameters
* config: configuration of scanning
¢ block: if block is true, this API will block the caller until the scan is done, otherwise it will return

immediately

esp_err_t esp_wifi_scan_stop (void)
Stop the scan in process.
Return
¢ ESP_OK: succeed
e ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
e ESP_ERR_WIFI_NOT_STARTED: WiFi is not started by esp_wifi_start
esp_err_tesp_wifi_scan_get_ap_num (uintl6_t *number)
Get number of APs found in last scan.
Attention This API can only be called when the scan is completed, otherwise it may get wrong value.
Return
¢ ESP_OK: succeed
e ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
¢ ESP_ERR_WIFI_NOT_STARTED: WiFi is not started by esp_wifi_start
e ESP_ERR_INVALID_ARG: invalid argument
Parameters

e number: store number of APIs found in last scan

3.1. Wi-Fi API 143

Read the Docs Template Documentation, Release v3.2.5

esp_err_t esp_wifi_scan_get_ap_records (uintl6_t *number, wifi_ap_record_t *ap_records)
Get AP list found in last scan.
Return
e ESP_OK: succeed
e ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
e ESP_ERR_WIFI_NOT_STARTED: WiFi is not started by esp_wifi_start
e ESP_ERR_INVALID_ARG: invalid argument
* ESP_ERR_NO_MEM: out of memory
Parameters

* number: As input param, it stores max AP number ap_records can hold. As output param, it receives
the actual AP number this API returns.

* ap_records: wifi_ap_record_t array to hold the found APs
esp_err_tesp_wifi_sta_get_ap_info (wifi_ap_record_t *ap_info)

Get information of AP which the ESP32 station is associated with.
Return

e ESP_OK: succeed

e ESP_ERR_WIFI_CONN: The station interface don’t initialized

e ESP_ERR_WIFI_NOT_ CONNECT: The station is in disconnect status
Parameters

e ap_info: the wifi_ap_record_t to hold AP information sta can get the connected ap’s phy mode
info through the struct member phy_11bphy_11gphy_11nphy_Ir in the wifi_ap_record_t struct. For
example, phy_11b = 1 imply that ap support 802.11b mode

esp_err_t esp_wifi_set_ps (wifi_ps_type_t type)
Set current WiFi power save type.
Attention Default power save type is WIFI_PS_MIN_MODEM.
Return ESP_OK: succeed
Parameters
* type: power save type
esp_err_t esp_wifi_get_ps (wifi_ps_type_t *type)
Get current WiFi power save type.
Attention Default power save type is WIFI_PS_MIN_MODEM.
Return ESP_OK: succeed
Parameters
* type: store current power save type

esp_err_t esp_wifi_set_protocol (wifi_interface_t ifx, uint8_t protocol_bitmap)
Set protocol type of specified interface The default protocol is (WIFI_PROTOCOL_11BIWIFI_PROTOCOL_11GIWIFI_PROTOC

144 Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

Attention Currently we only support 802.11b or 802.11bg or 802.11bgn mode
Return
¢ ESP_OK: succeed
o ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
e ESP_ERR_WIFI_IF: invalid interface
* others: refer to error codes in esp_err.h
Parameters
e ifx: interfaces
* protocol_bitmap: WiFi protocol bitmap
esp_err_t esp_wifi_get_protocol (wifi_interface_t ifx, uint8_t *protocol_bitmap)
Get the current protocol bitmap of the specified interface.
Return
* ESP_OK: succeed
ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
ESP_ERR_WIFI_IF: invalid interface
e ESP_ERR_INVALID_ARG: invalid argument

* others: refer to error codes in esp_err.h
Parameters

* ifx: interface

* protocol_bitmap: store current WiFi protocol bitmap of interface ifx

esp_err_t esp_wifi_set_bandwidth (wifi_interface_t ifx, wifi_bandwidth_t bw)

Set the bandwidth of ESP32 specified interface.
Attention 1. API return false if try to configure an interface that is not enabled
Attention 2. WIFI_BW_HT40 is supported only when the interface support 11N
Return

¢ ESP_OK: succeed

e ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init

« ESP_ERR_WIFI_IF: invalid interface

e ESP_ERR_INVALID_ARG: invalid argument

* others: refer to error codes in esp_err.h
Parameters

» ifx: interface to be configured

* bw: bandwidth

esp_err_t esp_wifi_get_bandwidth (wifi_interface_t ifx, wifi_bandwidth_t *bw)
Get the bandwidth of ESP32 specified interface.

3.1. Wi-Fi API

145

Read the Docs Template Documentation, Release v3.2.5

Attention 1. API return false if try to get a interface that is not enable
Return
¢ ESP_OK: succeed
o ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
e ESP_ERR_WIFI_IF: invalid interface
e ESP_ERR_INVALID_ARG: invalid argument
Parameters
» ifx: interface to be configured
* bw: store bandwidth of interface ifx
esp_err_tesp_wifi_set_channel (uint8_t primary, wifi_second_chan_t second)
Set primary/secondary channel of ESP32.
Attention 1. This API should be called after esp_wifi_start()

Attention 2. When ESP32 is in STA mode, this API should not be called when STA is scanning or connecting
to an external AP

Attention 3. When ESP32 is in softAP mode, this API should not be called when softAP has connected to
external STAs

Attention 4. When ESP32 is in STA+softAP mode, this API should not be called when in the scenarios
described above

Return
¢ ESP_OK: succeed
e ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
« ESP_ERR_WIFI_IF: invalid interface
* ESP_ERR_INVALID_ARG: invalid argument
Parameters
* primary: for HT20, primary is the channel number, for HT40, primary is the primary channel
* second: for HT20, second is ignored, for HT40, second is the second channel
esp_err_t esp_wifi_get_channel (uint8_t *primary, wifi_second_chan_t *second)
Get the primary/secondary channel of ESP32.
Attention 1. API return false if try to get a interface that is not enable
Return
* ESP_OK: succeed
* ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
* ESP_ERR_INVALID_ARG: invalid argument
Parameters
* primary: store current primary channel

e second: store current second channel

146 Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

esp_err_t esp_wifi_set_country (const wifi_country_t *country)
configure country info

Attention 1. The default country is {.cc="CN”, .schan=1, .nchan=13, pol-
icy=WIFI_COUNTRY_POLICY_AUTO}

Attention 2. When the country policy is WIFI_COUNTRY_POLICY_AUTO, the country info of the AP to
which the station is connected is used. E.g. if the configured country info is {.cc="USA”, .schan=1,
.nchan=11} and the country info of the AP to which the station is connected is {.cc="JP”, .schan=1,
.nchan=14} then the country info that will be used is {.cc="JP”, .schan=1, .nchan=14}. If the station
disconnected from the AP the country info is set back back to the country info of the station automatically,
{.cc="US”, .schan=1, .nchan=11} in the example.

Attention 3. When the country policy is WIFI_COUNTRY_POLICY_MANUAL, always use the configured
country info.

Attention 4. When the country info is changed because of configuration or because the station connects to a
different external AP, the country IE in probe response/beacon of the soft-AP is changed also.

Attention 5. The country configuration is not stored into flash

Attention 6. This API doesn’t validate the per-country rules, it’s up to the user to fill in all fields according to
local regulations.

Return
¢ ESP_OK: succeed
* ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
¢ ESP_ERR_INVALID_ARG: invalid argument
Parameters
* country: the configured country info
esp_err_t esp_wifi_get_country (wifi_country_t *country)
get the current country info
Return
e ESP_OK: succeed
o ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
e ESP_ERR_INVALID_ARG: invalid argument
Parameters
* country: country info
esp_err_t esp_wifi_set_mac (wifi_interface_t ifx, const uint8_t mac[6])
Set MAC address of the ESP32 WiFi station or the soft-AP interface.
Attention 1. This API can only be called when the interface is disabled
Attention 2. ESP32 soft-AP and station have different MAC addresses, do not set them to be the same.

Attention 3. The bit 0 of the first byte of ESP32 MAC address can not be 1. For example, the MAC address
can set to be “1a: XX:XX:XX:XX:XX”, but can not be “15: XX: XX: XX: XX:XX".

Return

e ESP_OK: succeed

3.1. Wi-Fi API 147

Read the Docs Template Documentation, Release v3.2.5

ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
e ESP_ERR_INVALID_ARG: invalid argument

ESP_ERR_WIFI_IF: invalid interface

« ESP_ERR_WIFI_MAC: invalid mac address

* ESP_ERR_WIFI_MODE: WiFi mode is wrong
* others: refer to error codes in esp_err.h
Parameters
* ifx: interface
* mac: the MAC address
esp_err_t esp_wifi_get_mac (wifi_interface_t ifx, uint8_t mac[6])
Get mac of specified interface.
Return
* ESP_OK: succeed
o ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
e ESP_ERR_INVALID_ARG: invalid argument
e ESP_ERR_WIFIL_IF: invalid interface
Parameters
e ifx: interface
* mac: store mac of the interface ifx
esp_err_t esp_wifi_set_promiscuous_rx_cb (wifi_promiscuous_cb_t cb)
Register the RX callback function in the promiscuous mode.

Each time a packet is received, the registered callback function will be called.

Return
e ESP_OK: succeed
o ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
Parameters
* cb: callback
esp_err_t esp_wifi_set_promiscuous (bool en)
Enable the promiscuous mode.
Return
e ESP_OK: succeed
o ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
Parameters

¢ en: false - disable, true - enable

148

Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

esp_err_t esp_wifi_get_promiscuous (bool *en)
Get the promiscuous mode.
Return
e ESP_OK: succeed
e ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
e ESP_ERR_INVALID_ARG: invalid argument
Parameters
* en: store the current status of promiscuous mode
esp_err_tesp_wifi_set_promiscuous_filter (const wifi_promiscuous_filter_t *filter)
Enable the promiscuous mode packet type filter.
Note The default filter is to filter all packets except WIFI_PKT_MISC
Return
* ESP_OK: succeed
o ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
Parameters
e filter: the packet type filtered in promiscuous mode.
esp_err_t esp_wifi_get_promiscuous_filter (wifi_promiscuous_filter_t *filter)
Get the promiscuous filter.
Return
¢ ESP_OK: succeed
o ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
e ESP_ERR_INVALID_ARG: invalid argument
Parameters
e filter: store the current status of promiscuous filter
esp_err_tesp_wifi_set_promiscuous_ctrl_filter (const wifi_promiscuous_filter_t *filter)
Enable subtype filter of the control packet in promiscuous mode.
Note The default filter is to filter none control packet.
Return
¢ ESP_OK: succeed
e ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
Parameters
e filter: the subtype of the control packet filtered in promiscuous mode.

esp_err_tesp_wifi_get_promiscuous_ctrl_filter (wifi_promiscuous_filter_t *filter)
Get the subtype filter of the control packet in promiscuous mode.

Return

3.1. Wi-Fi API 149

Read the Docs Template Documentation, Release v3.2.5

e ESP_OK: succeed
» ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
* ESP_ERR_WIFI_ARG: invalid argument
Parameters
e filter: store the current status of subtype filter of the control packet in promiscuous mode
esp_err_t esp_wifi_set_config (wifi_interface_t interface, wifi_config_t *conf)
Set the configuration of the ESP32 STA or AP.
Attention 1. This API can be called only when specified interface is enabled, otherwise, API fail

Attention 2. For station configuration, bssid_set needs to be 0; and it needs to be 1 only when users need to
check the MAC address of the AP.

Attention 3. ESP32 is limited to only one channel, so when in the soft-AP+station mode, the soft-AP will
adjust its channel automatically to be the same as the channel of the ESP32 station.

Return
¢ ESP_OK: succeed
o ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
e ESP_ERR_INVALID_ARG: invalid argument
e ESP_ERR_WIFI_IF: invalid interface
¢ ESP_ERR_WIFI_MODE: invalid mode
* ESP_ERR_WIFI_PASSWORD: invalid password
e ESP_ERR_WIFI_NVS: WiFi internal NVS error
* others: refer to the erro code in esp_err.h
Parameters
* interface: interface
* conf: station or soft-AP configuration
esp_err_t esp_wifi_get_config (wifi_interface_t interface, wifi_config_t *conf’)
Get configuration of specified interface.
Return
e ESP_OK: succeed
o ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
e ESP_ERR_INVALID_ARG: invalid argument
e ESP_ERR_WIFI_IF: invalid interface
Parameters
* interface: interface
* conf: station or soft-AP configuration

esp_err_tesp_wifi_ap_get_sta_list (wifi_sta_list_t *sta)
Get STAs associated with soft-AP.

150 Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

Attention SSC only API
Return

¢ ESP_OK: succeed

o ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init

e ESP_ERR_INVALID_ARG: invalid argument

* ESP_ERR_WIFI_MODE: WiFi mode is wrong

« ESP_ERR_WIFI_CONN: WiFi internal error, the station/soft-AP control block is invalid
Parameters

e sta: station list ap can get the connected sta’s phy mode info through the struct member
phy_11bphy_11gphy_11nphy_Ir in the wifi_sta_info_t struct. For example, phy_11b = 1 imply that
sta support 802.11b mode

esp_err_tesp_wifi_ap_get_sta_aid (const uint8_t mac[6], uintl6_t *aid)
Get AID of STA connected with soft-AP.
Return
e ESP_OK: succeed
e ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
e ESP_ERR_INVALID_ARG: invalid argument
ESP_ERR_NOT_FOUND: Requested resource not found
ESP_ERR_WIFI_MODE: WiFi mode is wrong
e« ESP_ERR_WIFI_CONN: WiFi internal error, the station/soft-AP control block is invalid

Parameters
e mac: STA’s mac address
* aid: Store the AID corresponding to STA mac
esp_err_t esp_wifi_set_storage (wifi_storage_t storage)
Set the WiFi API configuration storage type.
Attention 1. The default value is WIFI_STORAGE_FLASH
Return
e ESP_OK: succeed
o ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
e ESP_ERR_INVALID_ARG: invalid argument
Parameters
* storage: : storage type
esp_err_t esp_wifi_set_auto_connect (bool en)
Set auto connect The default value is true.
Return

e ESP_OK: succeed

3.1. Wi-Fi API 151

Read the Docs Template Documentation, Release v3.2.5

» ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
e ESP_ERR_WIFI_MODE: WiFi internal error, the station/soft-AP control block is invalid
* others: refer to error code in esp_err.h
Parameters
* en: : true - enable auto connect / false - disable auto connect
esp_err_t esp_wifi_get_auto_connect (bool *en)
Get the auto connect flag.
Return
* ESP_OK: succeed
e ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
e ESP_ERR_INVALID_ARG: invalid argument
Parameters
¢ en: store current auto connect configuration
esp_err_t esp_wifi_set_vendor_ie (bool enable, wifi_vendor_ie_type_t type, wifi_vendor_ie_id_t idx,

const void *vnd_ie)
Set 802.11 Vendor-Specific Information Element.

Return
e ESP_OK: succeed
e ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init()

e ESP_ERR_INVALID_ARG: Invalid argument, including if first byte of vnd_ie is not
WIFI_VENDOR_IE_ELEMENT_ID (0xDD) or second byte is an invalid length.

e ESP_ERR_NO_MEM: Out of memory
Parameters
* enable: If true, specified IE is enabled. If false, specified IE is removed.
* type: Information Element type. Determines the frame type to associate with the IE.
e idx: Index to set or clear. Each IE type can be associated with up to two elements (indices 0 & 1).

* vnd_ie: Pointer to vendor specific element data. First 6 bytes should be a header with fields match-
ing vendor_ie_data_t. If enable is false, this argument is ignored and can be NULL. Data does not
need to remain valid after the function returns.

esp_err_t esp_wifi_set_vendor_ie_cb (esp_vendor_ie_cb_t cb, void *ctx)
Register Vendor-Specific Information Element monitoring callback.
Return
e ESP_OK: succeed
» ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
Parameters
* cb: Callback function

* ctx: Context argument, passed to callback function.

152 Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

esp_err_tesp_wifi_set_max_tx_power (int8_t power)
Set maximum transmitting power after WiFi start.
Attention 1. Maximum power before wifi startup is limited by PHY init data bin.

Attention 2. The value set by this API will be mapped to the max_tx_power of the structure wifi_country_t
variable.

Attention 3. Mapping Table {Power, max_tx_power} = {{8, 2}, {20, 5}, {28, 7}, {34, 8}, {44, 11}, {52, 13},
{56, 14}, {60, 15}, {66, 16}, {72, 18}, {78, 20} }.

Attention 4. Param power unit is 0.25dBm, range is [8, 78] corresponding to 2dBm - 20dBm.

Attention 5. Relationship between set value and actual value. As follows: + + + | set value |
actual value | + + +1[8, 191181+ + +1[20, 271120 |
+ + +1[28,33]128 1+ + +1[34,43] 1341+ + +1[44,51]144
+ + +1[52,55] 1521+ + + 1 [56, 59] 156 | + + + 1 [60, 65] |
60|+ + +1[66, 711166 | + + +1[72, 771172 | + + + 178178
Return

e ESP_OK: succeed
o ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
* ESP_ERR_WIFI_NOT_START: WiFi is not started by esp_wifi_start
* ESP_ERR_WIFI_ARG: invalid argument, e.g. parameter is out of range

Parameters
* power: Maximum WiFi transmitting power.

esp_err_t esp_wifi_get_max_tx_power (int8_t *power)

Get maximum transmiting power after WiFi start.

Return
e ESP_OK: succeed
e ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
¢ ESP_ERR_WIFI_NOT_START: WiFi is not started by esp_wifi_start
» ESP_ERR_WIFI_ARG: invalid argument

Parameters
* power: Maximum WiFi transmitting power, unit is 0.25dBm.

esp_err_t esp_wifi_set_event_mask (uint32_t mask)
Set mask to enable or disable some WiFi events.

Attention 1. Mask can be created by logical OR of various WIFI_EVENT_MASK _ constants. Events which
have corresponding bit set in the mask will not be delivered to the system event handler.
Attention 2. Default WiFi event mask is WIFI_EVENT_MASK_AP_PROBEREQRECVED.

Attention 3. There may be lots of stations sending probe request data around. Don’t unmask this event unless
you need to receive probe request data.

Return

3.1. Wi-Fi API 153

Read the Docs Template Documentation, Release v3.2.5

e ESP_OK: succeed
» ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
Parameters
* mask: WiFi event mask.
esp_err_t esp_wifi_get_event_mask (uint32_t *mask)
Get mask of WiFi events.
Return
e ESP_OK: succeed
» ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
* ESP_ERR_WIFI_ARG: invalid argument
Parameters
* mask: WiFi event mask.

esp_err_tesp_wifi_80211_tx (wifi_interface_t ifx, const void *buffer, int len, bool en_sys_seq)
Send raw ieee80211 data.

Attention Currently only support for sending beacon/probe request/probe response/action and non-QoS data
frame
Return
e ESP_OK: success
e ESP_ERR_WIFI_IF: Invalid interface
e ESP_ERR_INVALID_ARG: Invalid parameter
e ESP_ERR_WIFI_NO_MEM: out of memory
Parameters

e 1fx: interface if the Wi-Fi mode is Station, the ifx should be WIFI_IF_STA. If the Wi-Fi mode
is SoftAP, the ifx should be WIFI_IF_AP. If the Wi-Fi mode is Station+SoftAP, the ifx should be
WIFI_IF_STA or WIFI_IF_AP. If the ifx is wrong, the API returns ESP_ERR_WIFI_IF.

* buffer: raw ieee80211 buffer
e len: the length of raw buffer, the len must be <= 1500 Bytes and >= 24 Bytes

* en_sys_sedq: indicate whether use the internal sequence number. If en_sys_seq is false, the se-
quence in raw buffer is unchanged, otherwise it will be overwritten by WiFi driver with the system
sequence number. Generally, if esp_wifi_80211_tx is called before the Wi-Fi connection has been
set up, both en_sys_seq==true and en_sys_seq==false are fine. However, if the API is called after
the Wi-Fi connection has been set up, en_sys_seq must be true, otherwise ESP_ERR_WIFI_ARG is
returned.

esp_err_tesp_wifi_set_csi_rx_cb (wifi_csi_cb_t cb, void *ctx)
Register the RX callback function of CSI data.

Each time a CSI data is received, the callback function will be called.

Return

e ESP_OK: succeed

154 Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

» ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
Parameters
* cb: callback
e ctx: context argument, passed to callback function
esp_err_t esp_wifi_set_csi_config (const wifi_csi_config_t *config)
Set CSI data configuration.
return
e ESP_OK: succeed
e ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
* ESP_ERR_WIFI_NOT_START: WiFi is not started by esp_wifi_start or promiscuous mode is not enabled
e ESP_ERR_INVALID_ARG: invalid argument

Parameters
* config: configuration
esp_err_t esp_wifi_set_csi (bool en)

Enable or disable CSI.

return
¢ ESP_OK: succeed
o ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
* ESP_ERR_WIFI_NOT_START: WiFi is not started by esp_wifi_start or promiscuous mode is not enabled
* ESP_ERR_INVALID_ARG: invalid argument

Parameters
e en: true - enable, false - disable
esp_err_tesp_wifi_set_ant_gpio (const wifi_ant _gpio_config_t *config)
Set antenna GPIO configuration.
Return
e ESP_OK: succeed
e ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
* ESP_ERR_WIFI_ARG: Invalid argument, e.g. parameter is NULL, invalid GPIO number etc
Parameters
* config: Antenna GPIO configuration.
esp_err_t esp_wifi_get_ant_gpio (wifi_ant_gpio_config_t *config)
Get current antenna GPIO configuration.
Return
e ESP_OK: succeed
o ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init

3.1. Wi-Fi API 155

Read the Docs Template Documentation, Release v3.2.5

* ESP_ERR_WIFI_ARG: invalid argument, e.g. parameter is NULL
Parameters
* config: Antenna GPIO configuration.
esp_err_t esp_wifi_set_ant (const wifi_ant_config_t *config)
Set antenna configuration.
Return
* ESP_OK: succeed
» ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init

* ESP_ERR_WIFI_ARG: Invalid argument, e.g. parameter is NULL, invalid antenna mode or invalid
GPIO number

Parameters
* config: Antenna configuration.
esp_err_t esp_wifi_get_ant (wifi_ant_config_t *config)
Get current antenna configuration.
Return
¢ ESP_OK: succeed
e ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
* ESP_ERR_WIFI_ARG: invalid argument, e.g. parameter is NULL
Parameters

* config: Antenna configuration.

Structures

struct wifi_init_config t
WiFi stack configuration parameters passed to esp_wifi_init call.

Public Members
system_event_handler_t event_handler
WiFi event handler

wifi_osi_funcs_t *osi_funcs
WiFi OS functions

wpa_crypto_funcs_t wpa_crypto_funcs
WiFi station crypto functions when connect

int static_rx buf num
WiPFi static RX buffer number

int dynamic_rx_buf_num
WiFi dynamic RX buffer number

inttx_buf_type
WiFi TX buffer type

156 Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

int static_tx_buf num
WiFi static TX buffer number

int dynamic_tx buf num
WiFi dynamic TX buffer number

int csi_enable
WiFi channel state information enable flag

int ampdu_rx_enable
WiFi AMPDU RX feature enable flag

int ampdu_tx_enable
WiFi AMPDU TX feature enable flag

int nvs_enable
WiFi NVS flash enable flag

int nano_enable
Nano option for printf/scan family enable flag

inttx_ba win
WiFi Block Ack TX window size

int rx_ba win
WiFi Block Ack RX window size

intwifi_task_core_id
WiFi Task Core ID

int beacon_max len
WiFi softAP maximum length of the beacon

int mgmt__sbuf_num
WiFi management short buffer number, the minimum value is 6, the maximum value is 32

intmagic
WiFi init magic number, it should be the last field

Macros

ESP_ERR WIFI NOT INIT
WiFi driver was not installed by esp_wifi_init

ESP_ERR WIFI_ NOT_ STARTED
WiFi driver was not started by esp_wifi_start

ESP_ERR WIFI_NOT_STOPPED
WiFi driver was not stopped by esp_wifi_stop

ESP_ERR WIFI_IF
WiFi interface error

ESP_ERR WIFI MODE
WiFi mode error

ESP_ERR_WIFI_STATE
WiFi internal state error

ESP_ERR WIFI_ CONN
WiFi internal control block of station or soft-AP error

3.1. Wi-Fi API 157

Read the Docs Template Documentation, Release v3.2.5

ESP_ERR_WIFI_ NVS
WiFi internal NVS module error

ESP_ERR WIFI MAC
MAC address is invalid

ESP_ERR WIFI_ SSID
SSID is invalid

ESP_ERR WIFI PASSWORD
Password is invalid

ESP_ERR_WIFI TIMEOUT
Timeout error

ESP_ERR WIFI_WAKE FAIL

WiFi is in sleep state(RF closed) and wakeup fail

ESP_ERR WIFI WOULD_ BLOCK
The caller would block

ESP_ERR WIFI NOT CONNECT
Station still in disconnect status

ESP_ERR WIFI_ POST

Failed to post the event to WiFi task

ESP_ERR WIFI_INIT STATE

Invalod WiFi state when init/deinit is called

ESP_ERR_WIFI_STOP_STATE
Returned when WiFi is stopping

WIFI_STATIC_TX BUFFER_NUM
WIFI_DYNAMIC_TX_BUFFER_NUM
WIFI_CSI_ENABLED
WIFI_AMPDU_RX ENABLED
WIFI_AMPDU_TX ENABLED
WIFI_NVS_ENABLED
WIFI_NANO_FORMAT ENABLED
WIFI_INIT CONFIG_MAGIC
WIFI_DEFAULT TX_BA WIN
WIFI_DEFAULT RX_BA WIN
WIFI_TASK CORE_ID
WIFI_SOFTAP_BEACON_ MAX_ LEN
WIFI_MGMT SBUF_NUM
WIFI_INIT CONFIG_DEFAULT ()

158

Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

Type Definitions

typedef void (*wifi_promiscuous_cb_t) (void *buf, wifi_promiscuous_pkt_type_t type)
The RX callback function in the promiscuous mode. Each time a packet is received, the callback function will
be called.

Parameters

e buf: Data received. Type of data in buffer (wifi_promiscuous_pkt_t or wifi_pkt_rx_ctrl_t) indicated
by ‘type’ parameter.

* type: promiscuous packet type.

typedef void (*esp_vendor_ie_cb_t) (void *ctx, wifi_vendor_ie_type_t type, const uint8_t sa[6],

const vendor_ie_data_t *vnd_ie, int rssi)
Function signature for received Vendor-Specific Information Element callback.

Parameters
* ctx: Context argument, as passed to esp_wifi_set_vendor_ie_cb() when registering callback.
* type: Information element type, based on frame type received.
e sa: Source 802.11 address.
* vnd_ie: Pointer to the vendor specific element data received.
* rssi: Received signal strength indication.

typedef void (*wifi_csi_cb_t) (void *ctx, wifi_csi_info_t *data)
The RX callback function of Channel State Information(CSI) data.

Each time a CSI data is received, the callback function will be called.

Parameters
e ctx: context argument, passed to esp_wifi_set_csi_rx_cb() when registering callback function.

e data: CSI data received. The memory that it points to will be deallocated after callback function
returns.

Header File

* esp32/include/esp_wifi_types.h

Unions

union wifi_config_ t
#include <esp_wifi_types.h> Configuration data for ESP32 AP or STA.

The usage of this union (for ap or sta configuration) is determined by the accompanying interface argument
passed to esp_wifi_set_config() or esp_wifi_get_config()

3.1. Wi-Fi API 159

https://github.com/espressif/esp-idf/blob/v3.2.5/components/esp32/include/esp_wifi_types.h

Read the Docs Template Documentation, Release v3.2.5

Public Members
wifi_ap_config_t ap
configuration of AP

wifi_sta_config_t sta
configuration of STA

Structures

struct wifi_country t
Structure describing WiFi country-based regional restrictions.

Public Members

char ce[3]
country code string

uint8_t schan
start channel

uint8_t nchan
total channel number

int§_t max_tx_power
This field is used for getting WiFi maximum transmitting power, call esp_wifi_set_max_tx_power to set

the maximum transmitting power.

wifi_country_policy_t policy
country policy

struct wifi_active_scan_time_t
Range of active scan times per channel.

Public Members

uint32_tmin
minimum active scan time per channel, units: millisecond

uint32_t max
maximum active scan time per channel, units: millisecond, values above 1500ms may cause station to

disconnect from AP and are not recommended.

struct wifi_scan_time t
Aggregate of active & passive scan time per channel.

Public Members

wifi_active_scan_time_t active
active scan time per channel, units: millisecond.

uint32_t passive
passive scan time per channel, units: millisecond, values above 1500ms may cause station to disconnect

from AP and are not recommended.

160 Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

struct wifi_scan_config_t

Parameters for an SSID scan.

Public Members
uint8_t *ssid
SSID of AP

uint8_t *bssid
MAC address of AP

uint8_t channel
channel, scan the specific channel

bool show_hidden
enable to scan AP whose SSID is hidden

wifi_scan_type_t scan_type
scan type, active or passive

wifi_scan_time_t scan_time
scan time per channel

struct wifi_ap record t

Description of a WiFi AP.

Public Members
uint8_t bssid[6]
MAC address of AP

uint8_t ssid[33]
SSID of AP

uint_t primary
channel of AP

wifi_second_chan_t second
secondary channel of AP

int8_t rssi
signal strength of AP

wifi_auth_mode_t authmode
authmode of AP

wifi_cipher_type_t pairwise_cipher
pairwise cipher of AP

wifi_cipher_type_t group_cipher
group cipher of AP

wifi_ant_t ant
antenna used to receive beacon from AP

uint32_t phy 11b
bit: 0 flag to identify if 11b mode is enabled or not

uint32_tphy_11g
bit: 1 flag to identify if 11g mode is enabled or not

3.1.

Wi-Fi API

161

Read the Docs Template Documentation, Release v3.2.5

uint32_t phy_11n
bit: 2 flag to identify if 11n mode is enabled or not

uint32_t phy_1r
bit: 3 flag to identify if low rate is enabled or not

uint32_t wps
bit: 4 flag to identify if WPS is supported or not

uint32_t reserved
bit: 5..31 reserved

wifi_country_t country
country information of AP

struct wifi_ fast_scan threshold_t
Structure describing parameters for a WiFi fast scan.

Public Members
int8_t rssi
The minimum rssi to accept in the fast scan mode

wifi_auth_mode_t authmode
The weakest authmode to accept in the fast scan mode

struct wifi_ap_ config t
Soft-AP configuration settings for the ESP32.

Public Members

uint8_t ssid[32]
SSID of ESP32 soft-AP

uint8_t password[64]
Password of ESP32 soft-AP

uint8_t ssid_1len
Length of SSID. If softap_config.ssid_len==0, check the SSID until there is a termination character; oth-
erwise, set the SSID length according to softap_config.ssid_len.

uint8_t channel
Channel of ESP32 soft-AP

wifi_auth_mode_t authmode
Auth mode of ESP32 soft-AP. Do not support AUTH_WEP in soft-AP mode

uint8_t ssid_hidden
Broadcast SSID or not, default 0, broadcast the SSID

uint8_tmax connection
Max number of stations allowed to connect in, default 4, max 10

uintl6_t beacon_interval
Beacon interval, 100 ~ 60000 ms, default 100 ms

struct wifi_sta_config t
STA configuration settings for the ESP32.

162 Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

Public Members

uint8_t ssid[32]
SSID of target AP

uint8_t password[64]
password of target AP

wifi_scan_method_t scan_method
do all channel scan or fast scan

bool bssid set
whether set MAC address of target AP or not. Generally, station_config.bssid_set needs to be 0; and it
needs to be 1 only when users need to check the MAC address of the AP.

uint8_t bssid[6]
MAC address of target AP

uint8_t channel
channel of target AP. Set to 1~13 to scan starting from the specified channel before connecting to AP. If

the channel of AP is unknown, set it to O.

uintl6_t listen_interval
Listen interval for ESP32 station to receive beacon when WIFI_PS_ MAX_ MODEM is set. Units: AP
beacon intervals. Defaults to 3 if set to 0.

wifi_sort_method_t sort_method
sort the connect AP in the list by rssi or security mode

wifi_scan_threshold_t threshold
When scan_method is set, only APs which have an auth mode that is more secure than the selected auth
mode and a signal stronger than the minimum RSSI will be used.

struct wifi_sta info_t
Description of STA associated with AP.

Public Members
uint8_t mac[6]
mac address

int8 trssi
current average rssi of sta connected

uint32_t phy_11b
bit: 0 flag to identify if 11b mode is enabled or not

uint32_tphy 1lg
bit: 1 flag to identify if 11g mode is enabled or not

uint32_t phy_11n
bit: 2 flag to identify if 11n mode is enabled or not

uint32_tphy_1lr
bit: 3 flag to identify if low rate is enabled or not

uint32_t reserved
bit: 4..31 reserved

struct wifi_sta list_t
List of stations associated with the ESP32 Soft-AP.

3.1. Wi-Fi API 163

Read the Docs Template Documentation, Release v3.2.5

Public Members
wifi_sta_info_t sta[ESP_WIFI_MAX CONN_NUM]
station list

int num
number of stations in the list (other entries are invalid)

struct vendor_ie_data_t

Vendor Information Element header.

The first bytes of the Information Element will match this header. Payload follows.

Public Members
uint8_t element_id
Should be set to WIFI_VENDOR_IE_ELEMENT_ID (0xDD)

uint8_t length
Length of all bytes in the element data following this field. Minimum 4.

uint8_t vendor_oui[3]
Vendor identifier (OUI).

uint8_t vendor_oui_type
Vendor-specific OUI type.

uint8_t payload[0]
Payload. Length is equal to value in ‘length’ field, minus 4.

struct wifi_pkt_rx ctrl_t

Received packet radio metadata header, this is the common header at the beginning of all promiscuous mode
RX callback buffers.

Public Members

signed rssi
Received Signal Strength Indicator(RSSI) of packet. unit: dBm

unsigned rate
PHY rate encoding of the packet. Only valid for non HT(11bg) packet

unsigned __pad0___
reserve

unsigned sig_mode
0: non HT(11bg) packet; 1: HT(11n) packet; 3: VHT(11ac) packet

unsigned __padl___
reserve

unsigned mcs
Modulation Coding Scheme. If is HT(11n) packet, shows the modulation, range from 0 to 76(MSCO ~
MCS76)

unsigned cwb
Channel Bandwidth of the packet. 0: 20MHz; 1: 40MHz

unsigned __pad2___
reserve

164

Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

unsigned smoothing
reserve

unsigned not_sounding
reserve

unsigned __pad3___
reserve

unsigned aggregation
Aggregation. 0: MPDU packet; 1: AMPDU packet

unsigned stbc
Space Time Block Code(STBC). 0: non STBC packet; 1: STBC packet

unsigned fec_coding
Flag is set for 11n packets which are LDPC

unsigned sgi
Short Guide Interval(SGI). 0: Long GI; 1: Short GI

signed noise_floor
noise floor of Radio Frequency Module(RF). unit: 0.25dBm

unsigned ampdu_cnt
ampdu cnt

unsigned channel
primary channel on which this packet is received

unsigned secondary_channel
secondary channel on which this packet is received. 0: none; 1: above; 2: below

unsigned __pad4___
reserve

unsigned timestamp
timestamp. The local time when this packet is received. It is precise only if modem sleep or light sleep is
not enabled. unit: microsecond

unsigned __pad5___
reserve

unsigned __pad6___
reserve

unsigned ant
antenna number from which this packet is received. 0: WiFi antenna 0; 1: WiFi antenna 1

unsigned sig_len
length of packet including Frame Check Sequence(FCS)

unsigned __pad7___
reserve

unsigned rx_state
state of the packet. 0: no error; others: error numbers which are not public

struct wifi_promiscuous_pkt_t
Payload passed to ‘buf’ parameter of promiscuous mode RX callback.

3.1. Wi-Fi API 165

Read the Docs Template Documentation, Release v3.2.5

Public Members

wifi_pkt_rx_ctrl_t rx_ctrl
metadata header

uint8_t payload[0]
Data or management payload. Length of payload is described by rx_ctrl.sig_len. Type of content deter-
mined by packet type argument of callback.

struct wifi_promiscuous_filter t
Mask for filtering different packet types in promiscuous mode.

Public Members

uint32_t filter mask
OR of one or more filter values WIFI_PROMIS_FILTER_*

struct wifi_csi_config t
Channel state information(CSI) configuration type.

Public Members

bool 11tf en
enable to receive legacy long training field(1ltf) data. Default enabled

bool htltf_en
enable to receive HT long training field(htltf) data. Default enabled

bool stbe_htltf2 en
enable to receive space time block code HT long training field(stbc-htltf2) data. Default enabled

bool 1t£_merge_en
enable to generate htlft data by averaging lItf and ht_Itf data when receiving HT packet. Otherwise, use
ht_Itf data directly. Default enabled

bool channel filter en
enable to turn on channel filter to smooth adjacent sub-carrier. Disable it to keep independence of adjacent

sub-carrier. Default enabled

bool manu_scale
manually scale the CSI data by left shifting or automatically scale the CSI data. If set true, please set the
shift bits. false: automatically. true: manually. Default false

uint8_t shift
manually left shift bits of the scale of the CSI data. The range of the left shift bits is 0~15

struct wifi_csi_info_t
CSI data type.

Public Members
wifi_pkt_rx_ctrl_t rx_ctrl
received packet radio metadata header of the CSI data

uint8_t mac[6]
source MAC address of the CSI data

166 Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

bool £irst_word invalid
first four bytes of the CSI data is invalid or not

int8_t *buf
buffer of CSI data

uintl6_t len
length of CSI data

struct wifi_ant_gpio_t
WiFi GPIO configuration for antenna selection.

Public Members
uint8_t gpio_select
Whether this GPIO is connected to external antenna switch

uint8_t gpio_num
The GPIO number that connects to external antenna switch

struct wifi_ant_gpio_config t
WiFi GPIOs configuration for antenna selection.

Public Members
wifi_ant_gpio_t gpio_c£fgl4]
The configurations of GPIOs that connect to external antenna switch

struct wifi_ant_config t
WiFi antenna configuration.

Public Members
wifi_ant_mode_t rx_ant_mode
WiFi antenna mode for receiving

wifi_ant_t rx_ant_default
Default antenna mode for receiving, it’s ignored if rx_ant_mode is not WIFI_ANT_MODE_AUTO

wifi_ant_mode_t tx_ant_mode
WiFi antenna mode for transmission, it can be set to WIFI_ANT_MODE_AUTO only if rx_ant_mode is
set to WIFI_ANT_MODE_AUTO

uint8_t enabled_ant0
Index (in antenna GPIO configuration) of enabled WIFI_ANT_MODE_ANTO0

uint8_t enabled_antl
Index (in antenna GPIO configuration) of enabled WIFI_ANT_MODE_ANT1

struct wifi ht2040_coex_t
Configuration for STA’s HT2040 coexist management.

Public Members

int enable
Indicate whether STA’s HT2040 coexist management is enabled or not

3.1. Wi-Fi API 167

Read the Docs Template Documentation, Release v3.2.5

struct wifi_ioctl_config_t
Configuration for WiFi ioctl.

Public Members
wifi_ht2040_coex_t ht2040_coex
Configuration of STA’s HT2040 coexist management

union wifi_ioctl_config_t::[anonymous] data
Configuration of ioctl command

Macros

WIFI_IF_STA
WIFI_IF_AP
WIFI_PS_MODEM
WIFI_PROTOCOL_11B
WIFI_PROTOCOL_11G
WIFI_PROTOCOL_11N
WIFI_PROTOCOL_LR

ESP_WIFI_ MAX CONN_NUM
max number of stations which can connect to ESP32 soft-AP

WIFI_VENDOR_ IE ELEMENT_ ID

WIFI_PROMIS_FILTER MASK ALL
filter all packets

WIFI_PROMIS_FILTER MASK MGMT
filter the packets with type of WIFI_PKT_MGMT

WIFI_PROMIS_ FILTER MASK CTRL
filter the packets with type of WIFI_PKT_CTRL

WIFI_PROMIS_FILTER MASK DATA
filter the packets with type of WIFI_PKT_DATA

WIFI_PROMIS_FILTER MASK_MISC
filter the packets with type of WIFI_PKT_MISC

WIFI PROMIS FILTER MASK DATA MPDU
filter the MPDU which is a kind of WIFI_PKT_DATA

WIFI_PROMIS_ FILTER_MASK DATA AMPDU
filter the AMPDU which is a kind of WIFI_PKT_DATA

WIFI_PROMIS_ CTRL_FILTER MASK ALL
filter all control packets

WIFI_PROMIS_CTRL_FILTER MASK WRAPPER
filter the control packets with subtype of Control Wrapper

WIFI_PROMIS_ CTRL_FILTER MASK BAR
filter the control packets with subtype of Block Ack Request

168

Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

WIFI_PROMIS_CTRL_FILTER MASK BA
filter the control packets with subtype of Block Ack

WIFI_PROMIS_CTRL_FILTER MASK PSPOLL
filter the control packets with subtype of PS-Poll

WIFI_PROMIS_CTRL_FILTER MASK_RTS
filter the control packets with subtype of RTS

WIFI_PROMIS CTRL_FILTER MASK CTS
filter the control packets with subtype of CTS

WIFI_PROMIS_CTRL_FILTER MASK ACK
filter the control packets with subtype of ACK

WIFI_PROMIS_CTRL_FILTER MASK CFEND
filter the control packets with subtype of CF-END

WIFI_PROMIS_CTRL_FILTER MASK CFENDACK
filter the control packets with subtype of CF-END+CF-ACK

WIFI_ EVENT MASK ALL
mask all WiFi events

WIFI EVENT MASK_ NONE
mask none of the WiFi events

WIFI_EVENT MASK AP PROBEREQRECVED
mask SYSTEM_EVENT_AP_PROBEREQRECVED event

Type Definitions

typedef esp_interface_twifi_interface_t

typedef wifi_fast_scan_threshold_t wifi_scan_threshold t
wifi_fast_scan_threshold_t only used in fast scan mode once, now it enabled in all channel scan, the
wifi_fast_scan_threshold_t will be remove in version 4.0

Enumerations

enum wifi mode_t
Values:

WIFI MODE NULL=0
null mode

WIFI_MODE_STA
WiFi station mode

WIFI_MODE AP
WiFi soft-AP mode

WIFI_MODE_APSTA
WiFi station + soft-AP mode

WIFI_MODE_MAX

enum wifi_ country_ policy t
Values:

3.1. Wi-Fi API 169

Read the Docs Template Documentation, Release v3.2.5

WIFI_COUNTRY_POLICY_ AUTO

Country policy is auto, use the country info of AP to which the station is connected

WIFI_COUNTRY_ POLICY MANUAL
Country policy is manual, always use the configured country info

enum wifi auth_mode_t

Values:

WIFI_AUTH_OPEN=0
authenticate mode : open

WIFI_AUTH WEP
authenticate mode : WEP

WIFI_AUTH WPA PSK
authenticate mode : WPA_PSK

WIFI_AUTH WPA2 PSK
authenticate mode : WPA2_PSK

WIFI_AUTH WPA_ WPA2 PSK
authenticate mode : WPA_WPA2_PSK

WIFI AUTH WPA2 ENTERPRISE
authenticate mode : WPA2_ENTERPRISE

WIFI_AUTH MAX

enum wifi err_ reason_t

Values:

WIFI_REASON_UNSPECIFIED =1

WIFI_REASON AUTH_EXPIRE =2
WIFI_REASON_AUTH_ LEAVE =3
WIFI_REASON_ASSOC_EXPIRE =4
WIFI_REASON_ASSOC_TOOMANY =5
WIFI_REASON_NOT_AUTHED =6
WIFI_REASON_NOT_ASSOCED =7
WIFI_REASON_ASSOC_LEAVE = 3§
WIFI_REASON_ASSOC_NOT_AUTHED =9
WIFI_REASON_DISASSOC_PWRCAP_BAD = 10
WIFI_REASON_DISASSOC_SUPCHAN BAD =11
WIFI_REASON_IE_INVALID=13
WIFI_REASON_MIC_FAILURE = 14
WIFI_REASON_4WAY HANDSHAKE TIMEOUT =15
WIFI_REASON_GROUP_KEY UPDATE_TIMEOUT = 16
WIFI_REASON IE IN 4WAY DIFFERS =17
WIFI_REASON_GROUP_CIPHER INVALID =18

WIFI_REASON_PAIRWISE_CIPHER INVALID =19

170

Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

WIFI_REASON_AKMP_INVALID =20
WIFI_REASON_UNSUPP_RSN_IE_VERSION =21
WIFI_REASON_INVALID_RSN_IE_CAP =22
WIFI_REASON_802_1X AUTH_FAILED =23
WIFI_REASON_CIPHER SUITE_REJECTED =24
WIFI_REASON_BEACON_TIMEOUT = 200
WIFI_REASON_NO_AP_FOUND =201
WIFI_REASON_AUTH_FAIL =202
WIFI_REASON_ASSOC_FAIL =203
WIFI_REASON_HANDSHAKE TIMEOUT =204
WIFI_REASON_CONNECTION_FAIL =205
WIFI_REASON_AP_TSF_RESET = 206

enum wifi second_chan t
Values:

WIFI_SECOND CHAN NONE =0
the channel width is HT20

WIFI_SECOND_CHAN_ABOVE
the channel width is HT40 and the secondary channel is above the primary channel

WIFI_SECOND_CHAN_BELOW
the channel width is HT40 and the secondary channel is below the primary channel

enum wifi_scan_type t
Values:

WIFI _SCAN TYPE ACTIVE=0
active scan

WIFI_SCAN_TYPE_PASSIVE
passive scan

enum wifi_cipher type_t
Values:

WIFI_CIPHER TYPE_NONE =0
the cipher type is none

WIFI_CIPHER TYPE_WEP40
the cipher type is WEP40

WIFI_CIPHER TYPE_WEP104
the cipher type is WEP104

WIFI_CIPHER_ TYPE_TKIP
the cipher type is TKIP

WIFI_CIPHER TYPE_CCMP
the cipher type is CCMP

WIFI_CIPHER TYPE_ TKIP_CCMP
the cipher type is TKIP and CCMP

3.1. Wi-Fi API 171

Read the Docs Template Documentation, Release v3.2.5

WIFI_CIPHER TYPE_UNKNOWN
the cipher type is unknown

enum wifi ant t
WiFi1 antenna.

Values:

WIFI_ANT_ANTO
WiFi antenna 0

WIFI_ ANT ANT1
WiFi antenna 1

WIFI_ANT MAX
Invalid WiFi antenna

enum wifi scan_method t
Values:

WIFI_FAST SCAN=0
Do fast scan, scan will end after find SSID match AP

WIFI_ ALL CHANNEL_SCAN
All channel scan, scan will end after scan all the channel

enum wifi sort_method_ t

Values:

WIFI_CONNECT AP_BY SIGNAL=0
Sort match AP in scan list by RSSI

WIFI_CONNECT_AP_BY SECURITY
Sort match AP in scan list by security mode

enum wifi ps_type t
Values:

WIFI_PS_NONE
No power save

WIFI_PS_MIN MODEM
Minimum modem power saving. In this mode, station wakes up to receive beacon every DTIM period

WIFI_PS_MAX MODEM
Maximum modem power saving. In this mode, interval to receive beacons is determined by the lis-

ten_interval parameter in wifi_sta_config_t

enum wifi bandwidth t
Values:

WIFI_BW_HT20 =1
WIFI_BW_HT40

enum wifi_ storage_t
Values:

WIFI_STORAGE_FLASH
all configuration will strore in both memory and flash

WIFI_STORAGE_RAM
all configuration will only store in the memory

172 Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

enum wifi_vendor_ie_type t
Vendor Information Element type.

Determines the frame type that the IE will be associated with.
Values:

WIFI_VND_IE TYPE BEACON
WIFI_VND_IE_TYPE_ PROBE_REQ
WIFI_VND_IE_TYPE_ PROBE_RESP

WIFI_VND_IE_ TYPE ASSOC_REQ
WIFI_VND_IE_TYPE ASSOC_RESP

enum wifi vendor ie_id t
Vendor Information Element index.

Each IE type can have up to two associated vendor ID elements.
Values:

WIFI_VND_IE_ID_O

WIFI_VND_IE ID 1

enum wifi_promiscuous_pkt_type t
Promiscuous frame type.

Passed to promiscuous mode RX callback to indicate the type of parameter in the buffer.
Values:

WIFI_PKT MGMT
Management frame, indicates ‘buf’ argument is wifi_promiscuous_pkt_t

WIFI_PKT_CTRL
Control frame, indicates ‘buf’ argument is wifi_promiscuous_pkt_t

WIFI_PKT_ DATA
Data frame, indiciates ‘buf’ argument is wifi_promiscuous_pkt_t

WIFI_PKT MISC
Other type, such as MIMO etc. ‘buf’ argument is wifi_promiscuous_pkt_t but the payload is zero length.

enum wifi ant mode_ t
WiFi antenna mode.

Values:

WIFI_ANT_ MODE_ANTO
Enable WiFi antenna O only

WIFI_ANT_MODE_ANT1
Enable WiFi antenna 1 only

WIFI_ANT MODE_AUTO
Enable WiFi antenna 0 and 1, automatically select an antenna

WIFI_ANT MODE_MAX
Invalid WiFi enabled antenna

enum wifi phy rate t
WiFi PHY rate encodings.

3.1. Wi-Fi API 173

Read the Docs Template Documentation, Release v3.2.5

Values:

WIFI_PHY RATE_1M L =0x00
1 Mbps with long preamble

WIFI_PHY RATE 2M L =0x01
2 Mbps with long preamble

WIFI_PHY RATE_5M L =0x02
5.5 Mbps with long preamble

WIFI_PHY RATE 11M L=0x03
11 Mbps with long preamble

WIFI_PHY RATE_ 2M S =0x05
2 Mbps with short preamble

WIFI_PHY RATE 5M_S =(0x06
5.5 Mbps with short preamble

WIFI_PHY RATE 11M S =0x07
11 Mbps with short preamble

WIFI_PHY RATE_48M = 0x08

48 Mbps

WIFI_PHY RATE_24M = (0x09
24 Mbps

WIFI_PHY RATE_ 12M=0x0A
12 Mbps

WIFI_PHY RATE_6M=0x0B
6 Mbps

WIFI_PHY RATE_54M= (0x0C
54 Mbps

WIFI_PHY RATE_36M=0x0D
36 Mbps

WIFI_PHY RATE_ 18M=0xOE
18 Mbps

WIFI_PHY RATE_9M = OxOF
9 Mbps

WIFI_PHY RATE_ MCSO_LGI =0x10
MCSO0 with long GI, 6.5 Mbps for 20MHz, 13.5 Mbps for 40MHz

WIFI_PHY RATE MCS1_LGI =0x11
MCSI1 with long GI, 13 Mbps for 20MHz, 27 Mbps for 40MHz

WIFI_PHY RATE MCS2_LGI =0x12
MCS?2 with long GI, 19.5 Mbps for 20MHz, 40.5 Mbps for 40MHz

WIFI_PHY RATE MCS3_LGI =0x13
MCS3 with long GI, 26 Mbps for 20MHz, 54 Mbps for 40MHz

WIFI_PHY RATE_MCS4 LGI =0x14
MCS4 with long GI, 39 Mbps for 20MHz, 81 Mbps for 40MHz

WIFI_PHY RATE MCS5_LGI =0x15
MCSS5 with long GI, 52 Mbps for 20MHz, 108 Mbps for 40MHz

174

Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

WIFI_PHY RATE_MCS6_LGI =0x16
MCS6 with long GI, 58.5 Mbps for 20MHz, 121.5 Mbps for 40MHz

WIFI_PHY RATE MCS7_LGI =0x17
MCS7 with long GI, 65 Mbps for 20MHz, 135 Mbps for 40MHz

WIFI_PHY RATE MCSO_ SGI =0x18
MCSO0 with short GI, 7.2 Mbps for 20MHz, 15 Mbps for 40MHz

WIFI_PHY RATE MCS1_SGI =0x19
MCS1 with short GI, 14.4 Mbps for 20MHz, 30 Mbps for 40MHz

WIFI_PHY RATE MCS2 SGI =0x1A
MCS2 with short GI, 21.7 Mbps for 20MHz, 45 Mbps for 40MHz

WIFI_PHY RATE_MCS3_SGI =0x1B
MCS3 with short GI, 28.9 Mbps for 20MHz, 60 Mbps for 40MHz

WIFI PHY RATE MCS4 SGI =0x1C
MCS4 with short GI, 43.3 Mbps for 20MHz, 90 Mbps for 40MHz

WIFI_PHY RATE MCS5_SGI =0x1D
MCSS5 with short GI, 57.8 Mbps for 20MHz, 120 Mbps for 40MHz

WIFI _PHY RATE MCS6 SGI =0x1E
MCS6 with short GI, 65 Mbps for 20MHz, 135 Mbps for 40MHz

WIFI_PHY RATE_MCS7_SGI =O0xIF
MCS7 with short GI, 72.2 Mbps for 20MHz, 150 Mbps for 40MHz

WIFI_PHY RATE_LORA_ 250K =(0x29
250 Kbps

WIFI_PHY RATE_LORA_500K = 0x2A
500 Kbps

WIFI_PHY RATE MAX

enum wifi ioctl comd t
WiFi ioctl command type.

Values:

WIFI_IOCTL_SET STA HT2040_COEX=1
Set the configuration of STA’s HT2040 coexist management

WIFI_IOCTL_GET_STA_ HT2040_COEX
Get the configuration of STA’s HT2040 coexist management

WIFI_IOCTL_MAX

3.1.2 Smart Config

API Reference

Header File

* esp32/include/esp_smartconfig.h

3.1. Wi-Fi API

175

https://github.com/espressif/esp-idf/blob/v3.2.5/components/esp32/include/esp_smartconfig.h

Read the Docs Template Documentation, Release v3.2.5

Functions

const char *esp_smartconfig get_version (void)
Get the version of SmartConfig.
Return
* SmartConfig version const char.
esp_err_t esp_smartconfig_start (sc_callback_t cb, ...)
Start SmartConfig, config ESP device to connect AP. You need to broadcast information by phone APP. Device
sniffer special packets from the air that containing SSID and password of target AP.
Attention 1. This API can be called in station or softAP-station mode.
Attention 2. Can not call esp_smartconfig_start twice before it finish, please call esp_smartconfig_stop first.
Return
e ESP_OK: succeed
¢ others: fail
Parameters
e cb: SmartConfig callback function.
e .. .:log 1: UART output logs; 0: UART only outputs the result.

esp_err_t esp_smartconfig_stop (void)
Stop SmartConfig, free the buffer taken by esp_smartconfig_start.

Attention Whether connect to AP succeed or not, this API should be called to free memory taken by smartcon-
fig_start.
Return
* ESP_OK: succeed
¢ others: fail
esp_err_t esp_esptouch_set_timeout (uint8_t time_s)
Set timeout of SmartConfig process.
Attention Timing starts from SC_STATUS_FIND_CHANNEL status. SmartConfig will restart if timeout.
Return
¢ ESP_OK: succeed
e others: fail
Parameters
e time_s: range 15s~255s, offset:45s.
esp_err_t esp_smartconfig set_type (smartconfig_type_t type)
Set protocol type of SmartConfig.
Attention If users need to set the SmartConfig type, please set it before calling esp_smartconfig_start.

Return

176 Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

e ESP_OK: succeed

* others: fail
Parameters

* type: Choose from the smartconfig_type_t.

esp_err_t esp_smartconfig fast_mode (bool enable)

Set mode of SmartConfig. default normal mode.
Attention 1. Please call it before API esp_smartconfig_start.
Attention 2. Fast mode have corresponding APP(phone).
Attention 3. Two mode is compatible.
Return

e ESP_OK: succeed

* others: fail
Parameters

¢ enable: false-disable(default); true-enable;

Type Definitions

typedef void (*sc_callback_t) (smartconfig_status_t status, void *pdata)
The callback of SmartConfig, executed when smart-config status changed.
Parameters
* status: Status of SmartConfig:

SC_STATUS_GETTING_SSID_PSWD : pdata is a pointer of smartconfig_type_t, means config
type.
SC_STATUS_LINK : pdata is a pointer to wifi_config_t.

SC_STATUS_LINK_OVER : pdata is a pointer of phone’s IP address(4 bytes) if pdata unequal
NULL.

otherwise : parameter void *pdata is NULL.

* pdata: According to the different status have different values.

Enumerations

enum smartconfig_status_t
Values:

SC_STATUS_WAIT =0
Waiting to start connect

SC_STATUS_FIND_CHANNEL
Finding target channel

SC_STATUS_GETTING_SSID_PSWD
Getting SSID and password of target AP

3.1. Wi-Fi API 177

Read the Docs Template Documentation, Release v3.2.5

SC_STATUS_LINK
Connecting to target AP

SC_STATUS_LINK_OVER
Connected to AP successfully

enum smartconfig type_ t
Values:

SC_TYPE_ESPTOUCH =0
protocol: ESPTouch

SC_TYPE_AIRKISS
protocol: AirKiss

SC_TYPE_ESPTOUCH_AIRKISS
protocol: ESPTouch and AirKiss

3.1.3 ESP-NOW

Overview

ESP-NOW is a kind of connectionless WiFi communication protocol which is defined by Espressif. In ESP-NOW,
application data is encapsulated in vendor-specific action frame and then transmitted from one WiFi device to another
without connection. CTR with CBC-MAC Protocol(CCMP) is used to protect the action frame for security. ESP-NOW
is widely used in smart light, remote controlling, sensor, etc.

Frame Format

ESP-NOW uses vendor-specific action frame to transmit ESP-NOW data. The format of vendor-specific action frame
is as follows:

| MAC Header | Category Code | Organization Identifier | Vendor Specific Content |
—FCS |

1 byte 3 bytes 7~255 bytes

» Category Code: The Category field is set to the value(127) indicating the vendor-specific category.

* Organization Identifier: The Organization Identifier contains a unique identifier(0x18fe34) which is the first three bytes
of MAC address applied by Espressif.

* Vendor Specific Content: The Vendor Specific Content contains vendor-specific field as follows:

1 byte 1 byte 3 bytes 1 byte 1 byte 0~250 bytes

* Element ID: The Element ID field is set to the value(221) indicating the vendor-specific element.
* Length: The length is the total length of Organization Identifier, Type, Version and Body.

* Organization Identifier: The Organization Identifier contains a unique identifier(0x18fe34) which is the first three bytes
of MAC address applied by Espressif.

178 Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

» Type: The Type field is set to the value(4) indicating ESP-NOW.
* Version: The Version field is set to the version of ESP-NOW.
* Body: The Body contains the ESP-NOW data.

As ESP-NOW is connectionless, the MAC header is a little different from that of standard frames. The FromDS and
ToDS bits of FrameControl field are both 0. The first address field is set to the destination address. The second address
field is set to the source address. The third address field is set to broadcast address(0xff:0xff:0xff:0xff:0x ff:0xf¥).

Security

ESP-NOW use CCMP method which can be referenced in IEEE Std. 802.11-2012 to protect the vendor-specific action
frame. The WiFi device maintains a Primary Master Key(PMK) and several Local Master Keys(LMK). The lengths
of them are 16 bytes. PMK is used to encrypt LMK with AES-128 algorithm. Call esp_now_set_pmk () to set
PMK. If PMK is not set, a default PMK will be used. If LMK of the paired device is set, it will be used to encrypt the
vendor-specific action frame with CCMP method. The maximum number of different LMKSs is six. Do not support
encrypting multicast vendor-specific action frame.

Initialization and De-initialization

Call esp_now_init () to initialize ESP-NOW and esp_now_deinit () to de-initialize ESP-NOW. ESP-NOW
data must be transmitted after WiFi is started, so it is recommended to start WiFi before initializing ESP-NOW and
stop WiFi after de-initializing ESP-NOW. When esp_now_deinit () is called, all of the information of paired
devices will be deleted.

Add Paired Device

Before sending data to other device, call esp_now_add_peer () to add it to the paired device list first. The
maximum number of paired devices is twenty. If security is enabled, the LMK must be set. ESP-NOW data can be
sent from station or softap interface. Make sure that the interface is enabled before sending ESP-NOW data. A device
with broadcast MAC address must be added before sending broadcast data. The range of the channel of paired device
is from O to 14. If the channel is set to 0, data will be sent on the current channel. Otherwise, the channel must be set
as the channel that the local device is on.

Send ESP-NOW Data

Call esp_now_send () tosend ESP-NOW data and esp_now_register_send_cb toregister sending callback
function. It will return ESP_NOW_SEND_SUCCESS in sending callback function if the data is received successfully
on MAC layer. Otherwise, it will return ESP_NOW_SEND_FAIL. There are several reasons failing to send ESP-NOW
data, for example, the destination device doesn’t exist, the channels of the devices are not the same, the action frame
is lost when transmiting on the air, etc. It is not guaranteed that application layer can receive the data. If necessary,
send back ack data when receiving ESP-NOW data. If receiving ack data timeout happens, retransmit the ESP-NOW
data. A sequence number can also be assigned to ESP-NOW data to drop the duplicated data.

If there is a lot of ESP-NOW data to send, call esp_now_send () to send less than or equal to 250 bytes of data once
a time. Note that too short interval between sending two ESP-NOW datas may lead to disorder of sending callback
function. So, it is recommended that sending the next ESP-NOW data after the sending callback function of previous
sending has returned. The sending callback function runs from a high-priority WiFi task. So, do not do lengthy
operations in the callback function. Instead, post necessary data to a queue and handle it from a lower priority task.

3.1. Wi-Fi API 179

Read the Docs Template Documentation, Release v3.2.5

Receiving ESP-NOW Data

Call esp_now_register_recv_cb to register receiving callback function. When receiving ESP-NOW data,
receiving callback function is called. The receiving callback function also runs from WiFi task. So, do not do lengthy
operations in the callback function. Instead, post necessary data to a queue and handle it from a lower priority task.

API Reference

Header File

* esp32/include/esp_now.h

Functions

esp_err_t esp_now_init (void)
Initialize ESPNOW function.
Return
e ESP_OK : succeed
e ESP_ERR_ESPNOW_INTERNAL : Internal error
esp_err_t esp_now_deinit (void)
De-initialize ESPNOW function.
Return
e ESP_OK : succeed
esp_err_t esp_now_get_version (uint32_t *version)
Get the version of ESPNOW.
Return
e ESP_OK : succeed
* ESP_ERR_ESPNOW_ARG : invalid argument
Parameters
e version: ESPNOW version
esp_err_t esp_now_register_recv_cb (esp_now_recv_cbh_t cb)
Register callback function of receiving ESPNOW data.
Return
e ESP_OK : succeed
¢ ESP_ERR_ESPNOW_NOT_INIT : ESPNOW is not initialized
e ESP_ERR_ESPNOW_INTERNAL : internal error
Parameters

* cb: callback function of receiving ESPNOW data

180

Chapter 3. API Reference

https://github.com/espressif/esp-idf/blob/v3.2.5/components/esp32/include/esp_now.h

Read the Docs Template Documentation, Release v3.2.5

esp_err_t esp_now_unregister_recv_cb (void)
Unregister callback function of receiving ESPNOW data.
Return
e ESP_OK : succeed
e ESP_ERR_ESPNOW_NOT_INIT : ESPNOW is not initialized
esp_err_t esp_now_register_send_cb (esp_now_send_cb_t cb)
Register callback function of sending ESPNOW data.
Return
* ESP_OK : succeed
e ESP_ERR_ESPNOW_NOT_INIT : ESPNOW is not initialized
e ESP_ERR_ESPNOW_INTERNAL : internal error
Parameters
* cb: callback function of sending ESPNOW data
esp_err_t esp_now_unregister_ send_cb (void)
Unregister callback function of sending ESPNOW data.
Return
e ESP OK : succeed
e ESP_ERR_ESPNOW_NOT_INIT : ESPNOW is not initialized
esp_err_t esp_now_send (const uint8_t *peer_addr, const uint8_t *data, size_t len)
Send ESPNOW data.
Attention 1. If peer_addr is not NULL, send data to the peer whose MAC address matches peer_addr
Attention 2. If peer_addr is NULL, send data to all of the peers that are added to the peer list
Attention 3. The maximum length of data must be less than ESP_NOW_MAX_DATA_LEN
Attention 4. The buffer pointed to by data argument does not need to be valid after esp_now_send returns
Return
* ESP_OK : succeed
¢ ESP_ERR_ESPNOW_NOT_INIT : ESPNOW is not initialized
* ESP_ERR_ESPNOW_ARG : invalid argument
e ESP_ERR_ESPNOW_INTERNAL : internal error
e ESP_ERR_ESPNOW_NO_MEM : out of memory
ESP_ERR_ESPNOW_NOT_FOUND : peer is not found
o ESP_ERR_ESPNOW_IF : current WiFi interface doesn’t match that of peer

Parameters
* peer_addr: peer MAC address

e data: data to send

3.1. Wi-Fi API 181

Read the Docs Template Documentation, Release v3.2.5

e len: length of data

esp_err_t esp_now_add_peer (const esp_now_peer_info_t *peer)
Add a peer to peer list.
Return
e ESP_OK : succeed
¢ ESP_ERR_ESPNOW_NOT_INIT : ESPNOW is not initialized
¢ ESP_ERR_ESPNOW_ARG : invalid argument
* ESP_ERR_ESPNOW_FULL : peer list is full
e ESP_ERR_ESPNOW_NO_MEM : out of memory
* ESP_ERR_ESPNOW_EXIST : peer has existed
Parameters
* peer: peer information
esp_err_t esp_now_del_peer (const uint8_t *peer_addr)
Delete a peer from peer list.
Return
* ESP_OK : succeed
e ESP_ERR_ESPNOW_NOT_INIT : ESPNOW is not initialized
* ESP_ERR_ESPNOW_ARG : invalid argument
e ESP_ERR_ESPNOW_NOT_FOUND : peer is not found
Parameters
e peer_addr: peer MAC address
esp_err_t esp_now_mod_peer (const esp_now_peer_info_t *peer)
Modify a peer.
Return
e ESP_OK : succeed
* ESP_ERR_ESPNOW_NOT_INIT : ESPNOW is not initialized
* ESP_ERR_ESPNOW_ARG : invalid argument
* ESP_ERR_ESPNOW_FULL : peer list is full
Parameters
* peer: peer information
esp_err_t esp_now_get_peer (const uintd_t *peer_addr, esp_now_peer_info_t *peer)
Get a peer whose MAC address matches peer_addr from peer list.
Return
e ESP _OK : succeed
e ESP_ERR_ESPNOW_NOT_INIT : ESPNOW is not initialized

182 Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

* ESP_ERR_ESPNOW_ARG : invalid argument
e ESP_ERR_ESPNOW_NOT_FOUND : peer is not found
Parameters
* peer_addr: peer MAC address
* peer: peer information
esp_err_t esp_now_fetch_peer (bool from_head, esp_now_peer_info_t *peer)
Fetch a peer from peer list.
Return
* ESP_OK : succeed
e ESP_ERR_ESPNOW_NOT_INIT : ESPNOW is not initialized
* ESP_ERR_ESPNOW_ARG : invalid argument
e ESP_ERR_ESPNOW_NOT_FOUND : peer is not found
Parameters
e from_head: fetch from head of list or not
* peer: peer information
bool esp_now_is_peer_exist (const uint8_t *peer_addr)
Peer exists or not.
Return
* true : peer exists
« false : peer not exists
Parameters
* peer_addr: peer MAC address
esp_err_t esp_now_get_peer_num (esp_now_peer_num_t *num)
Get the number of peers.
Return
* ESP_OK : succeed
e ESP_ERR_ESPNOW_NOT_INIT : ESPNOW is not initialized
* ESP_ERR_ESPNOW_ARG : invalid argument
Parameters
e num: number of peers
esp_err_t esp_now_set_pmk (const uint8_t *pmk)
Set the primary master key.
Attention 1. primary master key is used to encrypt local master key
Return

e ESP_OK : succeed

3.1. Wi-Fi API

183

Read the Docs Template Documentation, Release v3.2.5

* ESP_ERR_ESPNOW_NOT_INIT : ESPNOW is not initialized
* ESP_ERR_ESPNOW_ARG : invalid argument
Parameters

* pmk: primary master key

Structures

struct esp_now_peer_info
ESPNOW peer information parameters.

Public Members
uint8_t peer_ addr[ESP_NOW_ETH_ ALEN]
ESPNOW peer MAC address that is also the MAC address of station or softap

uint8_t 1lmk[ESP_NOW_KEY LEN]
ESPNOW peer local master key that is used to encrypt data

uint8_t channel
Wi-Fi channel that peer uses to send/receive ESPNOW data. If the value is 0, use the current channel
which station or softap is on. Otherwise, it must be set as the channel that station or softap is on.

wifi_interface_t 1fidx
Wi-Fi interface that peer uses to send/receive ESPNOW data

bool encrypt
ESPNOW data that this peer sends/receives is encrypted or not

void *priv
ESPNOW peer private data

struct esp_now_peer num
Number of ESPNOW peers which exist currently.

Public Members
int total_num
Total number of ESPNOW peers, maximum value is ESP_NOW_MAX_TOTAL_PEER_NUM

int encrypt_num
Number of encrypted ESPNOW peers, maximum value is ESP_NOW_MAX_ENCRYPT_PEER_NUM

Macros

ESP_ERR ESPNOW_BASE
ESPNOW error number base.

ESP_ERR_ESPNOW_NOT INIT
ESPNOW is not initialized.

ESP_ERR_ESPNOW_ARG
Invalid argument

184 Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

ESP_ERR_ESPNOW_NO_MEM
Out of memory

ESP_ERR ESPNOW_FULL
ESPNOW peer list is full

ESP_ERR_ESPNOW_NOT_FOUND
ESPNOW peer is not found

ESP_ERR_ ESPNOW_INTERNAL
Internal error

ESP_ERR_ESPNOW_EXIST
ESPNOW peer has existed

ESP_ERR ESPNOW_TIF
Interface error

ESP_NOW_ETH_ALEN
Length of ESPNOW peer MAC address

ESP_NOW_KEY_ LEN
Length of ESPNOW peer local master key

ESP_NOW_MAX TOTAL_ PEER_NUM
Maximum number of ESPNOW total peers

ESP_NOW_MAX_ ENCRYPT_PEER NUM
Maximum number of ESPNOW encrypted peers

ESP_NOW_MAX DATA_LEN
Maximum length of ESPNOW data which is sent very time

Type Definitions

typedef struct esp_now_peer_info esp_now_peer_info_t
ESPNOW peer information parameters.

typedef struct esp_now_peer_num esp_now_peer_num t
Number of ESPNOW peers which exist currently.

typedef void (*esp_now_recv_cb_t) (const uint8_t *mac_addr, const uint8_t *data, int data_len)
Callback function of receiving ESPNOW data.
Parameters
* mac_addr: peer MAC address
e data: received data
e data_len: length of received data
typedef void (*esp_now_send_cb_t) (const uint8_t *mac_addr, esp_now_send_status_t status)
Callback function of sending ESPNOW data.
Parameters
* mac_addr: peer MAC address

e status: status of sending ESPNOW data (succeed or fail)

3.1. Wi-Fi API 185

Read the Docs Template Documentation, Release v3.2.5

Enumerations

enum esp_now_send_status_t
Status of sending ESPNOW data .

Values:

ESP_NOW_SEND_SUCCESS =0
Send ESPNOW data successfully

ESP_NOW_SEND_ FAIL
Send ESPNOW data fail

Example code for this API section is provided in wifi directory of ESP-IDF examples.

3.2 Mesh API

3.2.1 ESP-MESH Programming Guide
This is a programming guide for ESP-MESH, including the API reference and coding examples. This guide is split
into the following parts:
1. ESP-MESH Programming Model
2. Writing an ESP-MESH Application
3. Application Examples
4. API Reference
For documentation regarding the ESP-MESH protocol, please see the ESP-MESH API Guide.

ESP-MESH Programming Model
Software Stack

The ESP-MESH software stack is built atop the Wi-Fi Driver/FreeRTOS and may use the LwIP Stack in some instances
(i.e. the root node). The following diagram illustrates the ESP-MESH software stack.

Application
Mesh Stack Frotocol:
(self-arganized HTTP, DNS, S
i DHCP, ...
RTOS :;:i::;;g' Components
(freeRTOS) | fiow control, ...) | Network Stack(LwlIP)
WiFi Driver
Platform HAL

Fig. 1: ESP-MESH Software Stack

186 Chapter 3. API Reference

https://github.com/espressif/esp-idf/tree/v3.2.5/examples/wifi

Read the Docs Template Documentation, Release v3.2.5

System Events

An application interfaces with ESP-MESH via ESP-MESH Events. Since ESP-MESH is built atop the Wi-Fi stack, it
is also possible for the application to interface with the Wi-Fi driver via the Wi-Fi Event Task. The following diagram
illustrates the interfaces for the various System Events in an ESP-MESH application.

- ™) System default handler
WiFi Stack WiFi events
g L
- Event Task
IF evants
LwlIP Stack
W Mesh event callback handler
IP events
- o c
Application Task
" A Mesh events
Mesh Stack ?|\
. ,»

Fig. 2: ESP-MESH System Events Delivery

The mesh_event_id_t defines all possible ESP-MESH system events and can indicate events such as the connec-
tion/disconnection of parent/child. Before ESP-MESH system events can be used, the application must register a Mesh
Event Callback via esp_mesh_set_config (). The callback is used to receive events from the ESP-MESH stack
as well as the LwIP Stack and should contain handlers for each event relevant to the application.

Typical use cases of system events include using events such as MESH EVENT PARENT CONNECTED and
MESH_EVENT _CHILD CONNECTED toindicate when a node can begin transmitting data upstream and downstream
respectively. Likewise, MESH EVENT ROOT_GOT_IP and MESH EVENT ROOT_LOST_IP can be used to indi-
cate when the root node can and cannot transmit data to the external IP network.

Warning: When using ESP-MESH under self-organized mode, users must ensure that no calls to Wi-Fi API
are made. This is due to the fact that the self-organizing mode will internally make Wi-Fi API calls to con-
nect/disconnect/scan etc. Any Wi-Fi calls from the application (including calls from callbacks and handlers
of Wi-Fi events) may interfere with ESP-MESH’s self-organizing behavior. Therefore, user’s should not call
Wi-Fi APIs after esp_mesh_start () is called, and before esp _mesh stop () is called.

LwiP & ESP-MESH

The application can access the ESP-MESH stack directly without having to go through the LwIP stack. The LwIP
stack is only required by the root node to transmit/receive data to/from an external IP network. However, since every
node can potentially become the root node (due to automatic root node selection), each node must still initialize the
LwIP stack.

Each node is required to initialize LWIP by calling t coip_adapter_init (). Inorder to prevent non-root node
access to LwIP, the application should stop the following services after LwIP initialization:

e DHCP server service on the softAP interface.

¢ DHCEP client service on the station interface.

3.2. Mesh API 187

Read the Docs Template Documentation, Release v3.2.5

The following code snippet demonstrates how to initialize LwIP for ESP-MESH applications.

/+ tcpip initialization =*/
tcpip_adapter_init () ;
/ *

* for mesh

* stop DHCP server on softAP interface by default

* stop DHCP client on station interface by default

*/
ESP_ERROR_CHECK (tcpip_adapter_dhcps_stop (TCPIP_ADAPTER_IF_AP));
ESP_ERROR_CHECK (tcpip_adapter_dhcpc_stop (TCPIP_ADAPTER_IF_STA));
/+ do not specify system event callback, use NULL instead. x/
ESP_ERROR_CHECK (esp_event_loop_init (NULL, NULL));

Note: ESP-MESH requires a root node to be connected with a router. Therefore, in the event that a node becomes
the root, the corresponding handler must start the DHCP client service and immediately obtain an IP address.
Doing so will allow other nodes to begin transmitting/receiving packets to/from the external IP network. However,
this step is unnecessary if static IP settings are used.

Writing an ESP-MESH Application

The prerequisites for starting ESP-MESH is to initialize LwIP and Wi-Fi, The following code snippet demonstrates
the necessary prerequisite steps before ESP-MESH itself can be initialized.

tcpip_adapter_init () ;
/ *

* for mesh

* stop DHCP server on softAP interface by default

* stop DHCP client on station interface by default

*/
ESP_ERROR_CHECK (tcpip_adapter_dhcps_stop (TCPIP_ADAPTER_IF_AP));
ESP_ERROR_CHECK (tcpip_adapter_dhcpc_stop (TCPIP_ADAPTER_IF_STA));
/+ do not specify system event callback, use NULL instead. x/
ESP_ERROR_CHECK (esp_event_loop_init (NULL, NULL));

/% Wi-Fi initialization */

wifi_init_config_t config = WIFI_INIT_CONFIG_DEFAULT () ;
ESP_ERROR_CHECK (esp_wifi_init (&confiqg));

ESP_ERROR_CHECK (esp_wifi_set_storage (WIFI_STORAGE_FLASH));
ESP_ERROR_CHECK (esp_wifi_start());

After initializing LwIP and Wi-Fi, the process of getting an ESP-MESH network up and running can be summarized
into the following three steps:

1. Initialize Mesh
2. Configuring an ESP-MESH Network
3. Start Mesh

Initialize Mesh

The following code snippet demonstrates how to initialize ESP-MESH

188 Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

/* mesh initialization =/
ESP_ERROR_CHECK (esp_mesh_init ());

Configuring an ESP-MESH Network

ESP-MESH is configured via esp_mesh_set_config () which receives its arguments using the mesh_cfg t
structure. The structure contains the following parameters used to configure ESP-MESH:

Parameter Description

Channel Range from 1 to 14

Event Callback Callback for Mesh Events, see mesh_event_ch_t

Mesh ID ID of ESP-MESH Network, see mesh_addr_t

Router Router Configuration, see mesh_router_t

Mesh AP Mesh AP Configuration, see mesh_ap_cfqg_t

Crypto Functions | Crypto Functions for Mesh IE, see mesh_crypto_funcs_t

The following code snippet demonstrates how to configure ESP-MESH.

/+ Enable the Mesh IE encryption by default x/

mesh_cfg_t cfg = MESH_INIT_CONFIG_DEFAULT();

/* mesh ID */

memcpy ((uint8_t +) &cfg.mesh_id, MESH_ID, 6);

/+* mesh event callback =/

cfg.event_cb = &mesh_event_handler;

/* channel (must match the router's channel) x*/

cfg.channel = CONFIG_MESH_CHANNEL;

/* router #*/

cfg.router.ssid_len = strlen (CONFIG_MESH_ROUTER_SSID) ;

memcpy ((uint8_t *) &cfg.router.ssid, CONFIG_MESH_ROUTER_SSID, cfg.router.ssid_len);

memcpy ((uint8_t «) &cfg.router.password, CONFIG_MESH_ROUTER_PASSWD,
strlen (CONFIG_MESH_ROUTER_PASSWD)) ;

/% mesh SOftAP x/

cfg.mesh_ap.max_connection = CONFIG_MESH_AP_CONNECTIONS;

memcpy ((uint8_t x) &cfg.mesh_ap.password, CONFIG_MESH_AP_PASSWD,
strlen (CONFIG_MESH_AP_PASSWD)) ;

ESP_ERROR_CHECK (esp_mesh_set_config(&cfqg));

Start Mesh

The following code snippet demonstrates how to start ESP-MESH.

/+ mesh start =%/
ESP_ERROR_CHECK (esp_mesh_start ());

After starting ESP-MESH, the application should check for ESP-MESH events to determine when it has connected
to the network. After connecting, the application can start transmitting and receiving packets over the ESP-MESH
network using esp_mesh_send () and esp_mesh_recv ().

Application Examples

ESP-IDF contains these ESP-MESH example projects:

3.2. Mesh API 189

Read the Docs Template Documentation, Release v3.2.5

The Internal Communication Example demonstrates how to setup a ESP-MESH network and have the root node send
a data packet to every node within the network.

The Manual Networking Example demonstrates how to use ESP-MESH without the self-organizing features. This
example shows how to program a node to manually scan for a list of potential parent nodes and select a parent node
based on custom criteria.

API Reference

Header File

* esp32/include/esp_mesh.h

Functions

esp_err_t esp_mesh_init (void)
Mesh initialization.
¢ Check whether Wi-Fi is started.

¢ Initialize mesh global variables with default values.

Attention This API shall be called after Wi-Fi is started.
Return

* ESP_OK

« ESP_FAIL

esp_err_t esp_mesh_deinit (void)
Mesh de-initialization.

* Release resources and stop the mesh

Return
* ESP_OK
« ESP_FAIL
esp_err_t esp_mesh_start (void)
Start mesh.
¢ Initialize mesh IE.
» Start mesh network management service.
* Create TX and RX queues according to the configuration.

* Register mesh packets receive callback.

Attention This API shall be called after mesh initialization and configuration.
Return

* ESP_OK

190 Chapter 3. API Reference

https://github.com/espressif/esp-idf/tree/v3.2.5/examples/mesh/internal_communication
https://github.com/espressif/esp-idf/tree/v3.2.5/examples/mesh/manual_networking
https://github.com/espressif/esp-idf/blob/v3.2.5/components/esp32/include/esp_mesh.h

Read the Docs Template Documentation, Release v3.2.5

ESP_FAIL

* ESP_ERR_MESH_NOT_INIT
ESP_ERR_MESH_NOT_CONFIG
 ESP_ERR_MESH_NO_MEMORY

esp_err_t esp_mesh_stop (void)
Stop mesh.
¢ Deinitialize mesh IE.
 Disconnect with current parent.
» Disassociate all currently associated children.
* Stop mesh network management service.
» Unregister mesh packets receive callback.
¢ Delete TX and RX queues.
* Release resources.

* Restore Wi-Fi softAP to default settings if Wi-Fi dual mode is enabled.

Return
« ESP_ OK
* ESP_FAIL

esp_err_t esp_mesh_send (const mesh_addr_t *to, const mesh_data_t *data, int flag, const

mesh_opt_t opt[], int opt_count)
Send a packet over the mesh network.

» Send a packet to any device in the mesh network.

* Send a packet to external IP network.

Attention This API is not reentrant.
Return
* ESP_OK
* ESP_FAIL
e ESP_ERR_MESH_ARGUMENT
e ESP_ERR_MESH_NOT_START
* ESP_ERR_MESH_DISCONNECTED
* ESP_ERR_MESH_OPT_UNKNOWN
e ESP_ERR_MESH_EXCEED_MTU
* ESP_ERR_MESH_NO_MEMORY
¢« ESP_ERR_MESH_TIMEOUT
* ESP_ERR_MESH_QUEUE_FULL
e ESP_ERR_MESH_NO_ROUTE_FOUND

3.2. Mesh API 191

Read the Docs Template Documentation, Release v3.2.5

» ESP_ERR_MESH_DISCARD
Parameters
* to: the address of the final destination of the packet
— If the packet is to the root, set this parameter to NULL.

— If the packet is to an external IP network, set this parameter to the IPv4:PORT combination. This
packet will be delivered to the root firstly, then the root will forward this packet to the final IP
server address.

e data: pointer to a sending mesh packet

— Field size should not exceed MESH_MPS. Note that the size of one mesh packet should not
exceed MESH_MTU.

— Field proto should be set to data protocol in use (default is MESH_PROTO_BIN for binary).

— Field tos should be set to transmission tos (type of service) in use (default is MESH_TOS_P2P
for point-to-point reliable).

* flag: bitmap for data sent
— Speed up the route search
+ If the packet is to the root and “to” parameter is NULL, set this parameter to 0.
+ If the packet is to an internal device, MESH_DATA_P2P should be set.

+ If the packet is to the root (“to” parameter isn’t NULL) or to external IP network,
MESH_DATA_TODS should be set.

+ If the packet is from the root to an internal device, MESH_DATA_FROMDS should be set.
— Specify whether this API is block or non-block, block by default
+ If needs non-block, MESH_DATA_NONBLOCK should be set.

— In the situation of the root change, MESH_DATA_DROP identifies this packet can be dropped by
the new root for upstream data to external IP network, we try our best to avoid data loss caused
by the root change, but there is a risk that the new root is running out of memory because most of
memory is occupied by the pending data which isn’t read out in time by esp_mesh_recv_toDS().

Generally, we suggest esp_mesh_recv_toDS() is called after a connection with IP network
is created. Thus data outgoing to external IP network via socket is just from reading
esp_mesh_recv_toDS() which avoids unnecessary memory copy.

e opt: options

— In case of sending a packet to a certain group, MESH_OPT_SEND_GROUP is a good choice. In
this option, the value field should be set to the target receiver addresses in this group.

— Root sends a packet to an internal device, this packet is from external IP network in case the
receiver device responds this packet, MESH_OPT_RECV_DS_ADDR is required to attach the
target DS address.

* opt_count: option count
— Currently, this API only takes one option, so opt_count is only supported to be 1.

esp_err_t esp_mesh_recv (mesh_addr_t *from, mesh_data_t *data, int timeout_ms, int *flag, mesh_opt_t

optl[], int opt_count)
Receive a packet targeted to self over the mesh network.

flag could be MESH_DATA_FROMDS or MESH_DATA_TODS.

192 Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

Attention Mesh RX queue should be checked regularly to avoid running out of memory.

» Use esp_mesh_get_rx_pending() to check the number of packets available in the queue waiting to be
received by applications.

Return

* ESP_OK

* ESP_ERR_MESH_ARGUMENT
ESP_ERR_MESH_NOT_START
ESP_ERR_MESH_TIMEOUT
* ESP_ERR_MESH_DISCARD

Parameters
e from: the address of the original source of the packet
* data: pointer to the received mesh packet
— Field proto is the data protocol in use. Should follow it to parse the received data.
— Field tos is the transmission tos (type of service) in use.

* timeout_ms: wait time if a packet isn’t immediately available (0:no wait, portMAX_DELAY:wait
forever)

e flag: bitmap for data received
— MESH_DATA_FROMDS represents data from external IP network
— MESH_DATA_TODS represents data directed upward within the mesh network
Parameters
* opt: options desired to receive
— MESH_OPT_RECV_DS_ADDR attaches the DS address
* opt_count: option count desired to receive
— Currently, this API only takes one option, so opt_count is only supported to be 1.
esp_err_t esp_mesh_recv_toDS (mesh_addr_t *from, mesh_addr_t *to, mesh_data_t *data, int time-
out_ms, int *flag, mesh_opt_t opt[], int opt_count)
Receive a packet targeted to external IP network.
» Root uses this API to receive packets destined to external IP network

* Root forwards the received packets to the final destination via socket.

* If no socket connection is ready to send out the received packets and this esp_mesh_recv_toDS() hasn’t
been called by applications, packets from the whole mesh network will be pending in toDS queue.

Use esp_mesh_get_rx_pending() to check the number of packets available in the queue waiting to be received
by applications in case of running out of memory in the root.

Using esp_mesh_set_xon_gsize() users may configure the RX queue size, default:32. If this size is too large,
and esp_mesh_recv_toDS() isn’t called in time, there is a risk that a great deal of memory is occupied by the
pending packets. If this size is too small, it will impact the efficiency on upstream. How to decide this value
depends on the specific application scenarios.

flag could be MESH_DATA_TODS.
Attention This API is only called by the root.

3.2. Mesh API 193

Read the Docs Template Documentation, Release v3.2.5

Return
¢ ESP_OK
¢ ESP_ERR_MESH_ARGUMENT
e ESP_ERR_MESH_NOT_START
¢ ESP_ERR_MESH_TIMEOUT
* ESP_ERR_MESH_DISCARD
« ESP_ERR_MESH_RECV_RELEASE
Parameters
e from: the address of the original source of the packet
* to: the address contains remote IP address and port (IPv4:PORT)
e data: pointer to the received packet
— Contain the protocol and applications should follow it to parse the data.

* timeout_ms: wait time if a packet isn’t immediately available (0:no wait, portMAX_DELAY:wait
forever)

e flag: bitmap for data received

— MESH_DATA_TODS represents the received data target to external IP network. Root shall for-
ward this data to external IP network via the association with router.

Parameters
e opt: options desired to receive

e opt_count: option count desired to receive

esp_err_t esp_mesh_set_config (const mesh_cfg_t *config)

Set mesh stack configuration.

* Use MESH_INIT_CONFIG_DEFAULT() to initialize the default values, mesh IE is encrypted by default.
¢ Mesh network is established on a fixed channel (1-14).
* Mesh event callback is mandatory.
e Mesh ID is an identifier of an MBSS. Nodes with the same mesh ID can communicate with each other.
* Regarding to the router configuration, if the router is hidden, BSSID field is mandatory.
If BSSID field isn’t set and there exists more than one router with same SSID, there is a risk that more roots

than one connected with different BSSID will appear. It means more than one mesh network is established with
the same mesh ID.

Root conflict function could eliminate redundant roots connected with the same BSSID, but couldn’t handle
roots connected with different BSSID. Because users might have such requirements of setting up routers with
same SSID for the future replacement. But in that case, if the above situations happen, please make sure appli-
cations implement forward functions on the root to guarantee devices in different mesh networks can communi-
cate with each other. max_connection of mesh softAP is limited by the max number of Wi-Fi softAP supported
(max:10).

Attention This API shall be called before mesh is started after mesh is initialized.

Return

194

Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

* ESP_OK

* ESP_ERR_MESH_ARGUMENT

 ESP_ERR_MESH_NOT_ALLOWED
Parameters

* config: pointer to mesh stack configuration

esp_err_t esp_mesh_get_config (mesh_cfg_t *config)

Get mesh stack configuration.
Return

* ESP_OK

* ESP_ERR_MESH_ARGUMENT
Parameters

* config: pointer to mesh stack configuration

esp_err_t esp_mesh_set_router (const mesh_router_t *router)

Get router configuration.

Attention This API is used to dynamically modify the router configuration after mesh is configured.

Return

* ESP_OK

* ESP_ERR_MESH_ARGUMENT
Parameters

* router: pointer to router configuration

esp_err_t esp_mesh_get_router (mesh_router_t *router)

Get router configuration.
Return

* ESP_OK

* ESP_ERR_MESH_ARGUMENT
Parameters

* router: pointer to router configuration

esp_err_t esp_mesh_set_id (const mesh_addr_t *id)
Set mesh network ID.

Attention This API is used to dynamically modify the mesh network ID.

Return

* ESP_OK

* ESP_ERR_MESH_ARGUMENT: invalid argument

Parameters

e id: pointer to mesh network ID

3.2. Mesh API

195

Read the Docs Template Documentation, Release v3.2.5

esp_err_t esp_mesh_get_id (mesh_addr_t *id)
Get mesh network ID.
Return
* ESP_OK
¢ ESP_ERR_MESH_ARGUMENT
Parameters
* id: pointer to mesh network ID

esp_err_t esp_mesh_set_type (mesh_type_t type)
Designate device type over the mesh network.

MESH_IDLE: designates a device as a self-organized node for a mesh network

MESH_ROOT: designates the root node for a mesh network

MESH_LEAF: designates a device as a standalone Wi-Fi station that connects to a parent

MESH_STA: designates a device as a standalone Wi-Fi station that connects to a router

Return
« ESP_OK
¢ ESP_ERR_MESH_NOT_ALLOWED
Parameters
* type: device type
mesh_type_t esp_mesh_get_type (void)
Get device type over mesh network.
Attention This API shall be called after having received the event MESH_EVENT_PARENT_CONNECTED.
Return mesh type

esp_err_t esp_mesh_set_max_layer (int max_layer)
Set network max layer value (max:25, default:25)

* Network max layer limits the max hop count.

Attention This API shall be called before mesh is started.
Return

* ESP_OK

¢ ESP_ERR_MESH_ARGUMENT

* ESP_ERR_MESH_NOT_ALLOWED
Parameters

* max_layer: max layer value

int esp_mesh_get_max_layer (void)
Get max layer value.

196 Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

Return max layer value

esp_err_t esp_mesh_set_ap_password (const uint8_t *pwd, int len)
Set mesh softAP password.
Attention This API shall be called before mesh is started.
Return
« ESP_OK
* ESP_ERR_MESH_ARGUMENT
* ESP_ERR_MESH_NOT_ALLOWED
Parameters
* pwd: pointer to the password
e len: password length
esp_err_t esp_mesh_set_ap_authmode (wifi_auth_mode_t authmode)
Set mesh softAP authentication mode.
Attention This API shall be called before mesh is started.
Return
« ESP_OK
¢ ESP_ERR_MESH_ARGUMENT
* ESP_ERR_MESH_NOT_ALLOWED
Parameters
* authmode: authentication mode

wifi_auth_mode_t esp_mesh_get_ap_authmode (void)
Get mesh softAP authentication mode.

Return authentication mode

esp_err_t esp_mesh_set_ap_ connections (int connections)
Set mesh soft AP max connection value.
Attention This API shall be called before mesh is started.
Return
* ESP_OK
* ESP_ERR_MESH_ARGUMENT
Parameters
e connections: the number of max connections

int esp_mesh_get_ap_connections (void)
Get mesh softAP max connection configuration.

Return the number of max connections

3.2. Mesh API

197

Read the Docs Template Documentation, Release v3.2.5

int esp_mesh_get_layer (void)
Get current layer value over the mesh network.
Attention This API shall be called after having received the event MESH_EVENT_PARENT_CONNECTED.
Return layer value
esp_err_t esp_mesh_get_parent_bssid (mesh_addr_t *bssid)
Get the parent BSSID.
Attention This API shall be called after having received the event MESH_EVENT_PARENT_CONNECTED.
Return
¢ ESP_OK
« ESP_FAIL
Parameters
* bssid: pointer to parent BSSID

bool esp_mesh_is_root (void)
Return whether the device is the root node of the network.

Return true/false

esp_err_t esp_mesh_set_self organized (bool enable, bool select_parent)
Enable/disable self-organized networking.

* Self-organized networking has three main functions: select the root node; find a preferred parent; initiate
reconnection if a disconnection is detected.
* Self-organized networking is enabled by default.

« If self-organized is disabled, users should set a parent for the device via esp_mesh_set_parent().

Attention This API is used to dynamically modify whether to enable the self organizing.
Return
* ESP_OK
» ESP_FAIL
Parameters
* enable: enable or disable self-organized networking
e select_parent: Only valid when self-organized networking is enabled.
— if select_parent is set to true, the root will give up its mesh root status and search for a new parent

like other non-root devices.

bool esp_mesh_get_self organized (void)
Return whether enable self-organized networking or not.

Return true/false

esp_err_t esp_mesh_waive_root (const mesh_vote_t *vote, int reason)
Cause the root device to give up (waive) its mesh root status.

198 Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

* A device is elected root primarily based on RSSI from the external router.
« If external router conditions change, users can call this API to perform a root switch.

* In this API, users could specify a desired root address to replace itself or specify an attempts value to ask
current root to initiate a new round of voting. During the voting, a better root candidate would be expected
to find to replace the current one.

* If no desired root candidate, the vote will try a specified number of attempts (at least 15). If no better root
candidate is found, keep the current one. If a better candidate is found, the new better one will send a root
switch request to the current root, current root will respond with a root switch acknowledgment.

» After that, the new candidate will connect to the router to be a new root, the previous root will disconnect
with the router and choose another parent instead.

Root switch is completed with minimal disruption to the whole mesh network.

Attention This API is only called by the root.
Return
« ESP_OK
* ESP_ERR_MESH_QUEUE_FULL
» ESP_ERR_MESH_DISCARD
* ESP_FAIL
Parameters

* vote: vote configuration

If this parameter is set NULL, the vote will perform the default 15 times.

Field percentage threshold is 0.9 by default.

Field is_rc_specified shall be false.

Field attempts shall be at least 15 times.
* reason: only accept MESH_VOTE_REASON_ROOT_INITIATED for now

esp_err_t esp_mesh_set_vote_percentage (float percentage)
Set vote percentage threshold for approval of being a root.

* During the networking, only obtaining vote percentage reaches this threshold, the device could be a root.

Attention This API shall be called before mesh is started.
Return

* ESP_OK

« ESP_FAIL
Parameters

* percentage: vote percentage threshold

float esp_mesh_get_vote_percentage (void)
Get vote percentage threshold for approval of being a root.

Return percentage threshold

3.2. Mesh API 199

Read the Docs Template Documentation, Release v3.2.5

esp_err_t esp_mesh_set_ap_assoc_expire (int seconds)
Set mesh softAP associate expired time (default:10 seconds)

* If mesh softAP hasn’t received any data from an associated child within this time, mesh softAP will take
this child inactive and disassociate it.

* If mesh softAP is encrypted, this value should be set a greater value, such as 30 seconds.

Return
« ESP_OK
» ESP_FAIL
Parameters
* seconds: the expired time

int esp_mesh_get_ap_assoc_expire (void)
Get mesh softAP associate expired time.

Return seconds

int esp_mesh_get_total_node_num (void)
Get total number of devices in current network (including the root)
Attention The returned value might be incorrect when the network is changing.
Return total number of devices (including the root)

int esp_mesh_get_routing_table_size (void)
Get the number of devices in this device’s sub-network (including self)

Return the number of devices over this device’s sub-network (including self)

esp_err_t esp_mesh_get_routing_table (mesh_addr_t *mac, int len, int *size)
Get routing table of this device’s sub-network (including itself)
Return
* ESP_OK
¢ ESP_ERR_MESH_ARGUMENT
Parameters
* mac: pointer to routing table
e len: routing table size(in bytes)
* size: pointer to the number of devices in routing table (including itself)
esp_err_t esp_mesh_post_toDS_state (bool reachable)
Post the toDS state to the mesh stack.
Attention This API is only for the root.
Return

« ESP_OK

200 Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

» ESP_FAIL
Parameters
* reachable: this state represents whether the root is able to access external IP network
esp_err_t esp_mesh_get_tx_pending (mesh_tx_pending_t *pending)
Return the number of packets pending in the queue waiting to be sent by the mesh stack.
Return
* ESP_OK
» ESP_FAIL
Parameters
* pending: pointer to the TX pending
esp_err_t esp_mesh_get_rx_pending (mesh_rx_pending_t *pending)
Return the number of packets available in the queue waiting to be received by applications.
Return
* ESP_OK
¢ ESP_FAIL
Parameters
* pending: pointer to the RX pending
int esp_mesh_available_ txupQ_ num (const mesh_addr_t *addr, vint32_t *xseqno_in)
Return the number of packets could be accepted from the specified address.
Return the number of upQ for a certain address
Parameters
e addr: self address or an associate children address
* xseqgno_in: sequence number of the last received packet from the specified address
esp_err_t esp_mesh_set_xon_gsize (int gsize)
Set the number of queue.
Attention This API shall be called before mesh is started.
Return
* ESP_OK
« ESP_FAIL
Parameters
¢ gsize: default:32 (min:16)

int esp_mesh_get_xon_gsize (void)
Get queue size.

Return the number of queue

3.2. Mesh API 201

Read the Docs Template Documentation, Release v3.2.5

esp_err_t esp_mesh_allow_root_conflicts (bool allowed)

Set whether allow more than one root existing in one network.
Return

* ESP_OK

e ESP_WIFI_ERR_NOT_INIT

* ESP_WIFI_ERR_NOT_START
Parameters

* allowed: allow or not

bool esp_mesh_is_root_conflicts_allowed (void)
Check whether allow more than one root to exist in one network.

Return true/false

esp_err_t esp_mesh_set_group_id (const mesh_addr_t *addr, int num)
Set group ID addresses.
Return
* ESP_OK
 ESP_MESH_ERR_ARGUMENT
Parameters
e addr: pointer to new group ID addresses
e num: the number of group ID addresses
esp_err_t esp_mesh_delete_group_id (const mesh_addr_t *addr, int num)
Delete group ID addresses.
Return
* ESP_OK
* ESP_MESH_ERR_ARGUMENT
Parameters
* addr: pointer to deleted group ID address
* num: the number of group ID addresses

int esp_mesh_get_group_num (void)
Get the number of group ID addresses.

Return the number of group ID addresses

esp_err_t esp_mesh_get_group_1list (mesh_addr_t *addr, int num)
Get group ID addresses.

Return

 ESP_OK

202

Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

* ESP_MESH_ERR_ARGUMENT
Parameters

* addr: pointer to group ID addresses

e num: the number of group ID addresses

bool esp_mesh_is_my_ group (const mesh_addr_t *addr)
Check whether the specified group address is my group.

Return true/false

esp_err_t esp_mesh_set_capacity_num (int num)
Set mesh network capacity (max:1000, default:300)
Attention This API shall be called before mesh is started.
Return
« ESP_OK
¢ ESP_ERR_MESH_NOT_ALLOWED
 ESP_MESH_ERR_ARGUMENT
Parameters
e num: mesh network capacity

int esp_mesh_get_capacity num (void)
Get mesh network capacity.

Return mesh network capacity

esp_err_t esp_mesh_set_ie_ crypto_funcs (const mesh_crypto_funcs_t *crypto_funcs)
Set mesh IE crypto functions.
Attention This API can be called at any time after mesh is initialized.
Return
* ESP_OK
Parameters
e crypto_funcs: crypto functions for mesh IE
— If crypto_funcs is set to NULL, mesh IE is no longer encrypted.
esp_err_t esp_mesh_set_ie_crypto_key (const char *key, int len)
Set mesh IE crypto key.
Attention This API can be called at any time after mesh is initialized.
Return
* ESP_OK
¢ ESP_MESH_ERR_ARGUMENT

Parameters

3.2. Mesh API 203

Read the Docs Template Documentation, Release v3.2.5

* key: ASCII crypto key

e len: length in bytes, range:8~64

esp_err_t esp_mesh_get_ie_crypto_key (char *key, int len)
Get mesh IE crypto key.

Return
« ESP_ OK
« ESP_ MESH_ERR_ARGUMENT

Parameters
* key: ASCII crypto key
e len: length in bytes, range:8~64

esp_err_t esp_mesh_set_root_healing_delay (int delay_ms)
Set delay time before starting root healing.

Return
e ESP_OK
Parameters

* delay_ms: delay time in milliseconds

int esp_mesh_get_root_healing delay (void)
Get delay time before network starts root healing.

Return delay time in milliseconds

esp_err_t esp_mesh_set_event_cb (const mesh_event_cb_t event_cb)
Set mesh event callback.

Return
e ESP_OK
Parameters

e event_cb: mesh event call back

esp_err_t esp_mesh_f£fix_ root (bool enable)
Enable network Fixed Root Setting.
» Enabling fixed root disables automatic election of the root node via voting.
» All devices in the network shall use the same Fixed Root Setting (enabled or disabled).

 If Fixed Root is enabled, users should make sure a root node is designated for the network.

Return
e ESP_OK
Parameters

¢ enable: enable or not

204 Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

bool esp_mesh_is_root_fixed (void)
Check whether network Fixed Root Setting is enabled.
* Enable/disable network Fixed Root Setting by API esp_mesh_fix_root().

» Network Fixed Root Setting also changes with the “flag” value in parent networking IE.
Return true/false

esp_err_t esp_mesh_set_parent (const wifi_config_t *parent, const mesh_addr_t *parent_mesh_id,
mesh_type_t my_type, int my_layer)
Set a specified parent for the device.

Attention This API can be called at any time after mesh is configured.
Return
* ESP_OK
* ESP_ERR_ARGUMENT
« ESP_ERR_MESH_NOT_CONFIG
Parameters
e parent: parent configuration, the SSID and the channel of the parent are mandatory.

— If the BSSID is set, make sure that the SSID and BSSID represent the same parent, otherwise the
device will never find this specified parent.

* parent_mesh_id: parent mesh ID,
— If this value is not set, the original mesh ID is used.
* my_type: mesh type

— If the parent set for the device is the same as the router in the network configuration, then my_type
shall set MESH_ROOT and my_layer shall set MESH_ROOT_LAYER.

* my_layer: mesh layer
— my_layer of the device may change after joining the network.
— If my_type is set MESH_NODE, my_layer shall be greater than MESH_ROOT_LAYER.
— If my_type is set MESH_LEAF, the device becomes a standalone Wi-Fi station and no longer has
the ability to extend the network.

esp_err_t esp_mesh_scan_get_ap_ie_len (int *len)
Get mesh networking IE length of one AP.
Return
* ESP_OK
e ESP_ERR_WIFI_NOT_INIT
* ESP_ERR_WIFI_ARG
* ESP_ERR_WIFI_FAIL
Parameters

¢ len: mesh networking IE length

3.2. Mesh API 205

Read the Docs Template Documentation, Release v3.2.5

esp_err_t esp_mesh_scan_get_ap_record (wifi_ap_record_t *ap_record, void *buffer)
Get AP record.

Attention Different from esp_wifi_scan_get_ap_records(), this API only gets one of APs scanned each time.
See “manual_networking” example.
Return
* ESP_OK
« ESP_ERR_WIFI_NOT_INIT
* ESP_ERR_WIFI_ARG
* ESP_ERR_WIFI_FAIL
Parameters
* ap_record: pointer to one AP record
e buffer: pointer to the mesh networking IE of this AP
esp_err_t esp_mesh_flush_upstream packets (void)
Flush upstream packets pending in to_parent queue and to_parent_p2p queue.
Return
* ESP_OK
esp_err_t esp_mesh_get_subnet_nodes_num (const mesh_addr_t *child_mac, int *nodes_num)
Get the number of nodes in the subnet of a specific child.
Return
* ESP_OK
¢ ESP_ERR_MESH_NOT_START
* ESP_ERR_MESH_ARGUMENT
Parameters
e child_mac: an associated child address of this device
* nodes_num: pointer to the number of nodes in the subnet of a specific child

esp_err_t esp_mesh_get_subnet_nodes_list (const mesh_addr_t *child_mac, mesh_addr_t

. . . *nodes, int nodes_num)
Get nodes in the subnet of a specific child.

Return
* ESP_OK
¢ ESP_ERR_MESH_NOT_START
* ESP_ERR_MESH_ARGUMENT
Parameters
e child_mac: an associated child address of this device
* nodes: pointer to nodes in the subnet of a specific child

* nodes_num: the number of nodes in the subnet of a specific child

206 Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

esp_err_t esp_mesh_disconnect (void)
Disconnect from current parent.
Return
e ESP_OK
esp_err_t esp_mesh_connect (void)
Connect to current parent.
Return
¢ ESP_OK
esp_err_t esp_mesh_flush_scan_result (void)
Flush scan result.
Return
¢ ESP_OK
esp_err_t esp_mesh_switch_channel (const uint8_t *new_bssid, int csa_newchan, int csa_count)
Cause the root device to add Channel Switch Announcement Element (CSA IE) to beacon.
¢ Set the new channel

» Set how many beacons with CSA IE will be sent before changing a new channel

¢ Enable the channel switch function

Attention This API is only called by the root.
Return
* ESP_OK
Parameters
* new_bssid: the new router BSSID if the router changes
* csa_newchan: the new channel number to which the whole network is moving
* csa_count: channel switch period(beacon count), unit is based on beacon interval of its softAP, the

default value is 15.

esp_err_t esp_mesh_get_router_bssid (uint8_t *router_bssid)
Get the router BSSID.
Return
¢ ESP_OK
¢ ESP_ERR_WIFI_NOT_INIT
* ESP_ERR_WIFI_ARG
Parameters
* router_bssid: pointer to the router BSSID

int64_t esp_mesh_get_tsf_time (void)
Get the TSF time.

3.2. Mesh API 207

Read the Docs Template Documentation, Release v3.2.5

Return the TSF time

Unions

union mesh _addr t
#include <esp_mesh.h> Mesh address.

Public Members

uint®_t addr[6]
mac address

mip_t mip
mip address

union mesh event_ _info t
#include <esp_mesh.h> Mesh event information.

Public Members

mesh_event_channel_switch_t channel_switch
channel switch

mesh_event_child_connected_t child_connected
child connected

mesh_event_child_disconnected_t child_disconnected
child disconnected

mesh_event_routing_table_change_t routing_table
routing table change

mesh_event_connected_t connected
parent connected

mesh_event_disconnected_t disconnected
parent disconnected

mesh_event_no_parent_found_t no_parent
no parent found

mesh_event_layer _change_t layer change
layer change

mesh_event_toDS_state_t toDS_state
toDS state, devices shall check this state firstly before trying to send packets to external IP network. This
state indicates right now whether the root is capable of sending packets out. If not, devices had better to
wait until this state changes to be MESH_TODS_REACHABLE.

mesh_event_vote_started_t vote_started
vote started

mesh_event_root_got_ip_t got_ip
root obtains IP address

mesh_event_root_address_t root_addr
root address

208 Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

mesh_event_root_switch_req_t switch_req
root switch request

mesh_event_root_conflict_t root_conflict
other powerful root

mesh_event_root_fixed_t root_£fixed
fixed root

mesh_event_scan_done_t scan_done
scan done

mesh_event_network_state_t network_state
network state, such as whether current mesh network has a root.

mesh_event_find_network_t £ind_network
network found that can join

mesh_event router_switch_t router switch
new router information

union mesh_rc_config t
#include <esp_mesh.h> Vote address configuration.

Public Members
int attempts
max vote attempts before a new root is elected automatically by mesh network. (min:15, 15 by default)

mesh_addr_t re_addr
a new root address specified by users for API esp_mesh_waive_root()

Structures

struct mip_t
IP address and port.

Public Members
ip4_addr_t ip4
IP address

uint16_t port
port

struct mesh_event_channel_switch_t
Channel switch information.

Public Members
uint8_t channel
new channel

struct mesh event_ connected_t
Parent connected information.

3.2. Mesh API 209

Read the Docs Template Documentation, Release v3.2.5

Public Members
system_event_sta_connected_t connected

parent information, same as Wi-Fi event SYSTEM_EVENT_STA_CONNECTED does

uint8_t self layer
layer

struct mesh_event_no_parent_ found t
No parent found information.

Public Members
int scan_times
scan times being through

struct mesh_event_layer_ change_t
Layer change information.

Public Members
uint8_t new_layer
new layer

struct mesh event_ vote_started t
vote started information

Public Members
int reason
vote reason, vote could be initiated by children or by the root itself

int attempts
max vote attempts before stopped

mesh_addr t re_addr
root address specified by users via API esp_mesh_waive_root()

struct mesh_event_find network_t
find a mesh network that this device can join

Public Members
uint8_t channel
channel number of the new found network

uint®_t router_bssid[6]
router BSSID

struct mesh_event_root_switch_req t
Root switch request information.

210 Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

Public Members

int reason
root switch reason, generally root switch is initialized by users via API esp_mesh_waive_root()

mesh_addr t re_addr
the address of root switch requester

struct mesh_event_root_conflict_t
Other powerful root address.

Public Members
int8_t rssi
rssi with router

uintl6_t capacity
the number of devices in current network

uint8_t addr[6]
other powerful root address

struct mesh_event_routing_ table_change_t
Routing table change.

Public Members
uintl6_t rt_size_ new
the new value

uintl6_t rt_size_change
the changed value

struct mesh_event_root_fixed t
Root fixed.

Public Members
bool is_fixed
status

struct mesh event_scan done_t
Scan doneevent information.

Public Members
uint®_t number
the number of APs scanned

struct mesh event_ network_state_t
Network state information.

3.2. Mesh API 211

Read the Docs Template Documentation, Release v3.2.5

Public Members
bool is_rootless
whether current mesh network has a root

struct mesh_event_t
Mesh event.

Public Members
mesh_event id_t id
mesh event id

mesh_event_info_t info
mesh event info

struct mesh_opt_t
Mesh option.

Public Members
uint8_t type
option type

uintl6_t len
option length

uint8_t *wval
option value

struct mesh data t
Mesh data for esp_mesh_send() and esp_mesh_recv()

Public Members
uint8_t *data
data

uintl6_t size
data size

mesh_proto_t proto
data protocol

mesh_tos_t tos
data type of service

struct mesh router t
Router configuration.

Public Members
uint8_t ssid[32]
SSID

uint8_t ssid_len
length of SSID

212 Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

uint8_t bssid[6]
BSSID, if this value is specified, users should also specify “allow_router_switch”.

uint8_t password[64]
password

bool allow router switch
if the BSSID is specified and this value is also set, when the router of this specified BSSID fails to be
found after “fail” (mesh_attempts_t) times, the whole network is allowed to switch to another router with
the same SSID. The new router might also be on a different channel. The default value is false. There
is a risk that if the password is different between the new switched router and the previous one, the mesh
network could be established but the root will never connect to the new switched router.

struct mesh_ap_ cfg t
Mesh softAP configuration.

Public Members
uint8_t password[64]
mesh softAP password

uint8_t max_connection
max number of stations allowed to connect in, max 10

struct mesh_cfg_ t
Mesh initialization configuration.

Public Members
uint8_t channel
channel, the mesh network on

bool allow_channel switch
if this value is set, when “fail” (mesh_attempts_t) times is reached, device will change to a full channel
scan for a network that could join. The default value is false.

mesh_event_cb_t event_cb
mesh event callback

mesh_addr_t mesh_id
mesh network identification

mesh_router_t router
router configuration

mesh_ap_cfg_t mesh_ap
mesh softAP configuration

const mesh_crypto_funcs_t *crypto_funcs
crypto functions

struct mesh_vote_t
Vote.

Public Members

float percentage
vote percentage threshold for approval of being a root

3.2. Mesh API 213

Read the Docs Template Documentation, Release v3.2.5

bool is_rc_specified
if true, rc_addr shall be specified (Unimplemented). if false, attempts value shall be specified to make
network start root election.

mesh_rc_config_t config
vote address configuration

struct mesh_tx pending_t
The number of packets pending in the queue waiting to be sent by the mesh stack.

Public Members

int to_parent
to parent queue

int to_parent_p2p
to parent (P2P) queue

intto_child
to child queue

intto_child_p2p
to child (P2P) queue

int mgmt
management queue

int broadcast
broadcast and multicast queue

struct mesh rx pending t
The number of packets available in the queue waiting to be received by applications.

Public Members

int toDS
to external DS

int toSelf
to self

Macros

MESH_ROOT_LAYER
root layer value

MESH_MTU
max transmit unit(in bytes)

MESH_MPS
max payload size(in bytes)

ESP_ERR_MESH WIFI NOT_START
Mesh error code definition.

Wi-Fi isn’t started

ESP_ERR MESH NOT INIT
mesh isn’t initialized

214 Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

ESP_ERR_MESH_NOT_CONFIG
mesh isn’t configured

ESP_ERR MESH NOT START
mesh isn’t started

ESP_ERR_MESH_NOT_SUPPORT
not supported yet

ESP_ERR MESH NOT_ ALLOWED
operation is not allowed

ESP_ERR_MESH_NO_MEMORY
out of memory

ESP_ERR MESH ARGUMENT
illegal argument

ESP_ERR _MESH_EXCEED_MTU
packet size exceeds MTU

ESP_ERR MESH TIMEOUT
timeout

ESP_ERR _MESH_DISCONNECTED
disconnected with parent on station interface

ESP_ERR_MESH_ QUEUE_FAIL
queue fail

ESP_ERR _MESH_QUEUE_FULL
queue full

ESP_ERR_MESH_NO_PARENT_ FOUND
no parent found to join the mesh network

ESP_ERR_MESH_NO_ROUTE_FOUND
no route found to forward the packet

ESP_ERR _MESH_OPTION_NULL
no option found

ESP_ERR MESH OPTION_UNKNOWN
unknown option

ESP_ERR_MESH_XON_NO_WINDOW
no window for software flow control on upstream

ESP_ERR _MESH INTERFACE
low-level Wi-Fi interface error

ESP_ERR_MESH_DISCARD_DUPLICATE
discard the packet due to the duplicate sequence number

ESP_ERR MESH DISCARD
discard the packet

ESP_ERR MESH_VOTING
vote in progress

ESP_ERR MESH XMIT
XMIT

3.2. Mesh API

215

Read the Docs Template Documentation, Release v3.2.5

ESP_ERR_MESH QUEUE_READ
error in reading queue

ESP_ERR _MESH RECV_RELEASE
release esp_mesh_recv_toDS

MESH_DATA ENC
Flags bitmap for esp_mesh_send() and esp_mesh_recv()

data encrypted (Unimplemented)

MESH_DATA_P2P
point-to-point delivery over the mesh network

MESH_DATA_ FROMDS
receive from external IP network

MESH_DATA_TODS
identify this packet is target to external IP network

MESH_DATA_ NONBLOCK
esp_mesh_send() non-block

MESH DATA_DROP
in the situation of the root having been changed, identify this packet can be dropped by new root

MESH DATA_GROUP
identify this packet is target to a group address

MESH OPT_ SEND_GROUP
Option definitions for esp_mesh_send() and esp_mesh_recv()

data transmission by group; used with esp_mesh_send() and shall have payload

MESH_OPT_RECV_DS_ADDR
return a remote IP address; used with esp_mesh_send() and esp_mesh_recv()

MESH_ASSOC_FLAG_VOTE_IN_PROGRESS
Flag of mesh networking IE.

vote in progress

MESH ASSOC_FLAG_NETWORK FREE
no root in current network

MESH_ ASSOC_FLAG_ROOTS_FOUND
root conflict is found

MESH ASSOC_FLAG_ROOT_FIXED
fixed root

MESH INIT CONFIG_DEFAULT ()

Type Definitions

typedef system_event_sta_got_ip_t mesh_event_root_got_ip_t
IP settings from LwIP stack.

typedef mesh_addr_t mesh_event_root_address_t
Root address.

typedef system_event_sta_disconnected_t mesh_event_disconnected_t
Parent disconnected information.

216 Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

typedef system_event_ap_staconnected_t mesh_event_child_connected_t
Child connected information.

typedef system_event_ap_stadisconnected_t mesh_event_child_disconnected_t
Child disconnected information.

typedef system_event_sta_connected_t mesh_event_router_switch_t
New router information.

typedef void (*mesh_event_cb_t) (mesh_event_t event)
Mesh event callback handler prototype definition.

Parameters

e event: mesh_event t

Enumerations

enum mesh_event_id t
Enumerated list of mesh event id.

Values:

MESH_EVENT_STARTED
mesh is started

MESH_ EVENT_ STOPPED
mesh is stopped

MESH EVENT_CHANNEL_SWITCH
channel switch

MESH EVENT_CHILD_ CONNECTED
a child is connected on softAP interface

MESH_ EVENT_CHILD DISCONNECTED
a child is disconnected on softAP interface

MESH_ EVENT_ ROUTING_TABLE_ADD
routing table is changed by adding newly joined children

MESH_EVENT_ROUTING_TABLE_REMOVE
routing table is changed by removing leave children

MESH_EVENT_PARENT_ CONNECTED
parent is connected on station interface

MESH_EVENT_PARENT_DISCONNECTED
parent is disconnected on station interface

MESH_EVENT_NO_PARENT_FOUND
no parent found

MESH_EVENT_LAYER_CHANGE
layer changes over the mesh network

MESH_EVENT_TODS_STATE
state represents whether the root is able to access external IP network

MESH_EVENT_VOTE_STARTED
the process of voting a new root is started either by children or by the root

3.2. Mesh API

217

Read the Docs Template Documentation, Release v3.2.5

MESH EVENT_VOTE_STOPPED
the process of voting a new root is stopped

MESH EVENT_ ROOT_ADDRESS
the root address is obtained. It is posted by mesh stack automatically.

MESH_ EVENT_ROOT_SWITCH_REQ
root switch request sent from a new voted root candidate

MESH EVENT_ ROOT_SWITCH ACK
root switch acknowledgment responds the above request sent from current root

MESH_EVENT_ROOT_GOT_IP
the root obtains the IP address. It is posted by LwIP stack automatically

MESH EVENT_ ROOT_LOST_IP
the root loses the IP address. It is posted by LwIP stack automatically

MESH_EVENT_ROOT_ASKED_YIELD
the root is asked yield by a more powerful existing root. If self organized is disabled and this device is
specified to be a root by users, users should set a new parent for this device. if self organized is enabled,
this device will find a new parent by itself, users could ignore this event.

MESH_EVENT_ROOT_FIXED
when devices join a network, if the setting of Fixed Root for one device is different from that of its parent,
the device will update the setting the same as its parent’s. Fixed Root Setting of each device is variable as
that setting changes of the root.

MESH EVENT_ SCAN DONE
if self-organized networking is disabled, user can call esp_wifi_scan_start() to trigger this event, and add
the corresponding scan done handler in this event.

MESH_EVENT_NETWORK_STATE
network state, such as whether current mesh network has a root.

MESH_EVENT_STOP_RECONNECTION
the root stops reconnecting to the router and non-root devices stop reconnecting to their parents.

MESH_ EVENT_FIND_ NETWORK
when the channel field in mesh configuration is set to zero, mesh stack will perform a full channel scan to
find a mesh network that can join, and return the channel value after finding it.

MESH_EVENT_ROUTER_SWITCH
if users specify BSSID of the router in mesh configuration, when the root connects to another router with
the same SSID, this event will be posted and the new router information is attached.

MESH_EVENT_ MAX

enum mesh_type_t

Device type.
Values:

MESH_IDLE
hasn’t joined the mesh network yet

MESH_ROOT
the only sink of the mesh network. Has the ability to access external IP network

MESH_NODE
intermediate device. Has the ability to forward packets over the mesh network

218

Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

MESH_LEAF
has no forwarding ability

MESH_STA
connect to router with a standlone Wi-Fi station mode, no network expansion capability

enum mesh_proto_t
Protocol of transmitted application data.

Values:

MESH_PROTO_BIN
binary

MESH_PROTO_HTTP
HTTP protocol

MESH PROTO_JSON
JSON format

MESH_PROTO_MQTT
MQTT protocol

enum mesh tos_t
For reliable transmission, mesh stack provides three type of services.

Values:

MESH_TOS_P2P
provide P2P (point-to-point) retransmission on mesh stack by default

MESH TOS_EZ2E
provide E2E (end-to-end) retransmission on mesh stack (Unimplemented)

MESH_TOS_DEF
no retransmission on mesh stack

enum mesh_vote_reason_t
Vote reason.

Values:

MESH_VOTE_REASON_ROOT_ INITIATED =1
vote is initiated by the root

MESH_VOTE_REASON_CHILD_INITIATED
vote is initiated by children

enum mesh_disconnect_reason_t
Mesh disconnect reason code.

Values:

MESH_REASON_CYCLIC = 100
cyclic is detected

MESH_REASON_PARENT_ IDLE
parent is idle

MESH REASON_LEAF
the connected device is changed to a leaf

MESH REASON DIFF ID
in different mesh ID

3.2. Mesh API 219

Read the Docs Template Documentation, Release v3.2.5

MESH REASON_ROOTS
root conflict is detected

MESH REASON_PARENT STOPPED
parent has stopped the mesh

MESH REASON_SCAN FAIL
scan fail

MESH REASON_IE_ UNKNOWN
unknown IE

MESH REASON_WAIVE_ ROOT
waive root

MESH_ REASON_PARENT WORSE
parent with very poor RSSI

MESH_ REASON_EMPTY_ PASSWORD
use an empty password to connect to an encrypted parent

MESH_REASON_PARENT_ UNENCRYPTED
connect to an unencrypted parent/router

enum mesh event_toDS state_t
The reachability of the root to a DS (distribute system)

Values:

MESH TODS_ UNREACHABLE
the root isn’t able to access external IP network

MESH_ TODS_REACHABLE
the root is able to access external IP network

Example code for this API section is provided in mesh directory of ESP-IDF examples.

3.3 Bluetooth API

3.3.1 Controller && VHCI

Overview

Instructions

Application Example

Check bluetooth folder in ESP-IDF examples, which contains the following application:

e This is a BLE advertising demo with virtual HCI interface. Send Re-
set/ADV_PARAM/ADV_DATA/ADV_ENABLE HCI command for BLE advertising - bluetooth/ble_adv.

API Reference

Header File

* bt/include/esp_bt.h

220 Chapter 3. API Reference

https://github.com/espressif/esp-idf/tree/v3.2.5/examples/mesh
../template.html
https://github.com/espressif/esp-idf/tree/v3.2.5/examples/bluetooth
https://github.com/espressif/esp-idf/tree/v3.2.5/examples/bluetooth/ble_adv
https://github.com/espressif/esp-idf/blob/v3.2.5/components/bt/include/esp_bt.h

Read the Docs Template Documentation, Release v3.2.5

Functions

esp_err_t esp_ble_tx_power_set (esp_ble_power_type_t power_type, esp_power_level _t power_level)
Set BLE TX power Connection Tx power should only be set after connection created.
Return ESP_OK - success, other - failed
Parameters
* power_type: : The type of which tx power, could set Advertising/Connection/Default and etc
* power_level: Power level(index) corresponding to absolute value(dbm)
esp_power_level_t esp_ble_tx_power_get (esp_ble_power_type_t power_type)
Get BLE TX power Connection Tx power should only be get after connection created.
Return >= 0 - Power level, < 0 - Invalid
Parameters
* power_type: : The type of which tx power, could set Advertising/Connection/Default and etc
esp_err_t esp_bredr_tx_power_set (esp_power_level t min_power_level, esp_power_level _t

max_power_level)
Set BR/EDR TX power BR/EDR power control will use the power in range of minimum value and maximum

value. The power level will effect the global BR/EDR TX power, such inquire, page, connection and so on.
Please call the function after esp_bt_controller_enable and before any function which cause RF do TX. So you
can call the function before doing discovery, profile init and so on. For example, if you want BR/EDR use the
new TX power to do inquire, you should call this function before inquire. Another word, If call this function
when BR/EDR is in inquire(ING), please do inquire again after call this function. Default minimum power level
is ESP_PWR_LVL_NO, and maximum power level is ESP_PWR_LVL_P3.
Return ESP_OK - success, other - failed
Parameters

* min_power_level: The minimum power level

* max_power_level: The maximum power level

esp_err_t esp_bredr_tx_power_get (esp_power_level t *min_power_level, esp_power_level _t

*max_power_level)
Get BR/EDR TX power If the argument is not NULL, then store the corresponding value.

Return ESP_OK - success, other - failed
Parameters
* min_power_level: The minimum power level
* max_power_level: The maximum power level
esp_err_t esp_bredr_sco_datapath_set (esp_sco_data_path_t data_path)
set default SCO data path Should be called after controller is enabled, and before (¢)SCO link is established
Return ESP_OK - success, other - failed
Parameters

e data_path: SCO data path

3.3. Bluetooth API 221

Read the Docs Template Documentation, Release v3.2.5

esp_err_t esp_bt_controller_init (esp_bt_controller_config_t *cfg)
Initialize BT controller to allocate task and other resource. This function should be called only once, before any
other BT functions are called.
Return ESP_OK - success, other - failed
Parameters

e cfg: Initial configuration of BT controller. Different from previous version, there’s a mode and some
connection configuration in “cfg” to configure controller work mode and allocate the resource which
is needed.

esp_err_t esp_bt_controller_deinit (void)
De-initialize BT controller to free resource and delete task.

This function should be called only once, after any other BT functions are called. This function is not whole
completed, esp_bt_controller_init cannot called after this function.

Return ESP_OK - success, other - failed

esp_err_t esp_bt_controller_enable (esp_bt mode_t mode)
Enable BT controller. Due to a known issue, you cannot call esp_bt_controller_enable() a second time to
change the controller mode dynamically. To change controller mode, call esp_bt_controller_disable() and then
call esp_bt_controller_enable() with the new mode.
Return ESP_OK - success, other - failed
Parameters
e mode: : the mode(BLE/BT/BTDM) to enable. For compatible of API, retain this argument. This

mode must be equal as the mode in “cfg” of esp_bt_controller_init().

esp_err_t esp_bt_controller_disable (void)
Disable BT controller.

Return ESP_OK - success, other - failed

esp_bt_controller_status_t esp_bt_controller_get_status (void)
Get BT controller is initialised/de-initialised/enabled/disabled.

Return status value

bool esp_vhci_host_check_send_available (void)
esp_vhci_host_check_send_available used for check actively if the host can send packet to controller or not.

Return true for ready to send, false means cannot send packet

void esp_vhci_host_send_packet (uint8_t *data, uintl6_t len)
esp_vhci_host_send_packet host send packet to controller

Should not call this function from within a critical section or when the scheduler is suspended.

Parameters
* data: the packet point

* len: the packet length

222 Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

esp_err_t esp_vheci_host_register_callback (const esp_vhci_host_callback_t *callback)
esp_vhci_host_register_callback register the vhci reference callback struct defined by vhci_host_callback struc-
ture.
Return ESP_OK - success, ESP_FAIL - failed
Parameters
* callback: esp_vhci_host_callback type variable
esp_err_t esp_bt_controller mem release (esp_bt_mode_t mode)
esp_bt_controller_mem_release release the controller memory as per the mode

This function releases the BSS, data and other sections of the controller to heap. The total size is about 70k
bytes.

esp_bt_controller_mem_release(mode) should be called only before esp_bt_controller_init() or after
esp_bt_controller_deinit().

Note that once BT controller memory is released, the process cannot be reversed. It means you cannot use the
bluetooth mode which you have released by this function.

If your firmware will later upgrade the Bluetooth controller mode (BLE -> BT Classic or disabled -> enabled)
then do not call this function.

If the app calls esp_bt_controller_enable(ESP_BT_MODE_BLE) to use BLE only then it is safe to call
esp_bt_controller_mem_release(ESP_BT_MODE_CLASSIC_BT) at initialization time to free unused BT Clas-

sic memory.
If the mode is ESP_ BT MODE_BTDM, then it may be useful to call
API esp_bt_mem_release(ESP_BT_MODE_BTDM) instead, which internally calls

esp_bt_controller_mem_release(ESP_BT_MODE_BTDM) and additionally releases the BSS and data
consumed by the BT/BLE host stack to heap. For more details about usage please refer to the documentation of
esp_bt_mem_release() function

Return ESP_OK - success, other - failed
Parameters
* mode: : the mode want to release memory
esp_err_t esp_bt_mem_release (esp_bt_mode_t mode)

esp_bt_mem_release release controller memory and BSS and data section of the BT/BLE host stack as per the
mode

This function first releases controller memory by internally calling esp_bt_controller_mem_release(). Addition-
ally, if the mode is set to ESP_BT_MODE_BTDM, it also releases the BSS and data consumed by the BT/BLE
host stack to heap

Note that once BT memory is released, the process cannot be reversed. It means you cannot use the bluetooth
mode which you have released by this function.

If your firmware will later upgrade the Bluetooth controller mode (BLE -> BT Classic or disabled -> enabled)
then do not call this function.

If you never intend to wuse bluetooth in a current boot-up cycle, you «can call
esp_bt_mem_release(ESP_BT_MODE_BTDM) before esp_bt_controller_init or after esp_bt_controller_deinit.

For example, if a user only uses bluetooth for setting the WiFi configuration, and does not use bluetooth in
the rest of the product operation”. In such cases, after receiving the WiFi configuration, you can disable/deinit
bluetooth and release its memory. Below is the sequence of APIs to be called for such scenarios:

3.3. Bluetooth API 223

Read the Docs Template Documentation, Release v3.2.5

esp_bluedroid_disable();
esp_bluedroid_deinit ();
esp_bt_controller_disable();
esp_bt_controller_deinit ();
esp_bt_mem_release (ESP_BT_MODE_BTDM) ;

Return ESP_OK - success, other - failed
Parameters

* mode: : the mode whose memory is to be released

esp_err_t esp_bt_sleep_enable (void)

enable bluetooth to enter modem sleep
Note that this function shall not be invoked before esp_bt_controller_enable()

There are currently two options for bluetooth modem sleep, one is ORIG mode, and another is EVED Mode.
EVED Mode is intended for BLE only.

For ORIG mode: Bluetooth modem sleep is enabled in controller start up by default if CON-
FIG_BTDM_CONTROLLER_MODEM_SLEEP is set and “ORIG mode” is selected. In ORIG modem sleep
mode, bluetooth controller will switch off some components and pause to work every now and then, if there is
no event to process; and wakeup according to the scheduled interval and resume the work. It can also wakeup
earlier upon external request using function “esp_bt_controller_wakeup_request”.

Return
e ESP_OK : success

e other : failed

esp_err_t esp_bt_sleep_disable (void)

disable bluetooth modem sleep
Note that this function shall not be invoked before esp_bt_controller_enable()
If esp_bt_sleep_disable() is called, bluetooth controller will not be allowed to enter modem sleep;

If ORIG modem sleep mode is in use, if this function is called, bluetooth controller may not immediately wake
up if it is dormant then. In this case, esp_bt_controller_wakeup_request() can be used to shorten the time for
wakeup.
Return

e ESP_OK : success

e other : failed

bool esp_bt_controller is_sleeping (void)

to check whether bluetooth controller is sleeping at the instant, if modem sleep is enabled

Note that this function shall not be invoked before esp_bt_controller_enable() This function is supposed to be
used ORIG mode of modem sleep

Return true if in modem sleep state, false otherwise

224

Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

void esp_bt_controller_ wakeup_request (void)
request controller to wakeup from sleeping state during sleep mode

Note that this function shall not be invoked before esp_bt_controller_enable() Note that this function is supposed
to be used ORIG mode of modem sleep Note that after this request, bluetooth controller may again enter sleep
as long as the modem sleep is enabled

Profiling shows that it takes several milliseconds to wakeup from modem sleep after this request. Generally
it takes longer if 32kHz XTAL is used than the main XTAL, due to the lower frequency of the former as the
bluetooth low power clock source.

esp_err_t esp_ble_scan_dupilcate_list_flush (void)
Manually clear scan duplicate list.

Note that scan duplicate list will be automatically cleared when the maximum amount of device in the filter is
reached the amount of device in the filter can be configured in menuconfig.
Return

e ESP_OK : success

e other : failed

Structures

struct esp_bt_controller_config t
Controller config options, depend on config mask. Config mask indicate which functions enabled, this means
some options or parameters of some functions enabled by config mask.

Public Members
uintl6_t controller_task stack_size
Bluetooth controller task stack size

uint8_t controller task_prio
Bluetooth controller task priority

uint§_t hei_uart_no
If use UART1/2 as HCI IO interface, indicate UART number

uint32_thei_uart baudrate
If use UART1/2 as HCI 10 interface, indicate UART baudrate

uint8_t scan_duplicate_mode
scan duplicate mode

uint8_t scan_duplicate_type
scan duplicate type

uintl6_t normal_adv_size
Normal adv size for scan duplicate

uintl6_tmesh_adv_size
Mesh adv size for scan duplicate

uintl6_t send_adv_reserved_size
Controller minimum memory value

uint32_t controller debug flag
Controller debug log flag

3.3. Bluetooth API 225

Read the Docs Template Documentation, Release v3.2.5

uint8_t mode
Controller mode: BR/EDR, BLE or Dual Mode

uint§_tble_max_ conn
BLE maximum connection numbers

uint8_tbt_max_acl_ conn
BR/EDR maximum ACL connection numbers

uint8_t bt_sco_datapath
SCO data path, i.e. HCI or PCM module

bool auto_latency
BLE auto latency, used to enhance classic BT performance

bool bt_legacy_auth_vs_evt
BR/EDR Legacy auth complete event required to protect from BIAS attack

uint8_t bt_max_sync_conn
BR/EDR maximum ACL connection numbers. Effective in menuconfig

uint32_t magic
Magic number

struct esp_vhci_host_callback
esp_vhci_host_callback used for vhci call host function to notify what host need to do

Public Members
void (*notify host_send available) (void)
callback used to notify that the host can send packet to controller

int (*notify_host_recv) (uint8_t *data, uint16_t len)
callback used to notify that the controller has a packet to send to the host

Macros

ESP_BT_ CONTROLLER CONFIG_MAGIC_VAL

BT_CONTROLLER_INIT CONFIG_DEFAULT ()

Type Definitions

typedef struct esp_vhci_host_callback esp_vheci_host_callback_t
esp_vhci_host_callback used for vhci call host function to notify what host need to do

Enumerations

enum esp_bt_mode_t
Bluetooth mode for controller enable/disable.

Values:

ESP_BT_ MODE_IDLE = 0x00
Bluetooth is not running

226 Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

ESP_BT MODE_BLE = (0x01
Run BLE mode

ESP_BT MODE_CLASSIC BT =0x02
Run Classic BT mode

ESP_BT MODE_BTDM = 0x03
Run dual mode

enum esp_bt_controller_ status_t
Bluetooth controller enable/disable/initialised/de-initialised status.

Values:

ESP_BT CONTROLLER_STATUS_IDLE =0
ESP_BT_CONTROLLER_STATUS_INITED
ESP_BT_CONTROLLER_ STATUS_ENABLED
ESP_BT_CONTROLLER_STATUS_NUM

enum esp_ble_power_type_ t
BLE tx power type ESP_BLE_PWR_TYPE_CONN_HDLO-8: for each connection, and only be set after con-
nection completed. when disconnect, the correspond TX power is not effected. ESP_BLE_PWR_TYPE_ADV :
for advertising/scan response. ESP_BLE_PWR_TYPE_SCAN : for scan. ESP_BLE_PWR_TYPE_DEFAULT
: if each connection’s TX power is not set, it will use this default value. if neither in scan mode nor in adv mode,
it will use this default value. If none of power type is set, system will use ESP_PWR_LVL_P3 as default for
ADV/SCAN/CONNO-9.

Values:

ESP_BLE PWR_TYPE CONN_HDLO =0
For connection handle 0

ESP_BLE PWR TYPE CONN HDL1 =1
For connection handle 1

ESP_BLE PWR _TYPE CONN HDL2 =2
For connection handle 2

ESP_BLE PWR _TYPE CONN_ HDL3 =3
For connection handle 3

ESP_BLE PWR _TYPE CONN_ HDL4 =4
For connection handle 4

ESP_BLE PWR _TYPE CONN HDL5 =5
For connection handle 5

ESP_BLE PWR _TYPE CONN HDL6 =6
For connection handle 6

ESP_BLE PWR_TYPE CONN_HDL7 =7
For connection handle 7

ESP BLE PWR TYPE CONN HDLS8 =8
For connection handle 8

ESP_BLE_PWR_TYPE ADV =9
For advertising

ESP_BLE PWR TYPE SCAN=10
For scan

3.3. Bluetooth API 227

Read the Docs Template Documentation, Release v3.2.5

ESP_BLE PWR_TYPE DEFAULT =11
For default, if not set other, it will use default value

ESP_BLE PWR _TYPE NUM=12
TYPE numbers

enum esp_power_level_t
Bluetooth TX power level(index), it’s just a index corresponding to power(dbm).

Values:

ESP_PWR_LVL N12=0
Corresponding to -12dbm

ESP_PWR_LVL_N9=1
Corresponding to -9dbm

ESP_PWR_LVL N6=2
Corresponding to -6dbm

ESP_PWR_LVL N3=3
Corresponding to -3dbm

ESP_PWR_LVL NO=4
Corresponding to Odbm

ESP_PWR_LVL_P3=5
Corresponding to +3dbm

ESP_PWR_LVL_P6=06
Corresponding to +6dbm

ESP_PWR_LVL P9=7
Corresponding to +9dbm

ESP_PWR_LVL_N14 =ESP_ PWR_LVL _N12
Backward compatibility! Setting to -14dbm will actually result to -12dbm

ESP_PWR_LVL_N11 =ESP PWR_LVL_N9
Backward compatibility! Setting to -11dbm will actually result to -9dbm

ESP_PWR_LVL_N8 =ESP_PWR_LVL_N6
Backward compatibility! Setting to -8dbm will actually result to -6dbm

ESP_PWR_LVL_N5 =ESP_PWR_LVL_N3
Backward compatibility! Setting to -5dbm will actually result to -3dbm

ESP_PWR_LVL_N2 =ESP_PWR_LVL_NO
Backward compatibility! Setting to -2dbm will actually result to Odbm

ESP_PWR_LVL_P1=ESP PWR_LVL_P3
Backward compatibility! Setting to +1dbm will actually result to +3dbm

ESP_PWR_LVL_P4 =ESP_PWR_LVL_P6
Backward compatibility! Setting to +4dbm will actually result to +6dbm

ESP_PWR_LVL P7=ESP PWR_LVL P9
Backward compatibility! Setting to +7dbm will actually result to +9dbm

enum esp_sco_data_path_t
Bluetooth audio data transport path.

Values:

228 Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

ESP_SCO_DATA PATH_HCI=0
data over HCI transport

ESP_SCO DATA PATH PCM=1
data over PCM interface

3.3.2 BT COMMON
BT GENERIC DEFINES

Overview

Instructions

Application Example

Instructions

API Reference
Header File

* bt/bluedroid/api/include/api/esp_bt_defs.h

Structures

struct esp_bt_uuid t
UUID type.

Public Members
uintl6_t len
UUID length, 16bit, 32bit or 128bit

union esp_bt_uuid_t::[anonymous] uuid
UUID

Macros

ESP_BLUEDROID_ STATUS_CHECK (status)
ESP_BT_OCTET16_LEN
ESP_BT_OCTET8_LEN

ESP_DEFAULT GATT IF
Default GATT interface id.

ESP_BLE_CONN_INT_ MIN
relate to BTM_BLE_CONN_INT_MIN in stack/btm_ble_api.h

3.3. Bluetooth API 229

../template.html
../template.html
https://github.com/espressif/esp-idf/blob/v3.2.5/components/bt/bluedroid/api/include/api/esp_bt_defs.h

Read the Docs Template Documentation, Release v3.2.5

ESP_BLE_CONN_INT MAX
relate to BTM_BLE_CONN_INT_MAX in stack/btm_ble_api.h

ESP_BLE_CONN_LATENCY_ MAX
relate to ESP_BLE_CONN_LATENCY_MAX in stack/btm_ble_api.h

ESP_BLE_CONN_SUP_TOUT_ MIN
relate to BTM_BLE_CONN_SUP_TOUT_MIN in stack/btm_ble_api.h

ESP_BLE_CONN_SUP_ TOUT_ MAX
relate to ESP_BLE_CONN_SUP_TOUT_MAX in stack/btm_ble_api.h

ESP_BLE_CONN_PARAM UNDEF
ESP_BLE_ SCAN PARAM UNDEF

ESP_BLE_IS_ VALID_ PARAM (X, min, max)
Check the param is valid or not.

ESP_UUID_LEN_16
ESP_UUID_LEN_32
ESP_UUID_LEN_ 128

ESP_BD_ADDR_LEN
Bluetooth address length.

ESP_BLE_ENC_KEY MASK
Used to exchange the encryption key in the init key & response key.

ESP_BLE_ID_ KEY MASK
Used to exchange the IRK key in the init key & response key.

ESP_BLE_CSR_KEY MASK
Used to exchange the CSRK key in the init key & response key.

ESP_BLE_LINK_ KEY MASK
Used to exchange the link key(this key just used in the BLE & BR/EDR coexist mode) in the init key & response
key.

ESP_APP_ID MIN
Minimum of the application id.

ESP_APP_ID_ MAX
Maximum of the application id.

ESP_BD_ADDR_STR

ESP_BD_ADDR_HEX (addr)

Type Definitions

typedef uint8_tesp_bt_octetl6_t[ESP_BT_OCTET16_LEN]
typedef uint8_t esp_bt_octet8_t[ESP_BT_OCTETS8_LEN]
typedef uint8_tesp_link_key[ESP_BT_OCTET16_LEN]

typedef uint8_t esp_bd_addr_t[ESP_BD_ADDR_LEN]
Bluetooth device address.

typedef uint8_t esp_ble_key mask_t

230 Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

Enumerations

enum esp_bt_status_t
Status Return Value.

Values:

ESP_BT STATUS_SUCCESS =0
ESP_BT_STATUS_FAIL
ESP_BT_STATUS_NOT_READY

ESP_BT STATUS_NOMEM

ESP_BT_STATUS_BUSY

ESP_BT_ STATUS_DONE =5

ESP_BT_ STATUS_UNSUPPORTED

ESP_BT_ STATUS_PARM INVALID
ESP_BT_STATUS_UNHANDLED

ESP_BT_ STATUS_AUTH_FAILURE

ESP_BT STATUS_RMT DEV_DOWN = 10

ESP_BT_ STATUS_AUTH_REJECTED
ESP_BT_STATUS_INVALID_STATIC_RAND_ADDR
ESP_BT_STATUS_PENDING

ESP_BT_ STATUS_UNACCEPT_CONN_INTERVAL
ESP_BT_STATUS_PARAM OUT_OF_RANGE
ESP_BT_STATUS_TIMEOUT

ESP_BT_ STATUS_PEER_LE_DATA LEN_UNSUPPORTED
ESP_BT_ STATUS_CONTROL_LE_DATA_ LEN_UNSUPPORTED
ESP_BT_ STATUS_ERR_ILLEGAL_PARAMETER_ FMT
ESP_BT_STATUS_MEMORY_ FULL

enum esp_bt_dev_type t
Bluetooth device type.

Values:

ESP_BT DEVICE_TYPE_BREDR = 0x01
ESP_BT DEVICE_TYPE_BLE = (0x02
ESP_BT DEVICE_TYPE DUMO = (0x03

enum esp_ble_addr_ type_ t
BLE device address type.

Values:

BLE_ADDR TYPE_PUBLIC = (0x00
BLE_ADDR_TYPE_RANDOM = 0x01

BLE ADDR TYPE_RPA_ PUBLIC = 0x02

3.3. Bluetooth API 231

Read the Docs Template Documentation, Release v3.2.5

BLE_ADDR_TYPE_RPA_RANDOM = 0x03

BT MAIN API

Overview

Instructions

Application Example

Instructions

API Reference
Header File

* bt/bluedroid/api/include/api/esp_bt_main.h

Functions

esp_bluedroid_status_t esp_bluedroid_get_status (void)
Get bluetooth stack status.

Return Bluetooth stack status

esp_err_t esp_bluedroid_enable (void)
Enable bluetooth, must after esp_bluedroid_init()
Return
e ESP_OK : Succeed
e Other : Failed
esp_err_t esp_bluedroid_disable (void)
Disable bluetooth, must prior to esp_bluedroid_deinit()
Return
e ESP_OK : Succeed
¢ Other : Failed

esp_err_t esp_bluedroid_init (void)

Init and alloc the resource for bluetooth, must be prior to every bluetooth stuff.

Return
e ESP_OK : Succeed
e Other : Failed

232

Chapter 3. API Reference

../template.html
../template.html
https://github.com/espressif/esp-idf/blob/v3.2.5/components/bt/bluedroid/api/include/api/esp_bt_main.h

Read the Docs Template Documentation, Release v3.2.5

esp_err_t esp_bluedroid_deinit (void)
Deinit and free the resource for bluetooth, must be after every bluetooth stuff.

Return
e ESP_OK : Succeed
e Other : Failed

Enumerations

enum esp_bluedroid_status_t
Bluetooth stack status type, to indicate whether the bluetooth stack is ready.

Values:

ESP_BLUEDROID STATUS UNINITIALIZED =0
Bluetooth not initialized

ESP_BLUEDROID STATUS INITIALIZED
Bluetooth initialized but not enabled

ESP_BLUEDROID STATUS_ ENABLED
Bluetooth initialized and enabled

BT DEVICE APIs
Overview

Bluetooth device reference APIs.

Instructions

Application Example

Instructions

API Reference
Header File

* bt/bluedroid/api/include/api/esp_bt_device.h

Functions

const uint§_t *esp_bt_dev_get_address (void)
Get bluetooth device address. Must use after “esp_bluedroid_enable”.

Return bluetooth device address (six bytes), or NULL if bluetooth stack is not enabled

3.3. Bluetooth API 233

../template.html
../template.html
https://github.com/espressif/esp-idf/blob/v3.2.5/components/bt/bluedroid/api/include/api/esp_bt_device.h

Read the Docs Template Documentation, Release v3.2.5

esp_err_t esp_bt_dev_set_device_name (const char *name)
Set bluetooth device name. This function should be called after esp_bluedroid_enable() completes successfully.
A BR/EDR/LE device type shall have a single Bluetooth device name which shall be identical irrespective of
the physical channel used to perform the name discovery procedure.
Return
e ESP_OK : Succeed
* ESP_ERR_INVALID_ARG : if name is NULL pointer or empty, or string length out of limit
* ESP_ERR_INVALID_STATE : if bluetooth stack is not yet enabled
e ESP_FAIL : others
Parameters

e name: : device name to be set

3.3.3 BTLE

GAP API

Overview

Instructions

Application Example

Check bluetooth folder in ESP-IDF examples, which contains the following demos and their tutorials:

* This is a SMP security client demo and its tutorial. This demo initiates its security parameters and acts as a
GATT client, which can send a security request to the peer device and then complete the encryption procedure.

— bluetooth/gatt_security_client
— GATT Security Client Example Walkthrough

* This is a SMP security server demo and its tutorial. This demo initiates its security parameters and acts as a
GATT server, which can send a pair request to the peer device and then complete the encryption procedure.

— bluetooth/gatt_security_server

— GATT Security Server Example Walkthrough

API Reference
Header File

* bt/bluedroid/api/include/api/esp_gap_ble_api.h

234 Chapter 3. API Reference

../template.html
https://github.com/espressif/esp-idf/tree/v3.2.5/examples/bluetooth
https://github.com/espressif/esp-idf/tree/v3.2.5/examples/bluetooth/gatt_security_client
https://github.com/espressif/esp-idf/blob/v3.2.5/examples/bluetooth/gatt_security_client/tutorial/Gatt_Security_Client_Example_Walkthrough.md
https://github.com/espressif/esp-idf/tree/v3.2.5/examples/bluetooth/gatt_security_server
https://github.com/espressif/esp-idf/blob/v3.2.5/examples/bluetooth/gatt_security_server/tutorial/Gatt_Security_Server_Example_Walkthrough.md
https://github.com/espressif/esp-idf/blob/v3.2.5/components/bt/bluedroid/api/include/api/esp_gap_ble_api.h

Read the Docs Template Documentation, Release v3.2.5

Functions

esp_err_t esp_ble_gap_register_callback (esp_gap_ble_cb_t callback)
This function is called to occur gap event, such as scan result.
Return
e ESP_OK : success
* other : failed
Parameters
* callback: callback function
esp_err_t esp_ble_gap_config adv_data (esp_ble_adv_data_t *adv_data)
This function is called to override the BTA default ADV parameters.
Return
e ESP_OK : success
* other : failed
Parameters
* adv_data: Pointer to User defined ADV data structure. This memory space can not be freed until

callback of config_adv_data is received.

esp_err_t esp_ble_gap_set_scan_params (esp_ble_scan_params_t *scan_params)
This function is called to set scan parameters.
Return
e ESP_OK : success
e other : failed
Parameters
e scan_paramns: Pointer to User defined scan_params data structure. This memory space can not be

freed until callback of set_scan_params

esp_err_t esp_ble_gap_start_scanning (uint32_t duration)
This procedure keep the device scanning the peer device which advertising on the air.
Return
e ESP_OK : success
* other : failed
Parameters
e duration: Keeping the scanning time, the unit is second.
esp_err_t esp_ble_gap_stop_scanning (void)
This function call to stop the device scanning the peer device which advertising on the air.
Return

¢ ESP_OK : success

3.3. Bluetooth API 235

Read the Docs Template Documentation, Release v3.2.5

— other : failed

esp_err_t esp_ble_gap_start_advertising (esp_ble_adv_params_t *adv_params)
This function is called to start advertising.
Return
e ESP_OK : success
e other : failed
Parameters
* adv_params: pointer to User defined adv_params data structure.
esp_err_t esp_ble_gap_stop_advertising (void)
This function is called to stop advertising.
Return
* ESP_OK : success
e other : failed
esp_err_t esp_ble_gap_update_conn_params (esp_ble_conn_update_params_t *params)
Update connection parameters, can only be used when connection is up.
Return
e ESP_OK : success
* other : failed
Parameters
* params: - connection update parameters
esp_err_t esp_ble_gap_set_pkt_data_len (esp_bd_addr_t remote_device, uintl6_t tx_data_length)
This function is to set maximum LE data packet size.
Return
e ESP_OK : success
e other : failed
esp_err_t esp_ble_gap_set_rand_addr (esp_bd_addr_t rand_addr)
This function sets the random address for the application.
Return
e ESP_OK : success
e other : failed
Parameters
* rand_addr: the random address which should be setting

esp_err_t esp_ble_gap_clear_rand_addr (void)
This function clears the random address for the application.

236 Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

Return
¢ ESP_OK : success
e other : failed
esp_err_t esp_ble_gap_config_ local_privacy (bool privacy_enable)
Enable/disable privacy on the local device.
Return
e ESP_OK : success
e other : failed

Parameters

* privacy_enable: - enable/disable privacy on remote device.

esp_err_t esp_ble_gap_config local_icon (uintl6_t icon)
set local gap appearance icon

Return
e ESP_OK : success
e other : failed

Parameters

e icon: - External appearance value, these values are defined by the Bluetooth SIG,
please refer to https://www.bluetooth.com/specifications/gatt/viewer?attribute XmlFile=org.bluetooth.

characteristic.gap.appearance.xml

esp_err_t esp_ble_gap_update_whitelist (bool add_remove, esp_bd_addr_t remote_bda)
Add or remove device from white list.

Return
e ESP_OK : success

e other : failed

Parameters
¢ add_remove: the value is true if added the ble device to the white list, and false remove to the white
list.

e remote_bda: the remote device address add/remove from the white list.

esp_err_t esp_ble_gap_get_whitelist_size (uintl6_t *length)
Get the whitelist size in the controller.

Return
e ESP_OK : success
e other : failed

Parameters

* length: the white list length.

3.3. Bluetooth API 237

https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.characteristic.gap.appearance.xml
https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.characteristic.gap.appearance.xml

Read the Docs Template Documentation, Release v3.2.5

esp_err_t esp_ble_gap_set_prefer_conn_params (esp_bd_addr_t bd_addr, uintl6_t min_conn_int,
uintl6_t max_conn_int, uint16_t slave_latency,

uint16_t supervision_tout)
This function is called to set the preferred connection parameters when default connection parameter is not

desired before connecting. This API can only be used in the master role.

Return
* ESP_OK : success
e other : failed
Parameters
* bd_addr: BD address of the peripheral
* min_conn_int: minimum preferred connection interval
* max_conn_int: maximum preferred connection interval
* slave_latency: preferred slave latency
* supervision_tout: preferred supervision timeout
esp_err_t esp_ble_gap_set_device_name (const char *name)
Set device name to the local device.
Return
e ESP_OK : success
e other : failed
Parameters

e name: - device name.

esp_err_t esp_ble_gap_get_local_used_addr (esp_bd_addr_t local_used_addr, uint8_t
*addr_type)
This function is called to get local used address and adress type. uint8_t *esp_bt_dev_get_address(void) get the
public address.

Return - ESP_OK : success
e other : failed
Parameters
* local_used_addzr: - current local used ble address (six bytes)
e addr_type: - ble address type
uint§_t *esp_ble_resolve_adv_data (uint8_t *adv_data, uint8_t type, uint8_t *length)
This function is called to get ADV data for a specific type.
Return pointer of ADV data
Parameters
* adv_data: - pointer of ADV data which to be resolved
* type: - finding ADV data type

e length: - return the length of ADV data not including type

238 Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

esp_err_t esp_ble_gap_config _adv_data_raw (uint8_t *raw_data, uint32_t raw_data_len)
This function is called to set raw advertising data. User need to fill ADV data by self.
Return
e ESP_OK : success
e other : failed
Parameters
e raw_data: : raw advertising data
* raw_data_len: : raw advertising data length , less than 31 bytes
esp_err_t esp_ble_gap_config scan_rsp_data_raw (uint8_t *raw_data, uint32_t raw_data_len)
This function is called to set raw scan response data. User need to fill scan response data by self.
Return
¢ ESP_OK : success
* other : failed
Parameters
e raw_data: : raw scan response data
e raw_data_len: : raw scan response data length , less than 31 bytes
esp_err_t esp_ble_gap_read_rssi (esp_bd_addr_t remote_addr)
This function is called to read the RSSI of remote device. The address of link policy results are returned in the
gap callback function with ESP_GAP_BLE_READ_RSSI_COMPLETE_EVT event.
Return
e ESP_OK : success
e other : failed
Parameters
e remote_addr: : The remote connection device address.

esp_err_t esp_ble_gap_add_duplicate_scan_exceptional_device (esp_ble_duplicate_exceptional_info_type_t

ype,
esp_duplicate_info_t

device_info)
This function is called to add a device info into the duplicate scan exceptional list.

Return
* ESP_OK : success
e other : failed
Parameters

* type: device info type, it is defined in esp_ble_duplicate_exceptional_info_type_t when type is
MESH_BEACON_TYPE, MESH_PROV_SRV_ADV or MESH_PROXY_SRV_ADV , device_info
is invalid.

¢ device_info: the device information.

3.3. Bluetooth API 239

Read the Docs Template Documentation, Release v3.2.5

esp_err_t esp_ble_gap_remove_duplicate_scan_exceptional_device (esp_ble_duplicate_exceptional_info_type_t

ype,
esp_duplicate_info_t
device_info)

This function is called to remove a device info from the duplicate scan exceptional list.

Return
* ESP_OK : success
e other : failed
Parameters

* type: device info type, it is defined in esp_ble_duplicate_exceptional_info_type_t when type is
MESH_BEACON_TYPE, MESH_PROV_SRV_ADV or MESH_PROXY_SRV_ADV , device_info
is invalid.

¢ device_info: the device information.

esp_err_t esp_ble_gap_clean_duplicate_scan_exceptional_list (esp_duplicate_scan_exceptional_list_type_t
list_type)

This function is called to clean the duplicate scan exceptional list. This API will delete all device information in
the duplicate scan exceptional list.
Return
e ESP_OK : success
e other : failed
Parameters
e list_type: duplicate scan exceptional list type, the value can be one or more of

esp_duplicate_scan_exceptional_list_type_t.

esp_err_t esp_ble_gap_set_security_ param (esp_ble_sm_param_t param_type, void *value,

uint8_t len)
Set a GAP security parameter value. Overrides the default value.

Return - ESP_OK : success
* other : failed
Parameters
e param_type: : the type of the param which to be set
e value: : the param value
e len: : the length of the param value
esp_err_t esp_ble_gap_security_rsp (esp_bd_addr_t bd_addr, bool accept)
Grant security request access.
Return - ESP_OK : success
e other : failed
Parameters

* bd_addr: : BD address of the peer

240 Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

* accept: : accept the security request or not

esp_err_t esp_ble_set_encryption (esp_bd_addr_t bd_addr, esp_ble_sec_act_t sec_act)
Set a gap parameter value. Use this function to change the default GAP parameter values.
Return - ESP_OK : success
e other : failed
Parameters
* bd_addr: : the address of the peer device need to encryption
e sec_act: : This is the security action to indicate what kind of BLE security level is required for the

BLE link if the BLE is supported

esp_err_t esp_ble_passkey_reply (esp_bd_addr_t bd_addr, bool accept, uint32_t passkey)
Reply the key value to the peer device in the legacy connection stage.
Return - ESP_OK : success
e other : failed
Parameters
* bd_addr: : BD address of the peer
* accept: : passkey entry successful or declined.
* passkey: : passkey value, must be a 6 digit number, can be lead by 0.
esp_err_t esp_ble_confirm reply (esp_bd_addr_t bd_addr, bool accept)
Reply the confirm value to the peer device in the legacy connection stage.
Return - ESP_OK : success
e other : failed
Parameters
* bd_addr: : BD address of the peer device
* accept: : numbers to compare are the same or different.
esp_err_t esp_ble_remove_bond_device (esp_bd_addr_t bd_addr)
Removes a device from the security database list of peer device. It manages unpairing event while connected.
Return - ESP_OK : success
e other : failed
Parameters
* bd_addr: : BD address of the peer device
intesp_ble_ get_bond_device_num (void)
Get the device number from the security database list of peer device. It will return the device bonded number
immediately.
Return - >= 0 : bonded devices number.

» ESP_FAIL : failed

3.3. Bluetooth API 241

Read the Docs Template Documentation, Release v3.2.5

esp_err_t esp_ble_get_bond_device_list (int *dev_num, esp_ble_bond_dev_t *dev_list)
Get the device from the security database list of peer device. It will return the device bonded information
immediately.
Return - ESP_OK : success
e other : failed
Parameters

e dev_num: Indicate the dev_list array(buffer) size as input. If dev_num is large enough, it means the
actual number as output. Suggest that dev_num value equal to esp_ble_get_bond_device_num().

e dev_1list: an array(buffer) of esp_ble bond dev_t type. Use for storing the bonded devices
address. The dev_list should be allocated by who call this API.

esp_err_t esp_ble_gap_disconnect (esp_bd_addr_t remote_device)
This function is to disconnect the physical connection of the peer device gattc may have multiple virtual
GATT server connections when multiple app_id registered. esp_ble_gattc_close (esp_gatt_if_t gattc_if, uint16_t
conn_id) only close one virtual GATT server connection. if there exist other virtual GATT server connections,
it does not disconnect the physical connection. esp_ble_gap_disconnect(esp_bd_addr_t remote_device) discon-
nect the physical connection directly.
Return - ESP_OK : success

e other : failed

Parameters

* remote_device: : BD address of the peer device

Unions

union esp_ble_key value_t
#include <esp_gap_ble_api.h> union type of the security key value

Public Members
esp_ble_penc_keys_t penc_key
received peer encryption key

esp_ble_pcsrk_keys_t pesrk_key
received peer device SRK

esp_ble_pid_keys_t pid_key
peer device ID key

esp_ble_lenc_keys_t lenc_key
local encryption reproduction keys LTK = = d1(ER,DIV,0)

esp_ble_lcsrk_keys 1csrk_key
local device CSRK = d1(ER,DIV,1)

union esp_ble_sec_t
#include <esp_gap_ble_api.h> union associated with ble security

242 Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

Public Members
esp_ble_sec_key_notif t key_notif
passkey notification

esp_ble_sec_req_t ble_req
BLE SMP related request

esp_ble_key_tble_key
BLE SMP keys used when pairing

esp_ble_local_id_keys_t ble_id_keys
BLE IR event

esp_ble_auth_cmpl_t auth_cmpl
Authentication complete indication.

union esp_ble_gap_ cb_param t
#include <esp_gap_ble_api.h> Gap callback parameters union.

Public Members
struct esp_ble_gap_cb_param_t::ble_adv_data_cmpl_evt_param adv_data_cmpl
Event parameter of ESP_GAP_BLE_ADV_DATA_SET_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_scan_rsp_data_cmpl_evt_param scan_rsp_data_cmpl
Event parameter of ESP_GAP_BLE_SCAN_RSP_DATA_SET_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_scan_param_cmpl_evt_param scan_param_cmpl
Event parameter of ESP_GAP_BLE_SCAN_PARAM_SET_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_scan_result_evt_param scan_rst
Event parameter of ESP_GAP_BLE_SCAN_RESULT_EVT

struct esp_ble_gap_cb_param_t::ble_adv_data_raw_cmpl_evt_param adv_data_raw_cmpl
Event parameter of ESP_GAP_BLE_ADV_DATA_RAW_SET_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_scan_rsp_data_raw_cmpl_evt_param scan_rsp_data_raw_cmpl
Event parameter of ESP_GAP_BLE_SCAN_RSP_DATA_RAW_SET_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_adv_start_cmpl_evt_param adv_start_cmpl
Event parameter of ESP_GAP_BLE_ADV_START_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_scan_start_cmpl_evt_param scan_start_cmpl
Event parameter of ESP_GAP_BLE_SCAN_START_COMPLETE_EVT

esp_ble_sec_tble_security
ble gap security union type

struct esp_ble_gap_cb_param_t::ble_scan_stop_cmpl_evt_param scan_stop_cmpl
Event parameter of ESP_GAP_BLE_SCAN_STOP_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_adv_stop_cmpl_evt_param adv_stop_cmpl
Event parameter of ESP_GAP_BLE_ADV_STOP_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_set_rand_cmpl_evt_param set_rand_addr_cmpl
Event parameter of ESP_GAP_BLE_SET_STATIC_RAND_ADDR_EVT

struct esp_ble_gap_cb_param_t::ble_update_conn_params_evt_param update_conn_params
Event parameter of ESP_GAP_BLE_UPDATE_CONN_PARAMS_EVT

3.3. Bluetooth API 243

Read the Docs Template Documentation, Release v3.2.5

struct esp_ble_gap_cb_param_t::ble_pkt_data_length_cmpl_evt_param pkt_data_lenth_cmpl
Event parameter of ESP_GAP_BLE_SET_PKT _LENGTH_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_local_privacy_cmpl_evt_param local_privacy_cmpl
Event parameter of ESP_GAP_BLE_SET _LOCAL_PRIVACY_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_remove_bond_dev_cmpl_evt_param remove_bond_dev_cmpl
Event parameter of ESP_GAP_BLE_REMOVE_BOND_DEV_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_clear_bond_dev_cmpl_evt_param clear_bond_dev_cmpl
Event parameter of ESP_GAP_BLE_CLEAR_BOND_DEV_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_get_bond_dev_cmpl_evt_param get_bond_dev_cmpl
Event parameter of ESP_GAP_BLE_GET_BOND_DEV_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_read_rssi_cmpl_evt_param read_rssi_cmpl
Event parameter of ESP_GAP_BLE_READ_RSSI_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_update_whitelist_cmpl_evt_param update_whitelist_cmpl
Event parameter of ESP_GAP_BLE_UPDATE_WHITELIST_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_update_duplicate_exceptional_list_cmpl_evt_param update_duplicate_except:
Event parameter of ESP_GAP_BLE_UPDATE_DUPLICATE_EXCEPTIONAL_LIST _COMPLETE_EVT

struct ble_adv_data_cmpl_evt_param

#include <esp_gap_ble_api.h> ESP_GAP_BLE_ADV_DATA_SET_COMPLETE_EVT.

Public Members

esp_bt_status_t status
Indicate the set advertising data operation success status

struct ble_adv_data_raw_cmpl_evt_param

#include <esp_gap_ble_api.h> ESP_GAP_BLE_ADV_DATA_RAW_SET_COMPLETE_EVT.

Public Members

esp_bt_status_t status
Indicate the set raw advertising data operation success status

struct ble_adv_start_cmpl_evt_param

#include <esp_gap_ble_api.h> ESP_GAP_BLE_ADV_START_COMPLETE_EVT.

Public Members

esp_bt_status_t status
Indicate advertising start operation success status

struct ble_adv_stop_cmpl_evt_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_ADV_STOP_COMPLETE_EVT.

Public Members

esp_bt_status_t status
Indicate adv stop operation success status

244 Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

struct ble_clear_bond _dev_cmpl_evt_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_CLEAR_BOND_DEV_COMPLETE_EVT.

Public Members

esp_bt_status_t status
Indicate the clear bond device operation success status

struct ble_get_bond_dev_cmpl_evt_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_GET_BOND_DEV_COMPLETE_EVT.

Public Members
esp_bt_status_t status
Indicate the get bond device operation success status

uint8_t dev_num
Indicate the get number device in the bond list

esp_ble_bond_dev_t *bond_dev
the pointer to the bond device Structure

struct ble_ local_privacy_cmpl_evt_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_SET_LOCAL_PRIVACY_COMPLETE_EVT.

Public Members

esp_bt_status_t status
Indicate the set local privacy operation success status

struct ble_pkt_data_length_cmpl_evt_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_SET_PKT_LENGTH_COMPLETE_EVT.

Public Members
esp_bt_status_t status
Indicate the set pkt data length operation success status

esp_ble_pkt_data_length_params_t params
pkt data length value

struct ble_read_rssi_cmpl_evt_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_READ_RSSI_COMPLETE_EVT.

Public Members

esp_bt_status_t status
Indicate the read adv tx power operation success status

int8_t rssi
The ble remote device rssi value, the range is from -127 to 20, the unit is dbm, if the RSSI cannot be
read, the RSSI metric shall be set to 127.

3.3.

Bluetooth API 245

Read the Docs Template Documentation, Release v3.2.5

esp_bd_addr_t remote_addr
The remote device address

struct ble_remove_bond _dev_cmpl_evt_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_REMOVE_BOND_DEV_COMPLETE_EVT.

Public Members
esp_bt_status_t status
Indicate the remove bond device operation success status

esp_bd_addr_t bd_addr
The device address which has been remove from the bond list

struct ble_scan_param cmpl_evt_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_SCAN_PARAM_SET_COMPLETE_EVT.

Public Members

esp_bt_status_t status
Indicate the set scan param operation success status

struct ble_scan_result_evt_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_SCAN_RESULT_EVT.

Public Members
esp_gap_search_evt_t search_evt
Search event type

esp_bd_addr_t bda
Bluetooth device address which has been searched

esp_bt_dev_type_t dev_type
Device type

esp_ble_addr_type_t ble_addr_type
Ble device address type

esp_ble_evt_type_t ble_evt_type
Ble scan result event type

int rssi
Searched device’s RSSI

uint8_t ble_adv[ESP_BLE_ADV_DATA LEN MAX + ESP_BLE_SCAN_RSP_DATA LEN_MAX]
Received EIR

int flag
Advertising data flag bit

int num_resps
Scan result number

uint8_t adv_data_len
Adv data length

246 Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

uint8_t scan_rsp_1len
Scan response length

uint32_tnum_dis
The number of discard packets

struct ble_scan_rsp data_cmpl_evt_param

#include <esp_gap_ble_api.h> ESP_GAP_BLE_SCAN_RSP_DATA_SET _COMPLETE_EVT.

Public Members

esp_bt_status_t status
Indicate the set scan response data operation success status

struct ble_scan_rsp data_raw_cmpl_evt_param

#include <esp_gap_ble_api.h> ESP_GAP_BLE_SCAN_RSP_DATA_RAW_SET_COMPLETE_EVT.

Public Members

esp_bt_status_t status
Indicate the set raw advertising data operation success status

struct ble_scan_start_cmpl_evt_param

#include <esp_gap_ble_api.h> ESP_GAP_BLE_SCAN_START_COMPLETE_EVT.

Public Members

esp_bt_status_t status
Indicate scan start operation success status

struct ble_scan_stop_cmpl_evt_param

#include <esp_gap_ble_api.h> ESP_GAP_BLE_SCAN_STOP_COMPLETE_EVT.

Public Members

esp_bt_status_t status
Indicate scan stop operation success status

struct ble_set_rand cmpl_evt_param

#include <esp_gap_ble_api.h> ESP_GAP_BLE_SET_STATIC_RAND_ADDR_EVT.

Public Members

esp_bt_status_t status
Indicate set static rand address operation success status

struct ble_update_conn_params_evt_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_UPDATE_CONN_PARAMS_EVT.

. Bluetooth API 247

Read the Docs Template Documentation, Release v3.2.5

Public Members

esp_bt_status_t status
Indicate update connection parameters success status

esp_bd_addr_t bda
Bluetooth device address

uintl6_tmin_int
Min connection interval

uintl6_tmax_int
Max connection interval

uintl6_t latency
Slave latency for the connection in number of connection events. Range: 0x0000 to 0x01F3

uintl6_t conn_int
Current connection interval

uintl6_t timeout
Supervision timeout for the LE Link. Range: 0x000A to 0x0C80. Mandatory Range: 0x000A to
0x0C80 Time = N * 10 msec

struct ble update_duplicate_exceptional_ list_cmpl_ evt_param
#include <esp_gap_ble_api.h>ESP_GAP_BLE_UPDATE_DUPLICATE_EXCEPTIONAL_LIST_COMPLETE_EVT.

Public Members

esp_bt_status_t status
Indicate update duplicate scan exceptional list operation success status

uint8_t subcode
Define in esp_bt_duplicate_exceptional_subcode_type_t

uintl6_t length
The length of device_info

esp_duplicate_info_t device_info
device information, when subcode is ESP_BLE_DUPLICATE_EXCEPTIONAL_LIST CLEAN, the
value is invalid

struct ble_update_whitelist_cmpl_evt_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_UPDATE_WHITELIST_COMPLETE_EVT.

Public Members

esp_bt_status_t status
Indicate the add or remove whitelist operation success status

esp_ble_wl_opration_t wl_opration
The value is ESP_BLE_WHITELIST_ADD if add address to whitelist operation success,
ESP_BLE_WHITELIST_REMOVE if remove address from the whitelist operation success

248 Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

Structures

struct esp_ble_adv_params_t
Advertising parameters.

Public Members

uintl6_t adv_int_min
Minimum advertising interval for undirected and low duty cycle directed advertising. Range: 0x0020 to
0x4000 Default: N = 0x0800 (1.28 second) Time = N * 0.625 msec Time Range: 20 ms to 10.24 sec

uintl6_t adv_int_max
Maximum advertising interval for undirected and low duty cycle directed advertising. Range: 0x0020 to
0x4000 Default: N = 0x0800 (1.28 second) Time = N * 0.625 msec Time Range: 20 ms to 10.24 sec
Adpvertising max interval

esp_ble_adv_type_t adv_type
Advertising type

esp_ble_addr_type_t own_addr_type
Owner bluetooth device address type

esp_bd_addr_t peer_addr
Peer device bluetooth device address

esp_ble_addr_type_t peer_addr_type
Peer device bluetooth device address type, only support public address type and random address type

esp_ble_adv_channel_t channel_map
Adpvertising channel map

esp_ble_adv_filter_t adv_filter_ policy
Adpvertising filter policy

struct esp_ble_adv_data_t
Advertising data content, according to “Supplement to the Bluetooth Core Specification”.

Public Members

bool set_scan_rsp
Set this advertising data as scan response or not

bool include_name
Advertising data include device name or not

bool include_txpower
Adpvertising data include TX power

intmin_interval
Advertising data show slave preferred connection min interval. The connection interval in the following
manner: connlntervalmin = Conn_Interval_Min * 1.25 ms Conn_Interval_Min range: 0x0006 to 0x0C80
Value of OxFFFF indicates no specific minimum. Values not defined above are reserved for future use.

intmax_interval
Advertising data show slave preferred connection max interval. The connection interval in the following
manner: connlntervalmax = Conn_Interval_Max * 1.25 ms Conn_Interval_Max range: 0x0006 to 0x0C80
Conn_Interval_Max shall be equal to or greater than the Conn_Interval_Min. Value of OxFFFF indicates
no specific maximum. Values not defined above are reserved for future use.

3.3. Bluetooth API 249

Read the Docs Template Documentation, Release v3.2.5

int appearance
External appearance of device

uintl6_t manufacturer_len
Manufacturer data length

uint8_t *p_manufacturer_ data
Manufacturer data point

uintl6_t service_data_len
Service data length

uint8_t *p_service_data
Service data point

uintl6_t service_uuid_len
Service uuid length

uint8_t *p_service_uuid
Service uuid array point

uint8_t £lag
Advertising flag of discovery mode, see BLE_ADV_DATA_FLAG detail

struct esp_ble scan_params_t
Ble scan parameters.

Public Members

esp_ble_scan_type_t scan_type
Scan type

esp_ble_addr_type_t own_addr_type
Owner address type

esp_ble_scan_filter_t scan_filter_ policy
Scan filter policy

uintl6_t scan_interval
Scan interval. This is defined as the time interval from when the Controller started its last LE scan until
it begins the subsequent LE scan. Range: 0x0004 to 0x4000 Default: 0x0010 (10 ms) Time = N * 0.625
msec Time Range: 2.5 msec to 10.24 seconds

uintl6_t scan_window
Scan window. The duration of the LE scan. LE_Scan_Window shall be less than or equal to
LE_Scan_Interval Range: 0x0004 to 0x4000 Default: 0x0010 (10 ms) Time = N * 0.625 msec Time
Range: 2.5 msec to 10240 msec

esp_ble_scan_duplicate_t scan_duplicate
The Scan_Duplicates parameter controls whether the Link Layer should filter out duplicate advertising re-
ports (BLE_SCAN_DUPLICATE_ENABLE) to the Host, or if the Link Layer should generate advertising
reports for each packet received

struct esp_ble_ conn_update_params_t
Connection update parameters.

Public Members

esp_bd_addr_t bda
Bluetooth device address

250 Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

uintl6_tmin_int
Min connection interval

uintl6_tmax_int
Max connection interval

uintl6_t latency

Slave latency for the connection in number of connection events. Range: 0x0000 to 0x01F3

uintl6_t timeout

Supervision timeout for the LE Link. Range: 0x000A to 0xOC80. Mandatory Range: 0x000A to 0x0C80

Time = N * 10 msec Time Range: 100 msec to 32 seconds

struct esp_ble_pkt_data_length_params_t

BLE pkt date length keys.

Public Members
uintl6_trx len
pkt rx data length value

uintl6_ttx_len
pkt tx data length value

struct esp_ble penc_keys_t
BLE encryption keys.

Public Members
esp_bt_octetl6_t 1tk
The long term key

esp_bt_octetS_t rand
The random number

uintl6_t ediv
The ediv value

uint8_t sec_level
The security level of the security link

uint8_t key_size
The key size(7~16) of the security link

struct esp_ble_pcsrk_keys_t
BLE CSRK keys.

Public Members
uint32_t counter
The counter

esp_bt_octetl6_t csrk
The csrk key

uint8_t sec_level
The security level

3.3. Bluetooth API

251

Read the Docs Template Documentation, Release v3.2.5

struct esp_ble_pid keys_t
BLE pid keys.

Public Members
esp_bt_octetl6_t irk
The irk value

esp_ble_addr_type_t addr_type
The address type

esp_bd_addr_t static_addr
The static address

struct esp_ble_ lenc_keys_t
BLE Encryption reproduction keys.

Public Members
esp_bt_octetl6_t 1tk
The long term key

uintl6_t div
The div value

uint8_t key_size
The key size of the security link

uint8_t sec_level
The security level of the security link

struct esp_ble_lcsrk_ keys
BLE SRK keys.

Public Members
uint32_t counter
The counter value

uintl6_t div
The div value

uint8_t sec_level
The security level of the security link

esp_bt_octetl6_t csrk
The csrk key value

struct esp_ble sec_key notif t
Structure associated with ESP_KEY_NOTIF_EVT.

Public Members

esp_bd_addr_t bd_addr
peer address

252 Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

uint32_t passkey

the numeric value for comparison. If just_works, do not show this number to UI

struct esp_ble_sec_req t
Structure of the security request.

Public Members

esp_bd_addr_t bd_addr
peer address

struct esp_ble bond key_ info_t

struct type of the bond key information value

Public Members

esp_ble_key_mask_t key_mask

the key mask to indicate witch key is present

esp_ble_penc_keys_t penc_key
received peer encryption key

esp_ble_pcsrk_keys_t pesrk_key
received peer device SRK

esp_ble_pid_keys_t pid_key
peer device ID key

struct esp_ble bond dev_t
struct type of the bond device value

Public Members
esp_bd_addr_t bd_addr
peer address

esp_ble_bond_key_info_t bond_key
the bond key information

struct esp_ble key t
union type of the security key value

Public Members
esp_bd_addr_t bd_addr
peer address

esp_ble_key_type_t key_type
key type of the security link

esp_ble_key_value_t p_key_value
the pointer to the key value

struct esp_ble local_id keys_t
structure type of the ble local id keys value

3.3. Bluetooth API

253

Read the Docs Template Documentation, Release v3.2.5

Public Members
esp_bt_octetl6_t ir
the 16 bits of the ir value

esp_bt_octetl6_t irk
the 16 bits of the ir key value

esp_bt_octet]l6_t dhk
the 16 bits of the dh key value

struct esp_ble auth_cmpl_t

Structure associated with ESP_AUTH_CMPL_EVT.

Public Members
esp_bd_addr_t bd_addr
BD address peer device.

bool key_present
Valid link key value in key element

esp_link_key key
Link key associated with peer device.

uint8_t key_type
The type of Link Key

bool success
TRUE of authentication succeeded, FALSE if failed.

uint8_t fail reason
The HCI reason/error code for when success=FALSE

esp_ble_addr_type_t addr_type
Peer device address type

esp_bt_dev_type_t dev_type
Device type

esp_ble_auth_req_t auth_mode
authentication mode

Macros

ESP_BLE_ADV_FLAG_LIMIT DISC

BLE_ADV_DATA_FLAG data flag bit definition used for advertising data flag

ESP_BLE_ADV_FLAG_GEN_DISC

ESP_BLE_ADV_FLAG_BREDR NOT_SPT

ESP_BLE_ADV_FLAG DMT_ CONTROLLER SPT

ESP_BLE_ADV_FLAG_DMT_HOST_ SPT

ESP_BLE_ADV_FLAG_NON_LIMIT DISC

ESP_LE_KEY NONE

ESP_LE_KEY PENC

254

Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

ESP_LE_KEY_ PID

ESP_LE_KEY PCSRK

ESP_LE_KEY PLK

ESP_LE_KEY_LLK

ESP_LE_KEY_ LENC

ESP_LE_KEY LID

ESP_LE_KEY LCSRK

ESP_LE_AUTH_NO_BOND

ESP_LE_AUTH_BOND

ESP_LE_AUTH REQ MITM

ESP_LE_AUTH_REQ SC_ONLY
ESP_LE_AUTH REQ SC_BOND
ESP_LE_AUTH _REQ SC_MITM
ESP_LE_AUTH REQ SC_MITM BOND
ESP_BLE_ONLY ACCEPT_SPECIFIED_AUTH_DISABLE
ESP_BLE_ONLY ACCEPT SPECIFIED_ AUTH_ENABLE
ESP_IO_CAP_OUT

ESP_IO_CAP_IO

ESP_IO_CAP_IN

ESP_IO_CAP_NONE

ESP_IO_CAP_KBDISP
ESP_BLE_APPEARANCE_UNKNOWN
ESP_BLE_APPEARANCE_GENERIC_PHONE
ESP_BLE_APPEARANCE_GENERIC_COMPUTER
ESP_BLE_APPEARANCE_GENERIC_WATCH
ESP_BLE_APPEARANCE_SPORTS_WATCH
ESP_BLE_APPEARANCE_GENERIC_CLOCK
ESP_BLE_APPEARANCE_GENERIC_DISPLAY
ESP_BLE_APPEARANCE_GENERIC_REMOTE
ESP_BLE_APPEARANCE_GENERIC_EYEGLASSES
ESP_BLE_APPEARANCE_GENERIC_TAG
ESP_BLE_APPEARANCE_GENERIC_KEYRING
ESP_BLE_APPEARANCE_GENERIC_MEDIA PLAYER
ESP_BLE_APPEARANCE_GENERIC_BARCODE_SCANNER
ESP_BLE_APPEARANCE_GENERIC_THERMOMETER

ESP_BLE_APPEARANCE THERMOMETER EAR

3.3. Bluetooth API

255

Read the Docs Template Documentation, Release v3.2.5

ESP_BLE_APPEARANCE_GENERIC_HEART RATE
ESP_BLE_APPEARANCE_ HEART RATE_BELT
ESP_BLE_APPEARANCE GENERIC_BLOOD_ PRESSURE
ESP_BLE_APPEARANCE_ BLOOD_PRESSURE_ARM
ESP_BLE_APPEARANCE_BLOOD_PRESSURE_WRIST
ESP_BLE_APPEARANCE_GENERIC_HID
ESP_BLE_APPEARANCE HID KEYBOARD
ESP_BLE_APPEARANCE_HID MOUSE
ESP_BLE_APPEARANCE_HID JOYSTICK
ESP_BLE_APPEARANCE_HID GAMEPAD
ESP_BLE_APPEARANCE HID DIGITIZER TABLET
ESP_BLE_APPEARANCE_HID_CARD_READER
ESP_BLE_APPEARANCE_ HID DIGITAL_PEN
ESP_BLE_APPEARANCE_ HID BARCODE_SCANNER
ESP_BLE_APPEARANCE_GENERIC_GLUCOSE
ESP_BLE_APPEARANCE_GENERIC_WALKING
ESP_BLE_APPEARANCE WALKING_ IN_SHOE
ESP_BLE_APPEARANCE WALKING_ ON_SHOE
ESP_BLE_APPEARANCE WALKING_ON_HIP
ESP_BLE_APPEARANCE_GENERIC_CYCLING
ESP_BLE_APPEARANCE CYCLING_ COMPUTER
ESP_BLE_APPEARANCE_ CYCLING_SPEED
ESP_BLE_APPEARANCE_CYCLING_CADENCE
ESP_BLE_APPEARANCE_CYCLING_POWER
ESP_BLE_APPEARANCE_ CYCLING_SPEED_ CADENCE
ESP_BLE_APPEARANCE_GENERIC_PULSE_OXIMETER
ESP_BLE_APPEARANCE_ PULSE_OXIMETER FINGERTIP
ESP_BLE_APPEARANCE PULSE_OXIMETER WRIST
ESP_BLE_APPEARANCE_GENERIC WEIGHT
ESP_BLE_APPEARANCE_GENERIC_PERSONAL_MOBILITY_ DEVICE
ESP_BLE_APPEARANCE POWERED_ WHEELCHAIR
ESP_BLE_APPEARANCE MOBILITY SCOOTER
ESP_BLE_APPEARANCE_GENERIC_CONTINUOUS_GLUCOSE_MONITOR
ESP_BLE_APPEARANCE_GENERIC_INSULIN_PUMP
ESP_BLE_APPEARANCE_INSULIN PUMP_DURABLE_PUMP

ESP_BLE_APPEARANCE_INSULIN PUMP_PATCH_PUMP

256

Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

ESP_BLE_APPEARANCE_INSULIN PEN
ESP_BLE_APPEARANCE_GENERIC_MEDICATION_DELIVERY
ESP_BLE_APPEARANCE_ GENERIC_OUTDOOR_ SPORTS
ESP_BLE_APPEARANCE_OUTDOOR_SPORTS_LOCATION
ESP_BLE_APPEARANCE_OUTDOOR_SPORTS_LOCATION_AND_NAV
ESP_BLE_APPEARANCE_OUTDOOR_SPORTS_LOCATION_POD
ESP_BLE_APPEARANCE_ OUTDOOR_SPORTS_LOCATION_ POD_AND NAV

ESP_GAP_BLE_ADD_ WHITELIST_COMPLETE_EVT
This is the old name, just for backwards compatibility.

ESP_BLE_ADV_DATA_ LEN_MAX
Advertising data maximum length.

ESP_BLE_SCAN_RSP_DATA LEN MAX
Scan response data maximum length.

BLE_BIT (n)

Type Definitions

typedef uint8_tesp_ble_key_type_t

typedef uint§_tesp_ble_auth _req t
combination of the above bit pattern

typedef uint8_tesp_ble_io_cap_t
combination of the io capability

typedef uint8_t esp_duplicate_info_t[ESP_BD_ADDR_LEN]

typedef void (*esp_gap_ble_cb_t) (esp_gap_ble_cb_event_t event,
*param)
GAP callback function type.

Parameters
* event: : Event type

* param: : Point to callback parameter, currently is union type

Enumerations

enum esp_gap_ble_cb_event_t
GAP BLE callback event type.

Values:

ESP_GAP_BLE_ADV_DATA SET_COMPLETE_EVT =0
When advertising data set complete, the event comes

ESP_GAP_BLE_SCAN_RSP_DATA_SET COMPLETE_EVT
When scan response data set complete, the event comes

ESP_GAP_BLE_SCAN_PARAM SET_COMPLETE_EVT
When scan parameters set complete, the event comes

esp_ble_gap_cb_param_t

3.3. Bluetooth API

257

Read the Docs Template Documentation, Release v3.2.5

ESP_GAP_BLE_SCAN_RESULT_EVT
When one scan result ready, the event comes each time

ESP_GAP_BLE_ADV_DATA RAW_SET_ COMPLETE_EVT
When raw advertising data set complete, the event comes

ESP_GAP_BLE_SCAN_RSP_DATA RAW_SET COMPLETE_EVT
When raw advertising data set complete, the event comes

ESP_GAP_BLE_ADV_START COMPLETE_EVT
When start advertising complete, the event comes

ESP_GAP_BLE_SCAN_START COMPLETE_ EVT
When start scan complete, the event comes

ESP_GAP_BLE_AUTH CMPL_EVT
ESP_GAP_BLE_KEY EVT
ESP_GAP_BLE_SEC_REQ EVT
ESP_GAP_BLE_PASSKEY NOTIF_EVT
ESP_GAP_BLE_PASSKEY REQ EVT
ESP_GAP_BLE_OOB_REQ EVT
ESP_GAP_BLE_LOCAL_IR EVT
ESP_GAP_BLE_LOCAL_ER EVT
ESP_GAP_BLE_NC_REQ EVT

ESP_GAP_BLE_ADV_STOP_COMPLETE_EVT
When stop adv complete, the event comes

ESP_GAP_BLE_SCAN_STOP_COMPLETE_EVT
When stop scan complete, the event comes

ESP_GAP_BLE_SET_STATIC_RAND ADDR EVT
When set the static rand address complete, the event comes

ESP_GAP_ BLE UPDATE_CONN_PARAMS_EVT
When update connection parameters complete, the event comes

ESP_GAP_BLE_SET_ PKT_ LENGTH_COMPLETE_EVT
When set pkt length complete, the event comes

ESP_GAP_BLE_SET_ LOCAL_PRIVACY COMPLETE_EVT
When Enable/disable privacy on the local device complete, the event comes

ESP_GAP_BLE_ REMOVE_BOND_ DEV_COMPLETE_ EVT
When remove the bond device complete, the event comes

ESP_GAP_BLE_CLEAR_BOND_DEV_COMPLETE_EVT
When clear the bond device clear complete, the event comes

ESP_GAP_BLE_GET_BOND_DEV_COMPLETE_EVT
When get the bond device list complete, the event comes

ESP_GAP_BLE_READ RSSI COMPLETE_ EVT
When read the rssi complete, the event comes

ESP_GAP_BLE UPDATE WHITELIST COMPLETE EVT
When add or remove whitelist complete, the event comes

258 Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

ESP_GAP_BLE_UPDATE_DUPLICATE_EXCEPTIONAL_LIST_COMPLETE_EVT
When update duplicate exceptional list complete, the event comes

ESP_GAP_BLE_EVT_ MAX

enum esp_ble_adv_data_type
The type of advertising data(not adv_type)

Values:

ESP_BLE_AD_TYPE_FLAG = 0x01
ESP_BLE_AD_TYPE_16SRV_PART = (0x02
ESP_BLE_AD_TYPE_16SRV_CMPL = 0x03
ESP_BLE_AD_TYPE_32SRV_PART = (0x04
ESP_BLE_AD_TYPE_ 32SRV_CMPL = (0x05
ESP_BLE_AD_TYPE_128SRV_PART = 0x06
ESP_BLE_AD_TYPE_128SRV_CMPL = 0x07
ESP_BLE_AD_TYPE NAME_SHORT = 0x08
ESP_BLE_AD TYPE_NAME_CMPL = 0x09
ESP_BLE_AD_TYPE_TX PWR = 0x0A
ESP_BLE_AD_TYPE_DEV_CLASS = 0x0D
ESP_BLE_AD_TYPE_SM TK=0x10
ESP_BLE_AD_TYPE_SM OOB_FLAG=0x11
ESP_BLE_AD TYPE_ INT RANGE =0x12
ESP_BLE_AD_TYPE_SOL_SRV_UUID =0x14
ESP_BLE AD TYPE_128SOL_SRV_UUID = 0x15
ESP_BLE_AD_TYPE_SERVICE_DATA =(0x16
ESP_BLE_AD_TYPE_PUBLIC_TARGET =0x17
ESP_BLE_AD_TYPE_RANDOM TARGET =0x18
ESP_BLE_AD_TYPE_APPEARANCE = (0x19
ESP_BLE_AD TYPE ADV_INT =0xlA
ESP_BLE AD TYPE_LE_DEV_ADDR = 0x1b
ESP_BLE_AD TYPE_LE_ROLE = 0Oxlc
ESP_BLE_AD_TYPE_SPAIR C256 =0xId
ESP_BLE_AD_TYPE SPAIR R256 =0xle
ESP_BLE_AD_TYPE_32SOL_SRV_UUID = 0OxIf
ESP_BLE_AD_TYPE_32SERVICE_ DATA = 0x20
ESP_BLE_AD_TYPE_128SERVICE_DATA = (0x21
ESP_BLE_AD_TYPE LE_SECURE_CONFIRM = (0x22
ESP_BLE AD TYPE_LE_SECURE_RANDOM = 0x23
ESP_BLE_AD_TYPE_URI = 0x24

3.3. Bluetooth API 259

Read the Docs Template Documentation, Release v3.2.5

ESP_BLE_AD_TYPE_INDOOR_POSITION = (0x25
ESP_BLE_AD_TYPE_TRANS_DISC_DATA = (0x26
ESP_BLE_AD_TYPE_LE_SUPPORT_FEATURE = (0x27
ESP_BLE_AD_TYPE_CHAN_MAP_UPDATE = (0x28
ESP_BLE_AD_ MANUFACTURER_ SPECIFIC_TYPE = OxFF

enum esp_ble_adv_type t

Advertising mode.

Values:

ADV_TYPE_IND = 0x00
ADV_TYPE_DIRECT_IND_HIGH = 0x01
ADV_TYPE_SCAN_IND = 0x02
ADV_TYPE_NONCONN_IND = 0x03
ADV_TYPE_DIRECT_IND_LOW = (0x04

enum esp_ble_ adv_channel t

Advertising channel mask.
Values:

ADV_CHNL_37 =0x01
ADV_CHNL_38 =0x02
ADV_CHNL_39 = 0x04

ADV_CHNL_ALL = 0x07

enum esp_ble_adv_filter t

Values:

ADV_FILTER_ALLOW_SCAN_ANY_CON_ANY = (0x00
Allow both scan and connection requests from anyone.

ADV_FILTER ALLOW_SCAN_WLST_ CON_ANY

Allow both scan req from White List devices only and connection req from anyone.

ADV_FILTER ALLOW_SCAN_ANY CON_WLST

Allow both scan req from anyone and connection req from White List devices only.

ADV_FILTER ALLOW_SCAN_ WLST_ CON_WLST

Allow scan and connection requests from White List devices only.

enum esp_ble_sec_act_t

Values:

ESP_BLE_SEC_ENCRYPT =1
ESP_BLE_SEC_ENCRYPT_ NO_MITM
ESP_BLE_SEC_ENCRYPT MITM

enum esp_ble_sm_param t

Values:
ESP _BLE SM PASSKEY =0
ESP_BLE_SM AUTHEN REQ MODE

260

Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

ESP_BLE_SM IOCAP_MODE
ESP_BLE_SM SET INIT_KEY
ESP_BLE_SM SET RSP_KEY
ESP_BLE_SM MAX KEY SIZE

ESP_BLE_SM MIN_KEY SIZE
ESP_BLE_SM SET STATIC_PASSKEY

ESP_BLE_SM CLEAR_STATIC_PASSKEY
ESP_BLE_SM ONLY_ ACCEPT SPECIFIED_SEC_AUTH
ESP_BLE_SM _MAX PARAM

enum esp_ble_scan_type t
Ble scan type.

Values:

BLE SCAN TYPE PASSIVE = 0x0
Passive scan

BLE SCAN TYPE ACTIVE =0x1
Active scan

enum esp_ble_scan_filter_ t
Ble scan filter type.

Values:

BLE_SCAN_FILTER ALLOW_ALL = 0x0
Accept all :

1. advertisement packets except directed advertising packets not addressed to this device (default).

BLE_SCAN_FILTER_ALLOW_ONLY WLST =0xl
Accept only :

1. advertisement packets from devices where the advertiser’s address is in the White list.
2. Directed advertising packets which are not addressed for this device shall be ignored.

BLE_SCAN_FILTER_ALLOW_UND_RPA_DIR = 0x2
Accept all :

1. undirected advertisement packets, and
2. directed advertising packets where the initiator address is a resolvable private address, and
3. directed advertising packets addressed to this device.

BLE_SCAN_FILTER ALLOW_WLIST_PRA DIR = 0x3
Accept all :

1. advertisement packets from devices where the advertiser’s address is in the White list, and
2. directed advertising packets where the initiator address is a resolvable private address, and
3. directed advertising packets addressed to this device.

enum esp_ble_scan_duplicate_t
Ble scan duplicate type.

Values:

3.3. Bluetooth API 261

Read the Docs Template Documentation, Release v3.2.5

BLE_SCAN_DUPLICATE_DISABLE = 0x0
the Link Layer should generate advertising reports to the host for each packet received

BLE_SCAN_DUPLICATE_ENABLE = 0x1
the Link Layer should filter out duplicate advertising reports to the Host

BLE_SCAN_DUPLICATE_MAX = 0x2
0x02 — 0xFF, Reserved for future use

enum esp_gap_search_evt_t
Sub Event of ESP_GAP_BLE_SCAN_RESULT_EVT.

Values:

ESP_GAP_SEARCH_INQ RES_EVT =0
Inquiry result for a peer device.

ESP_GAP_SEARCH_INQ CMPL_EVT=1
Inquiry complete.

ESP_GAP_SEARCH DISC_RES_EVT =2
Discovery result for a peer device.

ESP_GAP_SEARCH_DISC_BLE_RES_EVT =3
Discovery result for BLE GATT based service on a peer device.

ESP_GAP_SEARCH_DISC_CMPL_EVT =4
Discovery complete.

ESP_GAP_SEARCH_DI_DISC_CMPL_EVT =5
Discovery complete.

ESP_GAP_SEARCH SEARCH CANCEL_CMPL EVT =6
Search cancelled

ESP_GAP_SEARCH_INQ DISCARD NUM EVT =7
The number of pkt discarded by flow control

enum esp_ble_evt_type_ t
Ble scan result event type, to indicate the result is scan response or advertising data or other.

Values:

ESP_BLE_EVT_CONN_ADV = 0x00
Connectable undirected advertising (ADV_IND)

ESP_BLE_EVT_CONN_DIR ADV = 0x01]
Connectable directed advertising (ADV_DIRECT_IND)

ESP_BLE EVT DISC ADV =0x02
Scannable undirected advertising (ADV_SCAN_IND)

ESP_BLE_EVT NON_CONN_ADV = 0x03
Non connectable undirected advertising (ADV_NONCONN_IND)

ESP_BLE_ EVT_ SCAN_RSP = (0x04
Scan Response (SCAN_RSP)

enum esp_ble_wl_opration_t
Values:

ESP_BLE WHITELIST REMOVE = (0X00
remove mac from whitelist

262 Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

ESP_BLE WHITELIST ADD = 0X01
add address to whitelist

enum esp_bt_duplicate_exceptional_ subcode_type t
Values:

ESP_BLE_DUPLICATE_EXCEPTIONAL_LIST_ADD =0
Add device info into duplicate scan exceptional list

ESP_BLE DUPLICATE_EXCEPTIONAL_LIST REMOVE
Remove device info from duplicate scan exceptional list

ESP_BLE_DUPLICATE_EXCEPTIONAL_LIST_CLEAN
Clean duplicate scan exceptional list

enum esp_ble_duplicate_exceptional_info_type t
Values:

ESP_BLE DUPLICATE SCAN EXCEPTIONAL INFO ADV ADDR =0
BLE advertising address , device info will be added into ESP_BLE_DUPLICATE_SCAN_EXCEPTIONAL_ADDR_LIST

ESP_BLE DUPLICATE_SCAN EXCEPTIONAL_ INFO_MESH LINK ID
BLE mesh link ID, it is for BLE mesh, device info will be added into
ESP_BLE_DUPLICATE_SCAN_EXCEPTIONAL_MESH_LINK_ID_LIST

ESP_BLE_DUPLICATE_SCAN_EXCEPTIONAL_ INFO_MESH BEACON_TYPE
BLE mesh beacon AD type, the format is | Len | 0x2B | Beacon Type | Beacon Data |

ESP_BLE_DUPLICATE_SCAN_ EXCEPTIONAL_INFO_MESH PROV_SRV_ADV
BLE mesh provisioning service uuid, the format is | 0x02 | 0x01 | flags | 0x03 | 0x03 | 0x1827 | I

ESP_BLE_DUPLICATE_SCAN_EXCEPTIONAL_INFO_MESH PROXY_ SRV_ADV
BLE mesh adv with proxy service uuid, the format is | 0x02 | 0x01 | flags | 0x03 | 0x03 | 0x1828 | I

enum esp_duplicate_scan_exceptional_list_type_ t
Values:

ESP_BLE_DUPLICATE_SCAN_ EXCEPTIONAL_ADDR_LIST = BLE_BIT(0)
duplicate scan exceptional addr list

ESP_BLE_DUPLICATE_SCAN EXCEPTIONAL MESH LINK ID_LIST=BLE_BIT(1)
duplicate scan exceptional mesh link ID list

ESP_BLE_DUPLICATE_SCAN_ EXCEPTIONAL MESH BEACON_TYPE_LIST =BLE_BIT(2)
duplicate scan exceptional mesh beacon type list

ESP_BLE_DUPLICATE_SCAN EXCEPTIONAL_MESH_PROV_SRV_ADV_LIST =BLE_BIT(3)
duplicate scan exceptional mesh adv with provisioning service uuid

ESP_BLE_DUPLICATE_SCAN EXCEPTIONAL MESH PROXY SRV_ADV_LIST =BLE_BIT(4)
duplicate scan exceptional mesh adv with provisioning service uuid

ESP_BLE_DUPLICATE_SCAN_ EXCEPTIONAL_ALL_LIST = OxFFFF
duplicate scan exceptional all list

GATT DEFINES

Overview

Instructions

3.3. Bluetooth API 263

../template.html

Read the Docs Template Documentation, Release v3.2.5

Application Example

Instructions

API Reference
Header File

* bt/bluedroid/api/include/api/esp_gatt_defs.h

Unions

union esp_gatt_rsp_ t

#include <esp_gatt_defs.h> GATT remote read request response type.

Public Members
esp_gatt_value_t attr_value
Gatt attribute structure

uintl6_t handle
Gatt attribute handle

Structures

struct esp_gatt_id t
Gatt id, include uuid and instance id.

Public Members
esp_bt_uuid_t uuid
UUID

uint8_t inst_id
Instance id

struct esp_gatt_srvc_id_t
Gatt service id, include id (uuid and instance id) and primary flag.

Public Members
esp_gatt_id_t id
Gatt id, include uuid and instance

bool is_primary
This service is primary or not

struct esp_attr_desc_t
Attribute description (used to create database)

264

Chapter 3. API Reference

../template.html
https://github.com/espressif/esp-idf/blob/v3.2.5/components/bt/bluedroid/api/include/api/esp_gatt_defs.h

Read the Docs Template Documentation, Release v3.2.5

Public Members
uintl6_t uuid_length
UUID length

uint8_t *uuid_p
UUID value

uintl6_t perm
Attribute permission

uintl6_tmax_length
Maximum length of the element

uintl6_t length
Current length of the element

uint8_t *value
Element value array

struct esp_attr_control_t
attribute auto response flag

Public Members

uint8_t auto_rsp
if auto_rsp set to ESP_GATT_RSP_BY_APP, means the response of Write/Read operation will by replied
by application. if auto_rsp set to ESP_GATT_AUTO_RSP, means the response of Write/Read operation
will be replied by GATT stack automatically.

struct esp_gatts_attr _db_t
attribute type added to the gatt server database

Public Members
esp_attr_control_t attr_control
The attribute control type

esp_attr_desc_t att_desc
The attribute type

struct esp_attr_value_t
set the attribute value type

Public Members
uintl6_t attr max len
attribute max value length

uintl6_t attr_len
attribute current value length

uint8_t *attr_value
the pointer to attribute value

struct esp_gatts_incl_svc_desc_t
Gatt include service entry element.

3.3. Bluetooth API 265

Read the Docs Template Documentation, Release v3.2.5

Public Members

uintl6_t start_hdl
Gatt start handle value of included service

uintl6_t end_hdl
Gatt end handle value of included service

uintl6_t uuid
Gatt attribute value UUID of included service

struct esp_gatts_incll28_svc_desc_t
Gatt include 128 bit service entry element.

Public Members

uintl6_t start hdl
Gatt start handle value of included 128 bit service

uintl6_t end _hdl
Gatt end handle value of included 128 bit service

struct esp_gatt_value_t
Gatt attribute value.

Public Members

uint8_t value[ESP_GATT_MAX ATTR_ LEN]
Gatt attribute value

uintl6_t handle
Gatt attribute handle

uintl6_t offset
Gatt attribute value offset

uintl6_t len
Gatt attribute value length

uint8_t auth_req
Gatt authentication request

struct esp_gattc_multi_t
read multiple attribute

Public Members
uint8_tnum_attr
The number of the attribute

uintl6_t handles[ESP_GATT MAX READ_ MULTI_HANDLES]
The handles list

struct esp_gattc_db_elem_t
data base attribute element

266 Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

Public Members

esp_gatt_db_attr_type_t type
The attribute type

uintl6_t attribute_ handle
The attribute handle, it’s valid for all of the type

uintl6_t start_handle
The service start handle, it’s valid only when the type = ESP_GATT_DB_PRIMARY_SERVICE or

ESP_GATT_DB_SECONDARY_SERVICE

uintl6_t end_handle
The service end handle, it’s valid only when the type
ESP_GATT_DB_SECONDARY_SERVICE

ESP_GATT_DB_PRIMARY_SERVICE or

esp_gatt_char_prop_t properties
The characteristic properties, it’s valid only when the type = ESP_GATT_DB_CHARACTERISTIC

esp_bt_uuid_t uuid
The attribute uuid, it’s valid for all of the type

struct esp_gattc_service_elem t
service element

Public Members
bool is_primary
The service flag, true if the service is primary service, else is secondary service

uintl6_t start_handle
The start handle of the service

uintl6_t end_handle
The end handle of the service

esp_bt_uuid_t vuid
The uuid of the service

struct esp_gattc_char_elem t
characteristic element

Public Members
uintl6_t char_handle
The characteristic handle

esp_gatt_char_prop_t properties
The characteristic properties

esp_bt_uuid_t uuid
The characteristic uuid

struct esp_gattc_descr_elem t
descriptor element

3.3. Bluetooth API 267

Read the Docs Template Documentation, Release v3.2.5

Public Members
uintl6_t handle
The characteristic descriptor handle

esp_bt_uuid_t uuid
The characteristic descriptor uuid

struct esp_gattc_incl_svc_elem t
include service element

Public Members
uintl6_t handle
The include service current attribute handle

uintl6_t incl_srve_s_handle
The start handle of the service which has been included

uintl6_t incl_srvec_e_handle
The end handle of the service which has been included

esp_bt_uuid_t vuid
The include service uuid

Macros

ESP_GATT UUID_IMMEDIATE ALERT SVC
All “ESP_GATT_UUID_xxx” is attribute types

ESP_GATT_ UUID_LINK LOSS_SVC

ESP_GATT UUID_TX POWER_SVC

ESP_GATT_ UUID_CURRENT_TIME_ SVC
ESP_GATT_UUID_REF_TIME UPDATE_SVC
ESP_GATT UUID_NEXT_DST CHANGE_SVC
ESP_GATT UUID_GLUCOSE_SVC

ESP_GATT_ UUID_HEALTH_ THERMOM SVC
ESP_GATT_UUID_DEVICE_INFO_SVC
ESP_GATT UUID_ HEART RATE SVC
ESP_GATT UUID_ PHONE_ALERT STATUS_SVC
ESP_GATT_UUID_BATTERY_SERVICE_SVC
ESP_GATT UUID_BLOOD_PRESSURE_SVC
ESP_GATT UUID ALERT NTF_SVC
ESP_GATT_UUID_HID_SVC
ESP_GATT_UUID_SCAN_PARAMETERS_SVC
ESP_GATT UUID_RUNNING_SPEED_CADENCE_SVC

ESP_GATT UUID_CYCLING_SPEED_ CADENCE_SVC

268

Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

ESP_GATT UUID_CYCLING_POWER_SVC
ESP_GATT UUID_LOCATION AND_NAVIGATION_SVC
ESP_GATT UUID_USER DATA_SVC

ESP_GATT UUID_WEIGHT_ SCALE_SVC
ESP_GATT UUID_PRI_SERVICE

ESP_GATT UUID_SEC_SERVICE

ESP_GATT UUID_INCLUDE_SERVICE
ESP_GATT_ UUID_CHAR DECLARE

ESP_GATT UUID_CHAR_EXT PROP

ESP_GATT UUID_CHAR DESCRIPTION
ESP_GATT UUID_CHAR_ CLIENT CONFIG
ESP_GATT UUID_CHAR_SRVR_CONFIG
ESP_GATT UUID_CHAR PRESENT FORMAT
ESP_GATT UUID_CHAR_AGG_FORMAT

ESP_GATT UUID_CHAR_VALID_RANGE
ESP_GATT UUID_EXT RPT_REF DESCR
ESP_GATT UUID_RPT REF_DESCR

ESP_GATT UUID_NUM DIGITALS_DESCR
ESP_GATT UUID_VALUE_TRIGGER_DESCR
ESP_GATT UUID_ENV_SENSING_CONFIG_DESCR
ESP_GATT UUID_ENV_SENSING_ MEASUREMENT DESCR
ESP_GATT UUID_ENV_SENSING_TRIGGER DESCR
ESP_GATT UUID_TIME_TRIGGER DESCR
ESP_GATT UUID_GAP_DEVICE_NAME

ESP_GATT UUID_GAP_ICON

ESP_GATT UUID_GAP_PREF_CONN_PARAM
ESP_GATT UUID_GAP_CENTRAL ADDR_RESOL
ESP_GATT UUID_GATT_SRV_CHGD

ESP_GATT UUID_ALERT LEVEL

ESP_GATT UUID_TX_POWER_LEVEL

ESP_GATT UUID_CURRENT TIME

ESP_GATT UUID_LOCAL TIME_ INFO

ESP_GATT UUID_REF_TIME_ INFO

ESP_GATT UUID_NW_STATUS

ESP_GATT UUID_NW_TRIGGER

ESP_GATT UUID_ ALERT_STATUS

3.3. Bluetooth API

269

Read the Docs Template Documentation, Release v3.2.5

ESP_GATT UUID_RINGER_ CP
ESP_GATT UUID_RINGER SETTING
ESP_GATT UUID_GM_ MEASUREMENT
ESP_GATT UUID_GM_CONTEXT
ESP_GATT UUID_GM_CONTROL_POINT
ESP_GATT UUID_GM_FEATURE
ESP_GATT UUID_SYSTEM ID
ESP_GATT UUID_MODEL_ NUMBER_STR
ESP_GATT UUID_SERIAL_NUMBER_STR
ESP_GATT UUID_FW_VERSION_STR
ESP_GATT UUID_HW_VERSION_STR
ESP_GATT UUID_SW_VERSION_STR
ESP_GATT UUID_MANU_NAME
ESP_GATT UUID_IEEE_DATA
ESP_GATT UUID_PNP_ID

ESP_GATT UUID_HID_ INFORMATION
ESP_GATT UUID_HID REPORT_MAP
ESP_GATT UUID_HID CONTROL POINT
ESP_GATT_ UUID_HID_REPORT
ESP_GATT UUID_HID_ PROTO_MODE
ESP_GATT UUID_HID_ BT KB_INPUT
ESP_GATT UUID_HID_ BT KB_OUTPUT
ESP_GATT UUID_HID_ BT MOUSE_INPUT

ESP_GATT HEART RATE MEAS
Heart Rate Measurement.

ESP_GATT_BODY_SENSOR_LOCATION
Body Sensor Location.

ESP_GATT HEART RATE CNTL_POINT
Heart Rate Control Point.

ESP_GATT UUID_ BATTERY LEVEL
ESP_GATT_UUID_SC_CONTROL_POINT
ESP_GATT_ UUID_SENSOR_LOCATION
ESP_GATT UUID RSC MEASUREMENT
ESP_GATT UUID_RSC_FEATURE
ESP_GATT_UUID_CSC_MEASUREMENT
ESP_GATT UUID_CSC_FEATURE

ESP_GATT UUID_SCAN_INT WINDOW

270

Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

ESP_GATT_UUID_SCAN_REFRESH

ESP_GATT_ILLEGAL_UUID
GATT INVALID UUID.

ESP_GATT_ ILLEGAL_ HANDLE
GATT INVALID HANDLE.

ESP_GATT ATTR HANDLE_MAX
GATT attribute max handle.

ESP_GATT MAX READ MULTI_ HANDLES

ESP_GATT_PERM READ
Attribute permissions.

ESP_GATT PERM READ_ ENCRYPTED
ESP_GATT PERM READ ENC_MITM
ESP_GATT_PERM WRITE
ESP_GATT_PERM WRITE_ENCRYPTED
ESP_GATT PERM WRITE_ ENC_MITM
ESP_GATT PERM WRITE_SIGNED
ESP_GATT_PERM WRITE_SIGNED_ MITM
ESP_GATT_ CHAR PROP_BIT BROADCAST
ESP_GATT CHAR PROP_BIT READ
ESP_GATT_CHAR PROP_BIT WRITE_NR
ESP_GATT_CHAR PROP_BIT WRITE
ESP_GATT_CHAR PROP_BIT NOTIFY
ESP_GATT CHAR PROP_BIT INDICATE
ESP_GATT_CHAR PROP_BIT AUTH
ESP_GATT_CHAR PROP_BIT EXT PROP

ESP_GATT_MAX ATTR_ LEN
GATT maximum attribute length.

ESP_GATT_RSP_BY_APP
ESP_GATT_AUTO_RSP

ESP_GATT_IF_NONE
If callback report gattc_if/gatts_if as this macro, means this event is not correspond to any app

Type Definitions

typedef uintl6_t esp_gatt_perm_t
typedef uint8_t esp_gatt_char_prop_t

typedef uint8_tesp_gatt_if_ t
Gatt interface type, different application on GATT client use different gatt_if

3.3. Bluetooth API 271

Read the Docs Template Documentation, Release v3.2.5

Enumerations

enum esp_gatt_prep_write_type

Attribute write data type from the client.
Values:

ESP_GATT_PREP_WRITE_CANCEL = 0x00
Prepare write cancel

ESP_GATT_PREP_WRITE_EXEC = 0x01
Prepare write execute

enum esp_gatt_status_t

GATT success code and error codes.

Values:

ESP_GATT_OK = 0x0
ESP_GATT_INVALID_ HANDLE = 0x01
ESP_GATT_READ_NOT_PERMIT = 0x02
ESP_GATT_WRITE_NOT_ PERMIT = 0x03
ESP_GATT_INVALID_PDU = 0x04

ESP_GATT_INSUF_AUTHENTICATION = 0x05

ESP_GATT_REQ NOT_SUPPORTED = 0x06
ESP_GATT_INVALID_OFFSET = 0x(07

ESP_GATT_INSUF_AUTHORIZATION = 0x08

ESP_GATT_PREPARE_Q FULL = (0x09
ESP_GATT_NOT_FOUND = 0x0a
ESP_GATT_NOT_LONG = 0x0b
ESP_GATT_INSUF_KEY_ SIZE =0x0c
ESP_GATT_INVALID_ATTR_LEN = 0x0d
ESP_GATT_ERR UNLIKELY = 0x0Oe
ESP_GATT_INSUF_ENCRYPTION = 0x0Of
ESP_GATT_UNSUPPORT_GRP_TYPE = 0x10
ESP_GATT_INSUF_RESOURCE = Ox11
ESP_GATT_NO_RESOURCES = 0x80
ESP_GATT_INTERNAL_ERROR = 0x81
ESP_GATT_WRONG_STATE = 0x82
ESP_GATT_DB_FULL = 0x83
ESP_GATT_BUSY = 0x84
ESP_GATT_ERROR = 0x85
ESP_GATT_CMD_STARTED = 0x86
ESP_GATT_ILLEGAL_PARAMETER = (0x87

272

Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

ESP_GATT_PENDING = 0x88
ESP_GATT_AUTH_FAIL = (0x89
ESP_GATT_MORE = 0x8a
ESP_GATT_INVALID_CFG = 0x8b
ESP_GATT_SERVICE_STARTED = 0x8c
ESP_GATT_ENCRYPED_MITM = ESP_GATT_OK
ESP_GATT_ENCRYPED_NO_MITM = 0x8d
ESP_GATT_NOT_ENCRYPTED = Ox8e
ESP_GATT_CONGESTED = 0x8f
ESP_GATT_DUP_REG = 0x90
ESP_GATT_ALREADY_OPEN = 0x91
ESP_GATT_CANCEL = 0x92
ESP_GATT_STACK_RSP = 0xe0
ESP_GATT_APP_RSP = Oxel
ESP_GATT_UNKNOWN_ERROR = Oxef
ESP_GATT_CCC_CFG_ERR = Oxfd
ESP_GATT_PRC_IN_PROGRESS = (Oxfe
ESP_GATT_OUT_OF_RANGE = Oxff

enum esp_gatt_conn_reason_t
Gatt Connection reason enum.

Values:

ESP_GATT CONN_UNKNOWN =0
Gatt connection unknown

ESP_GATT_CONN_L2C_FAILURE = |
General L2cap failure

ESP_GATT_ CONN_TIMEOUT = 0x08
Connection timeout

ESP_GATT_CONN_TERMINATE_PEER_ USER =0x13
Connection terminate by peer user

ESP_GATT_CONN_TERMINATE_LOCAL_HOST =0x16
Connection terminated by local host

ESP_GATT_CONN_FAIL_ ESTABLISH = 0x3e
Connection fail to establish

ESP_GATT_CONN_LMP_TIMEOUT = 0x22
Connection fail for LMP response tout

ESP_GATT_CONN_CONN_CANCEL = (0x0100
L2CAP connection cancelled

ESP_GATT CONN_NONE = 0x0101
No connection to cancel

3.3. Bluetooth API 273

Read the Docs Template Documentation, Release v3.2.5

enum esp_gatt_auth_req t
Gatt authentication request type.

Values:

ESP_GATT_AUTH_REQ NONE =(
ESP_GATT_AUTH_REQ NO_MITM=1
ESP_GATT AUTH REQ MITM=2

ESP_GATT_ AUTH_REQ SIGNED_NO_MITM =73
ESP_GATT_AUTH_REQ SIGNED_MITM=4

enum esp_service_source_t
Values:

ESP_GATT_SERVICE_FROM REMOTE_DEVICE =(
ESP_GATT_SERVICE_FROM NVS_FLASH=1
ESP_GATT_SERVICE_FROM UNKNOWN = 2

enum esp_gatt_write_type t
Gatt write type.

Values:

ESP_GATT WRITE_TYPE NO_RSP = |
Gatt write attribute need no response

ESP_GATT_WRITE_TYPE_RSP
Gatt write attribute need remote response

enum esp_gatt_db_attr_type t
the type of attribute element

Values:

ESP_GATT_DB_PRIMARY SERVICE
Gattc primary service attribute type in the cache

ESP_GATT_DB_SECONDARY_ SERVICE
Gattc secondary service attribute type in the cache

ESP_GATT_DB_CHARACTERISTIC
Gattc characteristic attribute type in the cache

ESP_GATT_DB_DESCRIPTOR
Gattc characteristic descriptor attribute type in the cache

ESP_GATT_DB_INCLUDED_SERVICE
Gattc include service attribute type in the cache

ESP_GATT DB_ALL
Gattc all the attribute (primary service & secondary service & include service & char & descriptor) type
in the cache

GATT SERVER API

Overview

Instructions

274 Chapter 3. API Reference

../template.html

Read the Docs Template Documentation, Release v3.2.5

Application Example

Check bluetooth folder in ESP-IDF examples, which contains the following demos and their tutorials:

¢ This is a GATT sever demo and its tutorial. This demo creates a GATT service with an attribute table, which
releases the user from adding attributes one by one. This is the recommended method of adding attributes.

— bluetooth/gatt_server_service_table
— GATT Server Service Table Example Walkthrough

* This is a GATT server demo and its tutorial. This demo creates a GATT service by adding attributes one by one
as defined by Bluedroid. The recommended method of adding attributes is presented in example above.

— bluetooth/gatt_server
— GATT Server Example Walkthrough

¢ This is a BLE SPP-Like demo. This demo, which acts as a GATT server, can receive data from UART and then
send the data to the peer device automatically.

— bluetooth/ble_spp_server

API Reference
Header File

* bt/bluedroid/api/include/api/esp_gatts_api.h

Functions

esp_err_t esp_ble_gatts_register_callback (esp_gatts_cb_t callback)
This function is called to register application callbacks with BTA GATTS module.
Return
e ESP_OK : success
e other : failed
esp_err_t esp_ble_gatts_app_register (uintl6_t app_id)
This function is called to register application identifier.
Return
e ESP_OK : success
* other : failed
esp_err_t esp_ble_gatts_app_unregister (esp_gatt_if t gatts_if)
unregister with GATT Server.
Return
¢ ESP_OK : success
* other : failed

Parameters

3.3. Bluetooth API 275

https://github.com/espressif/esp-idf/tree/v3.2.5/examples/bluetooth
https://github.com/espressif/esp-idf/tree/v3.2.5/examples/bluetooth/gatt_server_service_table
https://github.com/espressif/esp-idf/blob/v3.2.5/examples/bluetooth/gatt_server_service_table/tutorial/Gatt_Server_Service_Table_Example_Walkthrough.md
https://github.com/espressif/esp-idf/tree/v3.2.5/examples/bluetooth/gatt_server
https://github.com/espressif/esp-idf/blob/v3.2.5/examples/bluetooth/gatt_server/tutorial/Gatt_Server_Example_Walkthrough.md
https://github.com/espressif/esp-idf/tree/v3.2.5/examples/bluetooth/ble_spp_server
https://github.com/espressif/esp-idf/blob/v3.2.5/components/bt/bluedroid/api/include/api/esp_gatts_api.h

Read the Docs Template Documentation, Release v3.2.5

e gatts_1if: GATT server access interface

esp_err_t esp_ble_gatts_create_service (esp_gatt_if t gatts_if, esp_gatt_srvc_id_t *service_id,

uint16_t num_handle)
Create a service. When service creation is done, a callback event BTA_GATTS_CREATE_SRVC_EVT is called

to report status and service ID to the profile. The service ID obtained in the callback function needs to be used
when adding included service and characteristics/descriptors into the service.
Return
e ESP_OK : success
e other : failed
Parameters
e gatts_if: GATT server access interface
e service_id: service ID.
* num_handle: number of handle requested for this service.
esp_err_t esp_ble_gatts_create_attr_tab (const esp_gatts_attr_db_t *gatts_attr_db,

esp_gatt_if t gatts_if, uwint8_t max_nb_attr, uint8_t

)) srve_inst_id)
Create a service attribute tab.

Return
e ESP_OK : success
e other : failed
Parameters
* gatts_attr_db: the pointer to the service attr tab
e gatts_1if: GATT server access interface
* max_nb_attr: the number of attribute to be added to the service database.

e srvc_inst_id: the instance id of the service

esp_err_t esp_ble_gatts_add_included_service (uintl6_t service_handle, uint16_t in-
cluded_service_handle)
This function is called to add an included service. This function have to be called between

‘esp_ble_gatts_create_service’ and ‘esp_ble_gatts_add_char’. After included service is included, a callback
event BTA_GATTS_ADD_INCL_SRVC_EVT is reported the included service ID.
Return
e ESP_OK : success
e other : failed
Parameters
* service_handle: service handle to which this included service is to be added.

e included_service_handle: the service ID to be included.

276 Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

esp_err_t esp_ble_gatts_add_char (uintl6_t service_handle, esp_bt_uuid_t *char_uuid,
esp_gatt_perm_t perm, esp_gatt_char_prop_t property,

esp_attr_value_t *char_val, esp_attr_control_t *control)
This function is called to add a characteristic into a service.

Return
¢ ESP_OK : success
e other : failed
Parameters
e service_handle: service handle to which this included service is to be added.
e char_uuid: : Characteristic UUID.
* perm: : Characteristic value declaration attribute permission.
* property: : Characteristic Properties
e char_val: : Characteristic value
* control: : attribute response control byte
esp_err_t esp_ble_gatts_add_char_descr (uintl6_t service_handle, esp_bt_uuid_t *de-
scr_uuid, esp_gatt_perm_t perm, esp_attr_value_t

*char_descr_val, esp_attr_control_t *control)
This function is called to add characteristic descriptor. When it’s done, a callback event

BTA_GATTS_ADD_DESCR_EVT is called to report the status and an ID number for this descriptor.
Return
* ESP_OK : success
* other : failed
Parameters
* service_handle: service handle to which this characteristic descriptor is to be added.
* perm: descriptor access permission.
* descr_uuid: descriptor UUID.
e char_descr_val: : Characteristic descriptor value
e control: : attribute response control byte
esp_err_t esp_ble_gatts_delete_service (uintl6_t service_handle)
This function is called to delete a service. When this is done, a callback event BTA_ GATTS_DELETE_EVT is
report with the status.
Return
e ESP_OK : success
e other : failed
Parameters
e service_handle: service_handle to be deleted.

esp_err_t esp_ble_gatts_start_service (uintl6_t service_handle)
This function is called to start a service.

3.3. Bluetooth API 277

Read the Docs Template Documentation, Release v3.2.5

Return
¢ ESP_OK : success
e other : failed
Parameters
e service_handle: the service handle to be started.
esp_err_t esp_ble_gatts_stop_service (uintl6_t service_handle)
This function is called to stop a service.
Return
e ESP_OK : success
e other : failed
Parameters
* service_handle: - service to be topped.
esp_err_t esp_ble_gatts_send_indicate (esp_gatt if t gatts_if, uintl6_t conn_id, uintl6_t

attr_handle, uintl6_t value len, uint8_t *value, bool

need_confirm)
Send indicate or notify to GATT client. Set param need_confirm as false will send notification, otherwise

indication.
Return
e ESP_OK : success
e other : failed
Parameters
e gatts_1if: GATT server access interface
e conn_id: - connection id to indicate.
* attr_handle: - attribute handle to indicate.
* value_len: - indicate value length.
e value: value to indicate.
* need_confirm: - Whether a confirmation is required. false sends a GATT notification, true sends

a GATT indication.

esp_err_t esp_ble_gatts_send response (esp_gatt_if t gatts_if, uintl6_t conn_id, vint32_t trans_id,
esp_gatt_status_t status, esp_gatt_rsp_t *rsp)

This function is called to send a response to a request.

Return
e ESP_OK : success
e other : failed

Parameters
e gatts_if: GATT server access interface

e conn_id: - connection identifier.

278 Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

e trans_id: - transfer id
* status: - response status
* rsp: - response data.

esp_err_t esp_ble_gatts_set_attr_value (uintl6_t attr_handle, uintl6_t length, const uint8_t

*value)
This function is called to set the attribute value by the application.

Return
e ESP_OK : success
* other : failed
Parameters
e attr_handle: the attribute handle which to be set
e length: the value length
* value: the pointer to the attribute value

esp_gatt_status_t esp_ble_gatts_get_attr_value (uintl6_t attr_handle, uintl6_t *length, const

] uint8_t **value)
Retrieve attribute value.

Return
* ESP_GATT_OK : success
* other : failed
Parameters
* attr_handle: Attribute handle.
* length: pointer to the attribute value length
e value: Pointer to attribute value payload, the value cannot be modified by user

esp_err_t esp_ble_gatts_open (esp_gatt_if t gatts_if, esp_bd_addr_t remote_bda, bool is_direct)
Open a direct open connection or add a background auto connection.

Return
e ESP_OK : success
e other : failed
Parameters

e gatts_if: GATT server access interface
e remote_bda: remote device bluetooth device address.
e is_direct: direct connection or background auto connection
esp_err_t esp_ble_gatts_close (esp_gatt_if t gatts_if, nint16_t conn_id)
Close a connection a remote device.

Return

e ESP_OK : success

3.3. Bluetooth API 279

Read the Docs Template Documentation, Release v3.2.5

e other : failed
Parameters
e gatts_1if: GATT server access interface
e conn_id: connection ID to be closed.
esp_err_t esp_ble_gatts_send_service_change_indication (esp_gatt if t gatts_if,

esp_bd_addr_t remote_bda)
Send service change indication.

Return
* ESP_OK : success
e other : failed
Parameters
e gatts_1if: GATT server access interface

* remote_lbda: remote device bluetooth device address. If remote_bda is NULL then it will send
service change indication to all the connected devices and if not then to a specific device

Unions

union esp_ble _gatts_cb param t
#include <esp_gatts_api.h> Gatt server callback parameters union.

Public Members
struct esp_ble_gatts_cb_param_t::gatts_reg_evt_param reg
Gatt server callback param of ESP_GATTS_REG_EVT

struct esp_ble_gatts_cb_param_t::gatts_read_evt_param read
Gatt server callback param of ESP_GATTS_READ_EVT

struct esp_ble_gatts_cb_param_t::gatts_write_evt_param write
Gatt server callback param of ESP_GATTS_WRITE_EVT

struct esp_ble_gatls_cb _param_t::gatts_exec_write_evt_param exec_write

Gatt server callback param of ESP_GATTS_EXEC_WRITE_EVT

struct esp_ble_gatts_cb_param_t::gatts_mtu_evt_param mtu
Gatt server callback param of ESP_GATTS_MTU_EVT

struct esp_ble_gatts_cb_param_t::gatts_conf_evt_param conf
Gatt server callback param of ESP_GATTS_CONF_EVT (confirm)

struct esp_ble_gatts_cb_param_t::gatts_create_evt_param create
Gatt server callback param of ESP_GATTS_CREATE_EVT

struct esp_ble_gatts_cb_param_t::gatts_add_incl_srvc_evt_param add_incl_srve
Gatt server callback param of ESP_GATTS_ADD_INCL_SRVC_EVT

struct esp_ble_gatts_cb_param_t::gatts_add_char_evt_param add_char
Gatt server callback param of ESP_GATTS_ADD_CHAR_EVT

struct esp_ble_gatts_cb_param_t::gatts_add_char_descr_evt_param add_char_descr
Gatt server callback param of ESP_GATTS_ADD_CHAR_DESCR_EVT

280 Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

struct esp_ble_gatts_cb_param_t::gatts_delete_evt_param del
Gatt server callback param of ESP_GATTS_DELETE_EVT

struct esp_ble_gatts_cb_param_t::gatts_start_evt_param start
Gatt server callback param of ESP_GATTS_START_EVT

struct esp_ble_gatts_cb_param_t::gatts_stop_evt_param stop
Gatt server callback param of ESP_GATTS_STOP_EVT

struct esp_ble_gatts_cb_param_t::gatts_connect_evt_param connect
Gatt server callback param of ESP_GATTS_CONNECT_EVT

struct esp_ble_gatts_cb_param_t::gatts_disconnect_evt_param disconnect
Gatt server callback param of ESP_GATTS_DISCONNECT_EVT

struct esp_ble_gatts_cb_param_t::gatts_open_evt_param open
Gatt server callback param of ESP_GATTS_OPEN_EVT

struct esp_ble_gatts_cb_param_t::gatts_cancel_open_evt_param cancel_open

Gatt server callback param of ESP_GATTS_CANCEL_OPEN_EVT

struct esp_ble_gatts_cb_param_t::gatts_close_evt_param close
Gatt server callback param of ESP_GATTS_CLOSE_EVT

struct esp_ble_gatts_cb_param_t::gatts_congest_evt_param congest
Gatt server callback param of ESP_GATTS_CONGEST_EVT

struct esp_ble_gatts_cb_param_t::gatts_rsp_evt_param rsp
Gatt server callback param of ESP_GATTS_RESPONSE_EVT

struct esp_ble_gatts_cb_param_t::gatts_add_attr_tab_evt_param add_attr_tab
Gatt server callback param of ESP_GATTS_CREAT_ATTR_TAB_EVT

struct esp_ble_gatts_cb_param_t::gatts_set_attr_val_evt_param set_attr_val
Gatt server callback param of ESP_GATTS_SET_ATTR_VAL_EVT

struct esp_ble_gatts_cb_param_t::gatts_send_service_change_evt_param service_change
Gatt server callback param of ESP_GATTS_SEND_SERVICE_CHANGE_EVT

struct gatts_add_attr tab_evt_param
#include <esp_gatts_api.h> ESP_GATTS_CREAT_ATTR_TAB_EVT.

Public Members
esp_gailt_status_t status
Operation status

esp_bt_uuid_t sve_uuid
Service uuid type

uintl6_t num_handle
The number of the attribute handle to be added to the gatts database

uintl6_t *handles
The number to the handles

struct gatts_add_char descr_evt_param
#include <esp_gatts_api.h> ESP_GATTS_ADD_CHAR_DESCR_EVT.

3.3. Bluetooth API 281

Read the Docs Template Documentation, Release v3.2.5

Public Members
esp_gatt_status_t status
Operation status

uintl6_t attr_ handle
Descriptor attribute handle

uintl6_t service_handle
Service attribute handle

esp_bt_uuid_t descr_uuid
Characteristic descriptor uuid

struct gatts_add_char_ evt_param
#include <esp_gatts_api.h> ESP_GATTS_ADD_CHAR_EVT.

Public Members
esp_gait_status_t status
Operation status

uintl6_t attr_handle
Characteristic attribute handle

uintl6_t service_handle
Service attribute handle

esp_bt_uuid_t char_uuid
Characteristic uuid

struct gatts_add_incl_srvc_evt_param
#include <esp_gatts_api.h> ESP_GATTS_ADD_INCL_SRVC_EVT.

Public Members
esp_gatt_status_t status
Operation status

uintl6_t attr_handle
Included service attribute handle

uintl6_t service_handle
Service attribute handle

struct gatts_cancel_open_evt_param
#include <esp_gatts_api.h> ESP_GATTS_CANCEL_OPEN_EVT.

Public Members

esp_gatt_status_t status
Operation status

struct gatts_close_evt_param
#include <esp_gatts_api.h> ESP_GATTS_CLOSE_EVT.

282

Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

Public Members
esp_gatt_status_t status
Operation status

uintl6_t conn_id
Connection id

struct gatts_conf_evt_param
#include <esp_gatts_api.h> ESP_GATTS_CONF_EVT.

Public Members
esp_gatt_status_t status
Operation status

uintl6_t conn_id
Connection id

uintl6_t handle
attribute handle

uintl6_t len
The indication or notification value length, len is valid when send notification or indication failed

uint8_t *value
The indication or notification value , value is valid when send notification or indication failed

struct gatts_congest_evt_param
#include <esp_gatts_api.h> ESP_GATTS_LISTEN_EVT.

ESP_GATTS_CONGEST_EVT

Public Members
uintl6_t conn_id
Connection id

bool congested
Congested or not

struct gatts_connect_evt_param
#include <esp_gatts_api.h> ESP_GATTS_CONNECT_EVT.

Public Members
uintl6_t conn_id
Connection id

esp_bd_addr_t remote_bda
Remote bluetooth device address

struct gatts_create_evt_param
#include <esp_gatts_api.h> ESP_GATTS_UNREG_EVT.

ESP_GATTS_CREATE_EVT

. Bluetooth API 283

Read the Docs Template Documentation, Release v3.2.5

Public Members
esp_gatt_status_t status
Operation status

uintl6_t service_handle
Service attribute handle

esp_gatt_srvc_id_t service_id
Service id, include service uuid and other information

struct gatts_delete_evt_param
#include <esp_gatts_api.h> ESP_GATTS_DELETE_EVT.

Public Members

esp_gatt_status_t status
Operation status

uintl6_t service handle
Service attribute handle

struct gatts_disconnect_evt_param

#include <esp_gatts_api.h> ESP_GATTS_DISCONNECT_EVT.

Public Members
uintl6_t conn_id
Connection id

esp_bd_addr_t remote_bda
Remote bluetooth device address

esp_gatt_conn_reason_t reason
Indicate the reason of disconnection

struct gatts_exec_write_evt_param

#include <esp_gatts_api.h> ESP_GATTS_EXEC_WRITE_EVT.

Public Members

uintl6_t conn_id
Connection id

uint32_ttrans_id
Transfer id

esp_bd_addr_t bda
The bluetooth device address which been written

uint8_t exec_write_flag
Execute write flag

struct gatts_mtu_evt_param
#include <esp_gatts_api.h> ESP_GATTS_MTU_EVT.

284

Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

Public Members
uintl6_t conn_id
Connection id

uintl6_t mtu
MTU size

struct gatts_open_evt_param
#include <esp_gatts_api.h> ESP_GATTS_OPEN_EVT.

Public Members

esp_gatt_status_t status
Operation status

struct gatts_read_evt_param
#include <esp_gatts_api.h> ESP_GATTS_READ_EVT.

Public Members

uintl6_t conn_id
Connection id

uint32_t trans_id
Transfer id

esp_bd_addr_t bda
The bluetooth device address which been read

uint16_t handle
The attribute handle

uintl6_t of £set
Offset of the value, if the value is too long

bool is_long
The value is too long or not

bool need_rsp
The read operation need to do response

struct gatts_reg_evt_param
#include <esp_gatts_api.h> ESP_GATTS_REG_EVT.

Public Members
esp_gatt_status_t status
Operation status

uintl6_t app_id
Application id which input in register API

struct gatts_rsp_ evt_param
#include <esp_gatts_api.h> ESP_GATTS_RESPONSE_EVT.

. Bluetooth API 285

Read the Docs Template Documentation, Release v3.2.5

Public Members
esp_gatt_status_t status
Operation status

uintl6_t handle
Attribute handle which send response

struct gatts_send_service_change_evt_param
#include <esp_gatts_api.h> ESP_GATTS_SEND_SERVICE_CHANGE_EVT.

Public Members

esp_gatt_status_t status
Operation status

struct gatts_set_attr val_evt_param
#include <esp_gatts_api.h> ESP_GATTS_SET_ATTR_VAL_EVT.

Public Members
uintl6_t srve_handle
The service handle

uintl6_t attr _handle
The attribute handle

esp_galt_status_t status
Operation status

struct gatts_start_evt_param
#include <esp_gatts_api.h> ESP_GATTS_START_EVT.

Public Members
esp_gailt_status_t status
Operation status

uintl6_t service_handle
Service attribute handle

struct gatts_stop_evt_param
#include <esp_gatts_api.h> ESP_GATTS_STOP_EVT.

Public Members
esp_gatt_status_t status
Operation status

uintl6_t service_handle
Service attribute handle

struct gatts_write_evt_param
#include <esp_gatts_api.h> ESP_GATTS_WRITE_EVT.

286 Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

Public Members
uintl6_t conn_id
Connection id

uint32_ttrans_id
Transfer id

esp_bd_addr_t bda
The bluetooth device address which been written

uintl6_t handle
The attribute handle

uintl6_t of £set
Offset of the value, if the value is too long

bool need_rsp
The write operation need to do response

bool is_prep
This write operation is prepare write

uintl6_t len
The write attribute value length

uint8_t *value
The write attribute value

Macros

ESP_GATT_ PREP_WRITE_CANCEL
Prepare write flag to indicate cancel prepare write

ESP_GATT_PREP_WRITE_EXEC
Prepare write flag to indicate execute prepare write

Type Definitions

typedef void (*esp_gatts_cb_t) (esp_gatts_cb_event_t event, esp_gatt_if t gatts_if,
esp_ble_gatts_cb_param_t *param)
GATT Server callback function type.

Parameters
* event: : Event type
e gatts_if:: GATT server access interface, normally different gatts_if correspond to different profile

e param: : Point to callback parameter, currently is union type

Enumerations

enum esp_gatts_cb_event_t
GATT Server callback function events.

Values:

3.3. Bluetooth API 287

Read the Docs Template Documentation, Release v3.2.5

ESP_GATTS_REG_EVT =0
When register application id, the event comes

ESP_GATTS_READ_EVT =1
When gatt client request read operation, the event comes

ESP_GATTS_WRITE_EVT =2
When gatt client request write operation, the event comes

ESP_GATTS_EXEC_WRITE_EVT =3
When gatt client request execute write, the event comes

ESP_GATTS MTU EVT =4
When set mtu complete, the event comes

ESP_GATTS_CONF_EVT =5
When receive confirm, the event comes

ESP_GATTS_UNREG_EVT =6
When unregister application id, the event comes

ESP_GATTS_CREATE_EVT =7
When create service complete, the event comes

ESP_GATTS ADD INCL_SRVC EVT =28
When add included service complete, the event comes

ESP_GATTS_ADD CHAR EVT =9
When add characteristic complete, the event comes

ESP_GATTS_ADD_CHAR DESCR_EVT = 10
When add descriptor complete, the event comes

ESP_GATTS DELETE EVT =11
When delete service complete, the event comes

ESP_GATTS_ START EVT =12
When start service complete, the event comes

ESP_GATTS_STOP_EVT =13
When stop service complete, the event comes

ESP_GATTS_ CONNECT EVT = 14
When gatt client connect, the event comes

ESP_GATTS_ DISCONNECT EVT =15
When gatt client disconnect, the event comes

ESP_GATTS_ OPEN EVT =16
When connect to peer, the event comes

ESP_GATTS_ CANCEL OPEN EVT =17
When disconnect from peer, the event comes

ESP_GATTS CLOSE_EVT =18
When gatt server close, the event comes

ESP_GATTS_LISTEN_EVT =19
When gatt listen to be connected the event comes

ESP_GATTS_CONGEST_EVT =20
When congest happen, the event comes

288

Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

ESP_GATTS_RESPONSE_EVT =21
When gatt send response complete, the event comes

ESP_GATTS_CREAT_ATTR _TAB_EVT =22
When gatt create table complete, the event comes

ESP_GATTS_SET_ATTR VAL_EVT =23
When gatt set attr value complete, the event comes

ESP_GATTS_SEND_SERVICE_CHANGE_EVT =24
When gatt send service change indication complete, the event comes

GATT CLIENT API

Overview

Instructions

Application Example

Check bluetooth folder in ESP-IDF examples, which contains the following demos and their tutorials:

e This is a GATT client demo and its tutorial. This demo can scan for devices, connect to the GATT server and
discover its services.

— bluetooth/gatt_client
— GATT Client Example Walkthrough

* This is a multiple connection demo and its tutorial. This demo can connect to multiple GATT server devices and
discover their services.

— bluetooth/gattc_multi_connect
— GATT Client Multi-connection Example Walkthrough

¢ This is a BLE SPP-Like demo. This demo, which acts as a GATT client, can receive data from UART and then
send the data to the peer device automatically.

— bluetooth/ble_spp_client

API Reference
Header File

* bt/bluedroid/api/include/api/esp_gattc_api.h

Functions

esp_err_t esp_ble_gattc_register callback (esp_gattc_cbh_t callback)
This function is called to register application callbacks with GATTC module.

Return

¢ ESP_OK: success

3.3. Bluetooth API 289

../template.html
https://github.com/espressif/esp-idf/tree/v3.2.5/examples/bluetooth
https://github.com/espressif/esp-idf/tree/v3.2.5/examples/bluetooth/gatt_client
https://github.com/espressif/esp-idf/blob/v3.2.5/examples/bluetooth/gatt_client/tutorial/Gatt_Client_Example_Walkthrough.md
https://github.com/espressif/esp-idf/tree/v3.2.5/examples/bluetooth/gattc_multi_connect
https://github.com/espressif/esp-idf/blob/v3.2.5/examples/bluetooth/gattc_multi_connect/tutorial/Gatt_Client_Multi_Connection_Example_Walkthrough.md
https://github.com/espressif/esp-idf/tree/v3.2.5/examples/bluetooth/ble_spp_client
https://github.com/espressif/esp-idf/blob/v3.2.5/components/bt/bluedroid/api/include/api/esp_gattc_api.h

Read the Docs Template Documentation, Release v3.2.5

e other: failed
Parameters
* callback: : pointer to the application callback function.
esp_err_t esp_ble_gattc_app_register (uintl6_t app_id)
This function is called to register application callbacks with GATTC module.
Return
e ESP_OK: success
e other: failed
Parameters
* app_id: : Application Identify (UUID), for different application
esp_err_t esp_ble_gattc_app_unregister (esp_gatt_if t gattc_if)
This function is called to unregister an application from GATTC module.
Return
e ESP_OK: success
e other: failed
Parameters
e gattc_if: Gatt client access interface.

esp_err_t esp_ble_gattc_open (esp_gatt_if t gattc_if, esp_bd_addr_t remote_bda, esp_ble_addr_type_t

remote_addr_type, bool is_direct)
Open a direct connection or add a background auto connection.

Return
e ESP_OK: success
e other: failed
Parameters
e gattc_if: Gattclient access interface.
e remote_bda: remote device bluetooth device address.
* remote_addr_type: remote device bluetooth device the address type.
e is_direct: direct connection or background auto connection
esp_err_t esp_ble_gattc_close (esp_gatt_if t gattc_if, uint16_t conn_id)
Close the virtual connection to the GATT server. gattc may have multiple virtual GATT server connections
when multiple app_id registered, this API only close one virtual GATT server connection. if there exist other
virtual GATT server connections, it does not disconnect the physical connection. if you want to disconnect the
physical connection directly, you can use esp_ble_gap_disconnect(esp_bd_addr_t remote_device).
Return
e ESP_OK: success

e other: failed

290 Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

Parameters
e gattc_if: Gattclient access interface.
e conn_id: connection ID to be closed.
esp_err_t esp_ble_gattc_send mtu_req (esp_gatt_if t gattc_if, uintl6_t conn_id)

Configure the MTU size in the GATT channel. This can be done only once per connection. Before using, use
esp_ble_gatt_set_local_mtu() to configure the local MTU size.

Return
e ESP_OK: success
e other: failed
Parameters
e gattc_if: Gattclient access interface.
e conn_id: connection ID.
esp_err_t esp_ble_gattc_search_service (esp_gatt_if t gattc_if, vintl6_t conn_id, esp_bt_uuid_t

*filter_uuid)
This function is called to get service from local cache. If it does not exist, request a GATT service discovery on

a GATT server. This function report service search result by a callback event, and followed by a service search
complete event.

Return
e ESP_OK: success
e other: failed
Parameters
e gattc_if: Gattclient access interface.
e conn_id: connection ID.
e filter_uuid: a UUID of the service application is interested in. If Null, discover for all services.
esp_gatt_status_t esp_ble_gattc_get_service (esp_gatt_if t gattc_If, uintl6_t conn_id,

esp_bt_uuid_t *svc_uuid, esp_gattc_service_elem_t

*result, uint16_t *count, uintl 6_t offset)
Find all the service with the given service uuid in the gattc cache, if the svc_uuid is NULL, find all the service.

Note: It just get service from local cache, won’t get from remote devices. If want to get it from remote device,
need to used the esp_ble_gattc_search_service.

Return
* ESP_OK: success
e other: failed
Parameters
e gattc_1if: Gattclient access interface.
* conn_id: connection ID which identify the server.
e svc_uuid: the pointer to the service uuid.

e result: The pointer to the service which has been found in the gattc cache.

3.3. Bluetooth API 291

Read the Docs Template Documentation, Release v3.2.5

e count: input the number of service want to find, it will output the number of service has been found
in the gattc cache with the given service uuid.

* offset: Offset of the service position to get.

esp_gatt_status_t esp_ble_gattc_get_all_char (esp_gatt_if t gattc_if, uint16_t conn_lid,

uintl6_t start_handle, uintl6_t end_handle,
esp_gattc_char_elem_t *result, uintl6_t *count,

uint16_t offset)
Find all the characteristic with the given service in the gattc cache Note: It just get characteristic from local

cache, won’t get from remote devices.
Return
* ESP_OK: success
e other: failed
Parameters
e gattc_if: Gattclient access interface.
e conn_1id: connection ID which identify the server.
e start_handle: the attribute start handle.
* end_handle: the attribute end handle
* result: The pointer to the characteristic in the service.

* count: input the number of characteristic want to find, it will output the number of characteristic has
been found in the gattc cache with the given service.

* offset: Offset of the characteristic position to get.

esp_gatt_status_t esp_ble_gattc_get_all_descr (esp_gatt_if t gattc_if, uintl6_t conn_id, uint16_t

char_handle, esp_gattc_descr_elem_t *result,

uint16_t *count, uint16_t offset)
Find all the descriptor with the given characteristic in the gattc cache Note: It just get descriptor from local

cache, won’t get from remote devices.
Return
e ESP_OK: success
e other: failed
Parameters
e gattc_if: Gattclient access interface.
e conn_id: connection ID which identify the server.
e char_handle: the given characteristic handle
* result: The pointer to the descriptor in the characteristic.

e count: input the number of descriptor want to find, it will output the number of descriptor has been
found in the gattc cache with the given characteristic.

* offset: Offset of the descriptor position to get.

292

Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

esp_gatt_status_t esp_ble_gattc_get_char_ by uuid (esp_gatt_if t gattc_if, uintl6_t conn_id,

uint16_t start_handle, uint16_t
end_handle, esp_bt_uuid_t char_uuid,
esp_gattc_char_elem_t *result, uint16_t
*count)

Find the characteristic with the given characteristic uuid in the gattc cache Note: It just get characteristic from
local cache, won’t get from remote devices.
Return
e ESP_OK: success
e other: failed
Parameters
e gattc_1if: Gattclient access interface.
e conn_id: connection ID which identify the server.
e start_handle: the attribute start handle
* end_handle: the attribute end handle
e char_uuid: the characteristic uuid
* result: The pointer to the characteristic in the service.
e count: input the number of characteristic want to find, it will output the number of characteristic has

been found in the gattc cache with the given service.

esp_gatt_status_t esp_ble_gattc_get_descr_by_uuid (esp_gatt if t gattc_if, uintl6_t conn_id,
uint16_t start_handle, uintl6_t end_handle,
esp_bt_uuid_t char_uuid, esp_bt_uuid_t de-
scr_uuid, esp_gattc_descr_elem_t *result,

uint16_t *count)
Find the descriptor with the given characteristic uuid in the gattc cache Note: It just get descriptor from local

cache, won’t get from remote devices.
Return
¢ ESP_OK: success
e other: failed
Parameters
e gattc_1if: Gattclient access interface.
* conn_id: connection ID which identify the server.
e start_handle: the attribute start handle
¢ end_handle: the attribute end handle
e char_uuid: the characteristic uuid.
e descr_uuid: the descriptor uuid.
* result: The pointer to the descriptor in the given characteristic.

e count: input the number of descriptor want to find, it will output the number of descriptor has been
found in the gattc cache with the given characteristic.

3.3. Bluetooth API 293

Read the Docs Template Documentation, Release v3.2.5

esp_gatt_status_t esp_ble_gattc_get_descr_by_ char_handle (esp_gatt_if t gattc_if, uintl6_t

conn_id, uintl6_t char_handle,
esp_bt_uuid_t descr_uuid,
esp_gattc_descr_elem_t *re-
sult, uint16_t *count)

Find the descriptor with the given characteristic handle in the gattc cache Note: It just get descriptor from local
cache, won’t get from remote devices.

Return
* ESP_OK: success
e other: failed
Parameters

gattc_1if: Gatt client access interface.

conn_id: connection ID which identify the server.
char_handle: the characteristic handle.

descr_uuid: the descriptor uuid.

result: The pointer to the descriptor in the given characteristic.

count: input the number of descriptor want to find, it will output the number of descriptor has been
found in the gattc cache with the given characteristic.

esp_gatt_status_t esp_ble_gattc_get_include_service (esp_gatt_if t gattc_if, uintl6_t conn_id,

uint16_t start_handle, uintl6_t
end_handle, esp_bt_uuid_t *incl_uuid,
esp_gattc_incl_svc_elem_t *result,

uint16_t *count)

Find the include service with the given service handle in the gattc cache Note: It just get include service from
local cache, won’t get from remote devices.

Return
* ESP_OK: success
* other: failed
Parameters

gattc_1if: Gatt client access interface.

conn_1id: connection ID which identify the server.
start_handle: the attribute start handle

end_handle: the attribute end handle

incl_uuid: the include service uuid

result: The pointer to the include service in the given service.

count: input the number of include service want to find, it will output the number of include service
has been found in the gattc cache with the given service.

294

Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

esp_gatt_status_t esp_ble_gattc_get_attr_count (esp_gart if t gattc_if, uintl6_t conn_id,
esp_gatt_db_attr_type_t type, uint16_t
start_handle, uintl6_t end_handle, uintl6_t

char_handle, vint16_t *count)
Find the attribute count with the given service or characteristic in the gattc cache.

Return
e ESP_OK: success
e other: failed
Parameters
e gattc_if: Gattclient access interface.
e conn_id: connection ID which identify the server.
* type: the attribute type.

* start_handle: the attribute start handle, if the type is ESP_GATT_DB_DESCRIPTOR, this pa-
rameter should be ignore

* end_handle: the attribute end handle, if the type is ESP_GATT_DB_DESCRIPTOR, this parame-
ter should be ignore

* char_handle: the characteristic handle, this parameter valid when the type is
ESP_GATT_DB_DESCRIPTOR. If the type isn’t ESP_GATT_DB_DESCRIPTOR, this parameter
should be ignore.

e count: output the number of attribute has been found in the gattc cache with the given attribute type.
esp_gatt_status_t esp_ble_gattc_get_db (esp_gatt_if t gattc_if, uintl6_t conn_id, uint16_t

start_handle, uintl6_t end_handle, esp_gattc_db_elem_t

*db, uint16_t *count)
This function is called to get the GATT database. Note: It just get attribute data base from local cache, won’t

get from remote devices.

Return
¢ ESP_OK: success
* other: failed

Parameters
e gattc_if: Gattclient access interface.
e start_handle: the attribute start handle
¢ end_handle: the attribute end handle
e conn_id: connection ID which identify the server.
* db: output parameter which will contain the GATT database copy. Caller is responsible for freeing it.
e count: number of elements in database.

esp_err_t esp_ble_gattc_read char (esp_gatt_if t gattc_if, uintl6_t conn_id, uintl6_t handle,

esp_gatt_auth_req_t auth_req)
This function is called to read a service’s characteristics of the given characteristic handle.

Return

¢ ESP_OK: success

3.3. Bluetooth API 295

Read the Docs Template Documentation, Release v3.2.5

e other: failed

Parameters
e gattc_if: Gattclient access interface.
e conn_id: : connection ID.
* handle: : characteritic handle to read.
* auth_req: : authenticate request type

esp_err_t esp_ble_gattc_read multiple (esp_gartt_if t gattc_if, uintl6_t conn_id, esp_gattc_multi_t

*read_multi, esp_gatt_auth_req_t auth_req)
This function is called to read multiple characteristic or characteristic descriptors.

Return
e ESP_OK: success
e other: failed
Parameters
e gattc_if: Gattclient access interface.
e conn_id: : connection ID.
* read_multi: : pointer to the read multiple parameter.
* auth_req: : authenticate request type

esp_err_t esp_ble_gattc_read char_descr (esp_gatt_if t gattc_if, uintl6_t conn_id, uint16_t han-

dle, esp_gatt_auth_req_t auth_req)
This function is called to read a characteristics descriptor.

Return
e ESP_OK: success
e other: failed

Parameters
e gattc_if: Gattclient access interface.
e conn_id: : connection ID.
* handle: : descriptor handle to read.
* auth_req: : authenticate request type

esp_err_t esp_ble_gattc_write_char (esp_gatt_if t gattc_if, uintl6_t conn_id, uintl6_t handle,

uintl6_t value_len, uint8_t *value, esp_gatt write_type_t

write_type, esp_gatt_auth_req_t auth_req)
This function is called to write characteristic value.

Return
¢ ESP_OK: success
e other: failed
Parameters

e gattc_if: Gattclient access interface.

296 Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

conn_id: : connection ID.

handle: : characteristic handle to write.
value_len: length of the value to be written.
value: : the value to be written.

write_type: : the type of attribute write operation.

auth_reaq: : authentication request.

esp_err_t esp_ble_gattc_write_char descr (esp_gatt if t gattc_if, uintl16_t conn_id,

uintl6_t handle, uintl6_t value len, uint8_t
*value, esp_gatt_write_type_t write_type,
esp_gatt_auth_req_t auth_req)

This function is called to write characteristic descriptor value.

Return
e ESP_OK: success
e other: failed
Parameters

gattc_1if: Gatt client access interface.

conn_id: : connection ID

handle: : descriptor hadle to write.

value_len: length of the value to be written.
value: : the value to be written.

write_type: : the type of attribute write operation.

auth_regq: : authentication request.

esp_err_t esp_ble_gattc_prepare_write (esp_gatt_if t gattc_if, uintl6_t conn_id, uintl6_t han-

dle, uintl6_t offset, uintl6_t value_len, uint8_t *value,
esp_gatt_auth_req_t auth_req)

This function is called to prepare write a characteristic value.

Return
* ESP_OK: success
e other: failed
Parameters

gattc_1if: Gatt client access interface.
conn_1id: : connection ID.

handle: : characteristic handle to prepare write.
offset: : offset of the write value.
value_len: length of the value to be written.
value: : the value to be written.

auth_regq: : authentication request.

3.3. Bluetooth API

297

Read the Docs Template Documentation, Release v3.2.5

esp_err_t esp_ble_gattc_prepare_write_char descr (esp_gatt_if t gattc_if, uintl6_t conn_id,
uintl6_t handle, uintl6_t offset,
uintl6_t value_len, uwint8_t *value,

esp_gatt_auth_req_t auth_req)
This function is called to prepare write a characteristic descriptor value.

Return
* ESP_OK: success
* other: failed
Parameters
e gattc_if: Gattclient access interface.
e conn_id: : connection ID.
* handle: : characteristic descriptor handle to prepare write.
e offset: : offset of the write value.
* value_len: length of the value to be written.
e value: : the value to be written.
* auth_req: : authentication request.
esp_err_t esp_ble_gattc_execute_write (esp_gatt_if t gattc_if, uintl6_t conn_id, bool is_execute)
This function is called to execute write a prepare write sequence.
Return
¢ ESP_OK: success
e other: failed
Parameters
e gattc_1if: Gattclient access interface.
e conn_id: : connection ID.
e is_execute: : execute or cancel.

esp_err_t esp_ble_gattc_register_ for_notify (esp_gartt_if t gattc_if, esp_bd_addr_t server_bda,

) o))) uint16_t handle)
This function is called to register for notification of a service.

Return
* ESP_OK: registration succeeds
e other: failed
Parameters
e gattc_if: Gattclient access interface.
* server_bda: : target GATT server.
* handle: : GATT characteristic handle.

esp_err_t esp_ble_gattc_unregister_ for_notify (esp_gatt_if t gattc_if, esp_bd_addr_t

server_bda, uint16_t handle)
This function is called to de-register for notification of a service.

298 Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

Return
* ESP_OK: unregister succeeds
* other: failed
Parameters
e gattc_if: Gattclient access interface.
* server_bda: : target GATT server.
e handle: : GATT characteristic handle.
esp_err_t esp_ble_gattc_cache_refresh (esp_bd_addr_t remote_bda)
Refresh the server cache store in the gattc stack of the remote device.
Return
e ESP_OK: success
* other: failed
Parameters
e remote_bda: remote device BD address.
esp_err_t esp_ble_gattc_cache_assoc (esp_gatt _if t gattc_if, esp_bd_addr_t src_addr,

esp_bd_addr_t assoc_addr, bool is_assoc)
Add or delete the associated address with the source address. Note: The role of this API is mainly when the

client side has stored a server-side database, when it needs to connect another device, but the device’s attribute
database is the same as the server database stored on the client-side, calling this API can use the database that the
device has stored used as the peer server database to reduce the attribute database search and discovery process
and speed up the connection time. The associated address mains that device want to used the database has stored
in the local cache. The source address mains that device want to share the database to the associated address
device.

Return
* ESP_OK: success
e other: failed
Parameters
e gattc_if: Gattclient access interface.

* src_addr: the source address which provide the attribute table.

¢ assoc_addr: the associated device address which went to share the attribute table with the source
address.

e is_assoc: true add the associated device address, false remove the associated device address.
esp_err_t esp_ble_gattc_cache_get_addr_1list (esp_gatt if t gattc_if)
Get the address list which has store the attribute table in the gattc cache. There will callback
ESP_GATTC_GET_ADDR_LIST_EVT event when get address list complete.
Return
e ESP_OK: success

e other: failed

3.3. Bluetooth API 299

Read the Docs Template Documentation, Release v3.2.5

Parameters

e gattc_if: Gattclient access interface.

Unions

union esp_ble_gattc_cb_param t

#include <esp_gattc_api.h> Gatt client callback parameters union.

Public Members
struct esp_ble_gattc_cb_param_t::gattc_reg_evt_param reg
Gatt client callback param of ESP_GATTC_REG_EVT

struct esp_ble_gattc_cb_param_t::gattc_open_evt_param open
Gatt client callback param of ESP_GATTC_OPEN_EVT

struct esp_ble_gattc_cb_param_t:.gattc_close_evt_param close
Gatt client callback param of ESP_GATTC_CLOSE_EVT

struct esp_ble_gattc_cb_param_t::gattc_cfg_mtu_evt_param cfg_mtu
Gatt client callback param of ESP_GATTC_CFG_MTU_EVT

struct esp_ble_gattc_cb_param_t::gattc_search_cmpl_evt_param search_cmpl
Gatt client callback param of ESP_GATTC_SEARCH_CMPL_EVT

struct esp_ble_gattc_cb_param_t::gattc_search_res_evt_param search_res
Gatt client callback param of ESP_GATTC_SEARCH_RES_EVT

struct esp_ble_gattc_cb_param_t:.gattc_read_char_evt_param read
Gatt client callback param of ESP_GATTC_READ_CHAR_EVT

struct esp_ble_gattc_cb_param_t:.gattc_write_evt_param write
Gatt client callback param of ESP_GATTC_WRITE_DESCR_EVT

struct esp_ble_gattc_cb_param_t:.gattc_exec_cmpl_evt_param exec_cmpl
Gatt client callback param of ESP_GATTC_EXEC_EVT

struct esp_ble_gattc_cb_param_t::gattc_notify_evt_param notify
Gatt client callback param of ESP_GATTC_NOTIFY_EVT

struct esp_ble_gattc_cb_param_t::gattc_srvc_chg_evt_param srve_chg
Gatt client callback param of ESP_GATTC_SRVC_CHG_EVT

struct esp_ble_gattc_cb_param_t::gattc_congest_evt_param congest
Gatt client callback param of ESP_GATTC_CONGEST_EVT

struct esp_ble_gattc_cb_param_t::gattc_reg_for_notify_evt_param reg_£for_notify
Gatt client callback param of ESP_GATTC_REG_FOR_NOTIFY_EVT

struct esp_ble_gattc_cb_param_t::gattc_unreg_for_notify_evt_param unreg_for_notify
Gatt client callback param of ESP_GATTC_UNREG_FOR_NOTIFY_EVT

struct esp_ble_gattc_cb_param_t::gattc_connect_evi_param connect
Gatt client callback param of ESP_GATTC_CONNECT_EVT

struct esp_ble_gattc_cb_param_t::gattc_disconnect_evt_param disconnect
Gatt client callback param of ESP_GATTC_DISCONNECT_EVT

struct esp_ble_gattc_cb_param_t::gattc_set_assoc_addr_cmp_evt_param set_assoc_cmp
Gatt client callback param of ESP_GATTC_SET_ASSOC_EVT

300

Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

struct esp_ble_gattc_cb_param_t:.gattc_get_addr_list_evt_param get_addr_list
Gatt client callback param of ESP_GATTC_GET_ADDR_LIST_EVT

struct esp_ble_gattc_cb_param_t::gattc_queue_full_evt_param queue_£full
Gatt client callback param of ESP_GATTC_QUEUE_FULL_EVT

struct gattc_cfg mtu_evt_param
#include <esp_gattc_api.h> ESP_GATTC_CFG_MTU_EVT.

Public Members
esp_gatt_status_t status
Operation status

uintl6_t conn_id
Connection id

uintl6_t mtu
MTU size

struct gattc_close_evt_param
#include <esp_gattc_api.h> ESP_GATTC_CLOSE_EVT.

Public Members
esp_gatt_status_t status
Operation status

uintl6_t conn_id
Connection id

esp_bd_addr_t remote_bda
Remote bluetooth device address

esp_gatt_conn_reason_t reason
The reason of gatt connection close

struct gattc_congest_evt_param
#include <esp_gattc_api.h> ESP_GATTC_CONGEST_EVT.

Public Members

uintl6_t conn_id
Connection id

bool congested
Congested or not

struct gattc_connect_evt_param
#include <esp_gattc_api.h> ESP_GATTC_CONNECT_EVT.

Public Members

uintl6_t conn_id
Connection id

3.3.

Bluetooth API

301

Read the Docs Template Documentation, Release v3.2.5

esp_bd_addr_t remote_bda
Remote bluetooth device address

struct gattc_disconnect_evt_param
#include <esp_gattc_api.h> ESP_GATTC_DISCONNECT_EVT.

Public Members
esp_gatl_conn_reason_I reason
disconnection reason

uintl6_t conn_id
Connection id

esp_bd_addr_t remote_bda
Remote bluetooth device address

struct gattc_exec_cmpl_evt_param
#include <esp_gattc_api.h> ESP_GATTC_EXEC_EVT.

Public Members
esp_gatt_status_t status
Operation status

uintl6_t conn_id
Connection id

struct gattc_get_addr_list_evt_param
#include <esp_gattc_api.h> ESP_GATTC_GET_ADDR_LIST_EVT.

Public Members
esp_gatt_status_t status
Operation status

uint®_t num_addr
The number of address in the gattc cache address list

esp_bd_addr_t *addr_1list
The pointer to the address list which has been get from the gattc cache

struct gattc_notify evt_param
#include <esp_gattc_api.h> ESP_GATTC_NOTIFY_EVT.

Public Members
uintl6_t conn_id
Connection id

esp_bd_addr_t remote_bda
Remote bluetooth device address

uintl6_t handle
The Characteristic or descriptor handle

302

Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

uintl6_t value_len
Notify attribute value

uint§_t *value
Notify attribute value

bool is_notify
True means notify, false means indicate

struct gattc_open_evt_param
#include <esp_gattc_api.h> ESP_GATTC_OPEN_EVT.

Public Members
esp_gatt_status_t status
Operation status

uintl6_t conn_id
Connection id

esp_bd_addr_t remote_bda
Remote bluetooth device address

uintl6_t mtu
MTU size

struct gattc_queue_full_evt_param
#include <esp_gattc_api.h> ESP_GATTC_QUEUE_FULL_EVT.

Public Members

esp_gatt_status_t status
Operation status

uintl6_t conn_id
Connection id

bool is_full
The gattc command queue is full or not

struct gattc_read_char_evt_param
#include <esp_gattc_api.h> ESP_GATTC_READ_CHAR_EVT, ESP_GATTC_READ_DESCR_EVT.

Public Members
esp_gatt_status_t status
Operation status

uintl6_t conn_id
Connection id

uintl6_t handle
Characteristic handle

uint8_t *value
Characteristic value

. Bluetooth API 303

Read the Docs Template Documentation, Release v3.2.5

uintl6_t value_len
Characteristic value length

struct gattc_reg evt_param

#include <esp_gattc_api.h> ESP_GATTC_REG_EVT.

Public Members

esp_gatt_status_t status
Operation status

uintl6_t app_id
Application id which input in register API

struct gattc_reg for_notify evt_param

#include <esp_gattc_api.h> ESP_GATTC_REG_FOR_NOTIFY_EVT.

Public Members
esp_gatt_status_t status
Operation status

uint1l6_t handle
The characteristic or descriptor handle

struct gattc_search_cmpl_evt_param
#include <esp_gattc_api.h> ESP_GATTC_SEARCH_CMPL_EVT.

Public Members
esp_gaitt_status_t status
Operation status

uintl6_t conn_id
Connection id

esp_service_source_t searched_service_source

The source of the service information

struct gattc_search_res_evt_param
#include <esp_gattc_api.h> ESP_GATTC_SEARCH_RES_EVT.

Public Members
uintl6_t conn_id
Connection id

uintl6_t start_handle
Service start handle

uint1l6_t end_handle
Service end handle

esp_gatt_id_t srve_id
Service id, include service uuid and other information

304

Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

bool is_primary
True if this is the primary service

struct gattc_set_assoc_addr_cmp_evt_param
#include <esp_gattc_api.h> ESP_GATTC_SET_ASSOC_EVT.

Public Members

esp_gatt_status_t status
Operation status

struct gattc_srvc_chg evt_param
#include <esp_gattc_api.h> ESP_GATTC_SRVC_CHG_EVT.

Public Members

esp_bd_addr_t remote_bda
Remote bluetooth device address

struct gattc_unreg for notify evt_param
#include <esp_gattc_api.h> ESP_GATTC_UNREG_FOR_NOTIFY_EVT.

Public Members

esp_galt_status_t status
Operation status

uintl6_t handle
The characteristic or descriptor handle

struct gattc_write_evt_param
#include <esp_gattc_api.h> ESP_GATTC_WRITE_CHAR_EVT, ESP_GATTC_PREP_WRITE_EVT,
ESP_GATTC_WRITE_DESCR_EVT.

Public Members

esp_gatt_status_t status
Operation status

uintl6_t conn_id
Connection id

uintl6_t handle
The Characteristic or descriptor handle

uintl6_t of£set
The prepare write offset, this value is valid only when prepare write

Type Definitions

typedef void (*esp_gattc_cb_t) (esp_gattc_cb_event_t event, esp_gatt_if t gattc_if,
esp_ble_gattc_cb_param_t *param)
GATT Client callback function type.

3.3. Bluetooth API 305

Read the Docs Template Documentation, Release v3.2.5

Parameters

* event: : Event type

* gatts_if:: GATT client access interface, normally different gattc_if correspond to different profile

e param: : Point to callback parameter, currently is union type

Enumerations

enum esp_gattc_cb_event_t

GATT Client callback function events.
Values:

ESP_GATTC REG EVT=0
When GATT client is registered, the event comes

ESP_GATTC UNREG _EVT =1
When GATT client is unregistered, the event comes

ESP_GATTC_ OPEN EVT =2
When GATT virtual connection is set up, the event comes

ESP_GATTC_READ CHAR EVT =3
When GATT characteristic is read, the event comes

ESP_GATTC_WRITE_CHAR EVT =4
When GATT characteristic write operation completes, the event comes

ESP_GATTC CLOSE_EVT =5
When GATT virtual connection is closed, the event comes

ESP_GATTC_SEARCH_CMPL_EVT =6
When GATT service discovery is completed, the event comes

ESP_GATTC_SEARCH_RES_EVT =7
When GATT service discovery result is got, the event comes

ESP_GATTC_READ_DESCR_EVT =§
When GATT characteristic descriptor read completes, the event comes

ESP_GATTC_WRITE_DESCR _EVT =9
When GATT characteristic descriptor write completes, the event comes

ESP_GATTC_NOTIFY EVT =10
When GATT notification or indication arrives, the event comes

ESP_GATTC_PREP_WRITE EVT =11
When GATT prepare-write operation completes, the event comes

ESP_GATTC_EXEC EVT=12
When write execution completes, the event comes

ESP_GATTC ACL EVT=13
When ACL connection is up, the event comes

ESP_GATTC_CANCEL_OPEN EVT = 14
When GATT client ongoing connection is cancelled, the event comes

ESP_GATTC SRVC_CHG EVT =15
When “service changed” occurs, the event comes

306

Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

ESP_GATTC_ENC_CMPL_CB_EVT = 17
When encryption procedure completes, the event comes

ESP_GATTC_CFG_MTU_EVT = 18
When configuration of MTU completes, the event comes

ESP_GATTC_ADV_DATA EVT=19
When advertising of data, the event comes

ESP_GATTC MULT ADV_ENB EVT =20
When multi-advertising is enabled, the event comes

ESP_GATTC_MULT_ADV_UPD_EVT =21
When multi-advertising parameters are updated, the event comes

ESP_GATTC_ MULT ADV _DATA EVT =22
When multi-advertising data arrives, the event comes

ESP_GATTC MULT ADV DIS EVT =23
When multi-advertising is disabled, the event comes

ESP_GATTC_CONGEST_EVT =24
When GATT connection congestion comes, the event comes

ESP_GATTC BTH SCAN ENB_EVT =25
‘When batch scan is enabled, the event comes

ESP_GATTC_BTH_SCAN_CFG_EVT =26
When batch scan storage is configured, the event comes

ESP_GATTC BTH SCAN RD EVT =27
When Batch scan read event is reported, the event comes

ESP_GATTC_BTH SCAN THR EVT =28
When Batch scan threshold is set, the event comes

ESP_GATTC BTH SCAN PARAM EVT =29
When Batch scan parameters are set, the event comes

ESP_GATTC_BTH SCAN DIS EVT =30
When Batch scan is disabled, the event comes

ESP_GATTC_SCAN_FLT_CFG_EVT =31
When Scan filter configuration completes, the event comes

ESP_GATTC_SCAN_ FLT PARAM EVT =32
When Scan filter parameters are set, the event comes

ESP_GATTC_SCAN_FLT_ STATUS_EVT =33
When Scan filter status is reported, the event comes

ESP_GATTC_ADV_VSC_EVT =34
When advertising vendor spec content event is reported, the event comes

ESP_GATTC_REG_FOR_NOTIFY_ EVT =38
When register for notification of a service completes, the event comes

ESP_GATTC_UNREG_FOR_NOTIFY_ EVT = 39
When unregister for notification of a service completes, the event comes

ESP_GATTC_CONNECT_EVT =40
When the ble physical connection is set up, the event comes

3.3. Bluetooth API 307

Read the Docs Template Documentation, Release v3.2.5

ESP_GATTC_DISCONNECT_EVT =41
When the ble physical connection disconnected, the event comes

ESP_GATTC_READ_MULTIPLE_ EVT =42
When the ble characteristic or descriptor multiple complete, the event comes

ESP_GATTC_QUEUE_FULL_EVT =43
When the gattc command queue full, the event comes

ESP_GATTC_SET_ASSOC_EVT =44
When the ble gattc set the associated address complete, the event comes

ESP_GATTC_GET_ADDR_LIST_EVT =45
When the ble get gattc address list in cache finish, the event comes

BLUFI API

Overview

BLUFI is a profile based GATT to config ESP32 WIFI to connect/disconnect AP or setup a softap and etc. Use should
concern these things:

1. The event sent from profile. Then you need to do something as the event indicate.

2. Security reference. You can write your own Security functions such as symmetrical encryption/decryption and
checksum functions. Even you can define the “Key Exchange/Negotiation” procedure.

Application Example

Check bluetooth folder in ESP-IDF examples, which contains the following application:

* This is a BLUFI demo. This demo can set ESP32’s wifi to softap/station/softap&station mode and config wifi
connections - bluetooth/blufi

API Reference
Header File

* bt/bluedroid/api/include/api/esp_blufi_api.h

Functions

esp_err_t esp_blufi_register_ callbacks (esp_blufi_callbacks_t *callbacks)
This function is called to receive blufi callback event.

Return ESP_OK - success, other - failed
Parameters

e callbacks: callback functions

esp_err_t esp_blufi_profile_init (void)
This function is called to initialize blufi_profile.

308 Chapter 3. API Reference

https://github.com/espressif/esp-idf/tree/v3.2.5/examples/bluetooth
https://github.com/espressif/esp-idf/tree/v3.2.5/examples/bluetooth/blufi
https://github.com/espressif/esp-idf/blob/v3.2.5/components/bt/bluedroid/api/include/api/esp_blufi_api.h

Read the Docs Template Documentation, Release v3.2.5

Return ESP_OK - success, other - failed

esp_err_t esp_blufi_profile_ deinit (void)
This function is called to de-initialize blufi_profile.

Return ESP_OK - success, other - failed

esp_err_t esp_blufi_send_wifi_conn_report (wifi_mode_t opmode, esp_blufi_sta_conn_state_t
sta_conn_state, uint8_t softap_conn_num,
esp_blufi_extra_info_t *extra_info)
This function is called to send wifi connection report.
Return ESP_OK - success, other - failed
Parameters
e opmode: : wifi opmode
* sta_conn_state: : station is already in connection or not
* softap_conn_num: : softap connection number
e extra_info: : extra information, such as sta_ssid, softap_ssid and etc.
esp_err_t esp_blufi_send wifi_1list (uintl6_t apCount, esp_blufi_ap_record_t *list)
This function is called to send wifi list.
Return ESP_OK - success, other - failed
Parameters
e apCount: : wifi list count
e list:: wifilist

uintl6_t esp_blufi_get_version (void)
Get BLUFI profile version.

Return Most 8bit significant is Great version, Least 8bit is Sub version

esp_err_t esp_blufi_close (esp_gatt_if t gatts_if, uint16_t conn_id)
Close a connection a remote device.

Return
e ESP_OK : success
e other : failed
Parameters

e gatts_1if: GATT server access interface

e conn_id: connection ID to be closed.

esp_err_t esp_blufi_send_error_info (esp_blufi_error_state_t state)
This function is called to send blufi error information.

Return ESP_OK - success, other - failed

Parameters

3.3. Bluetooth API 309

Read the Docs Template Documentation, Release v3.2.5

* state: : error state

esp_err_t esp_blufi_send_custom_data (uint8_t *data, uint32_t data_len)
This function is called to custom data.
Return ESP_OK - success, other - failed
Parameters
e data: : custom data value

e data_len: : the length of custom data

Unions

union esp_blufi_cb_param t
#include <esp_blufi_api.h> BLUFI callback parameters union.

Public Members
struct esp_blufi_cb_param_t::blufi_init_finish_evt_param init_£finish
Blufi callback param of ESP_BLUFI_EVENT_INIT_FINISH

struct esp_blufi_cb_param_t::blufi_deinit_finish_evt_param deinit_f£inish
Blufi callback param of ESP_BLUFI_EVENT_DEINIT_FINISH

struct esp_blufi_cb_param_t::blufi_set_wifi_mode_evt_param wifi_mode
Blufi callback param of ESP_BLUFI_EVENT_INIT_FINISH

struct esp_blufi_cb_param_t::blufi_connect_evt_param connect
Blufi callback param of ESP_BLUFI_EVENT_CONNECT

struct esp_blufi_cb_param_t::blufi_disconnect_evt_param disconnect
Blufi callback param of ESP_BLUFI_EVENT_DISCONNECT

struct esp_blufi_cb_param_t::blufi_recv_sta_bssid_evt_param sta_bssid
Blufi callback param of ESP_BLUFI_EVENT_RECV_STA_BSSID

struct esp_blufi_cb_param_t::blufi_recv_sta_ssid_evt_param sta_ssid
Blufi callback param of ESP_BLUFI_EVENT_RECV_STA_SSID

struct esp_blufi_cb_param_t::blufi_recv_sta_passwd_evt_param sta_passwd
Blufi callback param of ESP_BLUFI_EVENT_RECV_STA_PASSWD

struct esp_blufi_cb_param_t::blufi_recv_softap_ssid_evt_param softap_ssid
Blufi callback param of ESP_BLUFI_EVENT_RECV_SOFTAP_SSID

struct esp_blufi_cb_param_t::blufi_recv_softap_passwd_evt_param softap_passwd
Blufi callback param of ESP_BLUFI_EVENT_RECV_SOFTAP_PASSWD

struct esp_blufi_cb_param_t::blufi_recv_softap_max_conn_num_evt_param softap_max_conn_num
Blufi callback param of ESP_BLUFI_EVENT_RECV_SOFTAP_MAX_CONN_NUM

struct esp_blufi_cb_param_t::blufi_recv_softap_auth_mode_evt_param softap_auth_mode
Blufi callback param of ESP_BLUFI_EVENT_RECV_SOFTAP_AUTH_MODE

struct esp_blufi_cb_param_t::blufi_recv_softap_channel_evt_param softap_channel
Blufi callback param of ESP_BLUFI_EVENT_RECV_SOFTAP_CHANNEL

310 Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

struct esp_blufi_cb_param_t::blufi_recv_username_evt_param username
Blufi callback param of ESP_BLUFI_EVENT_RECV_USERNAME

struct esp_blufi_cb_param_t::blufi_recv_ca_evt_param ca
Blufi callback param of ESP_BLUFI_EVENT_RECV_CA_CERT

struct esp_blufi_cb_param_t::blufi_recv_client_cert_evt_param client_cert
Blufi callback param of ESP_BLUFI_EVENT_RECV_CLIENT_CERT

struct esp_blufi_cb_param_t::blufi_recv_server_cert_evt_param server_cert
Blufi callback param of ESP_BLUFI_EVENT_RECV_SERVER_CERT

struct esp_blufi_cb_param_t::blufi_recv_client_pkey_evt_param client_pkey
Blufi callback param of ESP_BLUFI_EVENT_RECV_CLIENT_PRIV_KEY

struct esp_blufi_cb_param_t::blufi_recv_server_pkey_evt_param server_pkey
Blufi callback param of ESP_BLUFI_EVENT_RECV_SERVER_PRIV_KEY

struct esp_blufi_cb_param_t::blufi_get_error_evt_param report_error
Blufi callback param of ESP_BLUFI_EVENT_REPORT_ERROR

struct esp_blufi_cb_param_t::blufi_recv_custom_data_evt_param custom_data
Blufi callback param of ESP_BLUFI_EVENT_RECV_CUSTOM_DATA

struct blufi_ connect_evt_param
#include <esp_blufi_api.h> ESP_BLUFI_EVENT_CONNECT.

Public Members
esp_bd_addr_t remote_bda
Blufi Remote bluetooth device address

uint8_t server_if
server interface

uintl6_t conn_id
Connection id

struct blufi_deinit_finish_evt_param
#include <esp_blufi_api.h> ESP_BLUFI_EVENT_DEINIT_FINISH.

Public Members

esp_blufi_deinit_state_t state
De-initial status

struct blufi_disconnect_evt_param

#include <esp_blufi_api.h> ESP_BLUFI_EVENT_DISCONNECT.

Public Members

esp_bd_addr_t remote_bda
Blufi Remote bluetooth device address

struct blufi_get_error_ evt_param
#include <esp_blufi_api.h> ESP_BLUFI_EVENT_REPORT_ERROR.

3.3.

Bluetooth API

311

Read the Docs Template Documentation, Release v3.2.5

Public Members

esp_blufi_error_state_t state
Blufi error state

struct blufi_init_ finish_evt_param
#include <esp_blufi_api.h> ESP_BLUFI_EVENT_INIT_FINISH.

Public Members

esp_blufi_init_state_t state
Initial status

struct blufi_recv_ca_evt_param
#include <esp_blufi_api.h> ESP_BLUFI_EVENT_RECV_CA_CERT.

Public Members
uint8_t *cert
CA certificate point

int cert_len
CA certificate length

struct blufi_recv_client_cert_evt_param
#include <esp_blufi_api.h> ESP_BLUFI_EVENT_RECV_CLIENT_CERT

Public Members
uint§_t *cert
Client certificate point

int cert_len
Client certificate length

struct blufi_recv_client_pkey_ evt_param
#include <esp_blufi_api.h> ESP_BLUFI_EVENT_RECV_CLIENT_PRIV_KEY

Public Members
uint8_t *pkey
Client Private Key point, if Client certificate not contain Key

int pkey_1len
Client Private key length

struct blufi_recv_custom_data_ evt_param
#include <esp_blufi_api.h> ESP_BLUFI_EVENT_RECV_CUSTOM_DATA.

312 Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

Public Members
uint8_t *data
Custom data

uint32_tdata_len
Custom data Length

struct blufi_recv_server_cert_evt_param
#include <esp_blufi_api.h> ESP_BLUFI_EVENT_RECV_SERVER_CERT

Public Members

uint8_t *cert
Client certificate point

int cert_len
Client certificate length

struct blufi_recv_server_pkey_evt_param
#include <esp_blufi_api.h> ESP_BLUFI_EVENT_RECV_SERVER_PRIV_KEY

Public Members

uint8_t *pkey
Client Private Key point, if Client certificate not contain Key

int pkey_1len
Client Private key length

struct blufi_ recv_softap_auth mode_ evt_param

#include <esp_blufi_api.h> ESP_BLUFI_EVENT_RECV_SOFTAP_AUTH_MODE.

Public Members

wifi_auth_mode_t auth_mode
Authentication mode

struct blufi_ recv_softap_channel evt_param

#include <esp_blufi_api.h> ESP_BLUFI_EVENT_RECV_SOFTAP_CHANNEL.

Public Members

uint8_t channel
Authentication mode

struct blufi_recv_softap_max_conn_num evt_param
#include <esp_blufi_api.h> ESP_BLUFI_EVENT_RECV_SOFTAP_MAX_ CONN_NUM.

. Bluetooth API 313

Read the Docs Template Documentation, Release v3.2.5

Public Members

int max_conn_num
SSID

struct blufi_recv_softap_passwd evt_param
#include <esp_blufi_api.h> ESP_BLUFI_EVENT_RECV_SOFTAP_PASSWD.

Public Members
uint8_t *passwd
Password

int passwd_len
Password Length

struct blufi_recv_softap ssid _evt_param
#include <esp_blufi_api.h> ESP_BLUFI_EVENT_RECV_SOFTAP_SSID.

Public Members
uint8_t *ssid
SSID

int ssid _len
SSID length

struct blufi_recv_sta_bssid_evt_param
#include <esp_blufi_api.h> ESP_BLUFI_EVENT_RECV_STA_BSSID.

Public Members

uint8_t bssid[6]
BSSID

struct blufi_recv_sta_passwd_evt_param
#include <esp_blufi_api.h> ESP_BLUFI_EVENT_RECV_STA_PASSWD.

Public Members
uint8_t *passwd
Password

int passwd_len
Password Length

struct blufi_recv_sta ssid evt_param
#include <esp_blufi_api.h> ESP_BLUFI_EVENT_RECV_STA_SSID.

314 Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

Public Members
uint8_t *ssid
SSID

int ssid _len
SSID length

struct blufi_recv_username_evt_param
#include <esp_blufi_api.h> ESP_BLUFI_EVENT_RECV_USERNAME.

Public Members
uint8_t *name
Username point

int name_1len
Username length

struct blufi_set_wifi mode_evt_param
#include <esp_blufi_api.h> ESP_BLUFI_EVENT_SET_WIFI_MODE.

Public Members

wifi_mode_t op_mode
Wifi operation mode

Structures

struct esp_blufi_extra_info_t
BLUFI extra information structure.

Public Members
uint8_t sta_bssid|[6]
BSSID of station interface

bool sta_bssid_set
is BSSID of station interface set

uint8_t *sta_ssid
SSID of station interface

int sta_ssid len
length of SSID of station interface

uint8_t *sta_passwd
password of station interface

int sta_passwd_len
length of password of station interface

uint8_t *softap_ssid
SSID of softap interface

3.3. Bluetooth API 315

Read the Docs Template Documentation, Release v3.2.5

int softap_ssid_len
length of SSID of softap interface

uint8_t *softap_passwd
password of station interface

int softap_passwd_len
length of password of station interface

uint8_t softap_authmode
authentication mode of softap interface

bool softap_authmode_set
is authentication mode of softap interface set

uint8_t softap_max_conn_num
max connection number of softap interface

bool softap_max_conn_num set
is max connection number of softap interface set

uint8_t softap_channel
channel of softap interface

bool softap_channel_set
is channel of softap interface set

struct esp_blufi_ap record_ t
Description of an WiFi AP.

Public Members
uint8_t ssid[33]
SSID of AP

int8_trssi
signal strength of AP

struct esp_blufi_callbacks_t
BLUFI callback functions type.

Public Members
esp_blufi_event_cb_t event_cb
BLUFI event callback

esp_blufi_negotiate_data_handler_t negotiate_data_handler
BLUFI negotiate data function for negotiate share key

esp_blufi_encrypt_func_t encrypt_func
BLUFI encrypt data function with share key generated by negotiate_data_handler

esp_blufi_decrypt_func_t decrypt_func
BLUFI decrypt data function with share key generated by negotiate_data_handler

esp_blufi_checksum_func_t checksum_func
BLUFI check sum function (FCS)

316 Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

Type Definitions

typedef void (*esp_blufi_event_cb_t) (esp_blufi_cb_event t event, esp_blufi_cb_param_t
*param)
BLUFI event callback function type.
Parameters
* event: : Event type
* param: : Point to callback parameter, currently is union type
typedef void (*esp_blufi_negotiate_data_handler_t) (uint8_t *data, int len, uint8_t **out-

put_data, int *output_len, bool

*need_free)
BLUFI negotiate data handler.

Parameters
e data: : data from phone
* len: : length of data from phone
e output_data: : data want to send to phone
* output_len: : length of data want to send to phone
typedef int (*esp_blufi_encrypt_func_t) (uint8_t iv8, uint8_t *crypt_data, int cyprt_len)
BLUPFI encrypt the data after negotiate a share key.
Return Nonnegative number is encrypted length, if error, return negative number;
Parameters
e iv8: : initial vector(8bit), normally, blufi core will input packet sequence number

* crypt_data: : plain text and encrypted data, the encrypt function must support autochthonous
encrypt

e crypt_len: : length of plain text
typedef int (*esp_blufi_decrypt_func_t) (uint8_tiv8, uint8_t *crypt_data, int crypt_len)
BLUFI decrypt the data after negotiate a share key.
Return Nonnegative number is decrypted length, if error, return negative number;
Parameters
e iv8: : initial vector(8bit), normally, blufi core will input packet sequence number

e crypt_data: : encrypted data and plain text, the encrypt function must support autochthonous
decrypt

e crypt_len: : length of encrypted text

typedef uintl6_t (*esp_blufi_checksum_func_t) (uint8_t iv8, uint8_t *data, int len)
BLUFI checksum.

Parameters

e iv8: : initial vector(8bit), normally, blufi core will input packet sequence number

3.3. Bluetooth API 317

Read the Docs Template Documentation, Release v3.2.5

e data: : data need to checksum

e len: : length of data

Enumerations

enum esp_blufi_cb_event_t

Values:

ESP_BLUFI_EVENT INIT FINISH=0
ESP_BLUFI_EVENT_DEINIT FINISH
ESP_BLUFI_EVENT_SET_ WIFI_OPMODE
ESP_BLUFI_EVENT_BLE_CONNECT
ESP_BLUFI_EVENT_ BLE_DISCONNECT
ESP_BLUFI_EVENT REQ CONNECT TO_ AP
ESP_BLUFI_EVENT_REQ DISCONNECT_FROM AP
ESP_BLUFI_EVENT_GET WIFI_STATUS
ESP_BLUFI_EVENT_ DEAUTHENTICATE_STA
ESP_BLUFI_EVENT RECV_STA BSSID
ESP_BLUFI_EVENT_RECV_STA_ SSID
ESP_BLUFI_EVENT_RECV_STA_ PASSWD
ESP_BLUFI_EVENT_RECV_SOFTAP_SSID
ESP_BLUFI_EVENT_RECV_SOFTAP_PASSWD
ESP_BLUFI_EVENT_RECV_SOFTAP_MAX CONN_NUM
ESP_BLUFI_EVENT_RECV_SOFTAP_AUTH_MODE
ESP_BLUFI_EVENT_RECV_SOFTAP_ CHANNEL
ESP_BLUFI_EVENT_RECV_USERNAME
ESP_BLUFI_EVENT_ RECV_CA_CERT
ESP_BLUFI_EVENT_RECV_CLIENT_CERT
ESP_BLUFI_EVENT_RECV_SERVER_CERT
ESP_BLUFI_EVENT_ RECV_CLIENT_PRIV_KEY
ESP_BLUFI_EVENT_RECV_SERVER_PRIV_KEY
ESP_BLUFI_EVENT_RECV_SLAVE_DISCONNECT BLE
ESP_BLUFI_EVENT_ GET_WIFI_LIST
ESP_BLUFI_EVENT_REPORT ERROR

ESP_BLUFI_EVENT RECV_CUSTOM DATA

enum esp_blufi_sta_conn_state_t

BLUFI config status.

Values:

318

Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

ESP_BLUFI_STA_CONN_SUCCESS = 0x00
ESP_BLUFI_STA_ CONN_FAIL =(0x01

enum esp_blufi init_state_t
BLUFI init status.

Values:
ESP_BLUFI_ INIT OK=0
ESP BLUFI_INIT FAILED

enum esp_blufi_deinit_state_t
BLUFI deinit status.

Values:
ESP_BLUFI DEINIT OK=0
ESP_BLUFI DEINIT FAILED

enum esp_blufi_error_state_t
Values:

ESP_BLUFI_SEQUENCE_ERROR =0
ESP_BLUFI_CHECKSUM ERROR
ESP_BLUFI_DECRYPT ERROR
ESP_BLUFI_ENCRYPT ERROR
ESP_BLUFI_INIT SECURITY ERROR
ESP_BLUFI_DH MALLOC_ERROR
ESP_BLUFI_DH_PARAM ERROR
ESP_BLUFI_READ_ PARAM ERROR
ESP_BLUFI_MAKE PUBLIC_ERROR
ESP_BLUFI_DATA FORMAT ERROR

3.3.4 CLASSIC BT

CLASSIC BLUETOOTH GAP API

Overview

Instructions

Application Example

Instructions

3.3. Bluetooth API 319

../template.html
../template.html

Read the Docs Template Documentation, Release v3.2.5

API Reference

Header File

* bt/bluedroid/api/include/api/esp_gap_bt_api.h

Functions

uint32_t esp_bt_gap_get_cod_srvc (uint32_t cod)
get major service field of COD
Return major service bits
Parameters
e cod: Class of Device
uint32_t esp_bt_gap_get_cod_major_dev (uint32_t cod)
get major device field of COD
Return major device bits
Parameters
¢ cod: Class of Device
uint32_t esp_bt_gap_get_cod_minor_dev (uint32_t cod)
get minor service field of COD
Return minor service bits
Parameters
¢ cod: Class of Device
uint32_t esp_bt_gap_get_cod_format_type (uint32_t cod)
get format type of COD
Return format type
Parameters
e cod: Class of Device
bool esp_bt_gap_is_valid_cod (uint32_t cod)
decide the integrity of COD
Return
e true if cod is valid
 false otherise
Parameters

¢ cod: Class of Device

320

Chapter 3. API Reference

https://github.com/espressif/esp-idf/blob/v3.2.5/components/bt/bluedroid/api/include/api/esp_gap_bt_api.h

Read the Docs Template Documentation, Release v3.2.5

esp_err_t esp_bt_gap_register_callback (esp_bt_gap_cb_t callback)
register callback function. This function should be called after esp_bluedroid_enable() completes successfully
Return
e ESP_OK : Succeed
e ESP_FAIL: others
esp_err_t esp_bt_gap_set_scan_mode (esp_bt_scan_mode_t mode)
Set discoverability and connectability mode for legacy bluetooth. This function should be called after
esp_bluedroid_enable() completes successfully.
Return
e ESP_OK : Succeed
e ESP_ERR_INVALID_ARG: if argument invalid
* ESP_ERR_INVALID_STATE: if bluetooth stack is not yet enabled
e ESP_FAIL: others
Parameters
¢ mode: : one of the enums of bt_scan_mode_t
esp_err_t esp_bt_gap_start_discovery (esp_bt_ing_mode_t mode, uint8_t ing_len, uint8_t

num_rsps)
Start device discovery. This function should be called after esp_bluedroid_enable() completes successfully.

esp_bt_gap_cb_t will is called with ESP_BT_GAP_DISC_STATE_CHANGED_EVT if discovery is started or
halted. esp_bt_gap_cb_t will is called with ESP_BT_GAP_DISC_RES_EVT if discovery result is got.
Return
e ESP_OK : Succeed
* ESP_ERR_INVALID_STATE: if bluetooth stack is not yet enabled
e ESP_ERR_INVALID_ARG: if invalid parameters are provided
e ESP_FAIL: others
Parameters
* mode: - inquiry mode
* ing_len: - inquiry duration in 1.28 sec units, ranging from 0x01 to 0x30
* num_rsps: - number of inquiry responses that can be received, value 0 indicates an unlimited num-

ber of responses

esp_err_t esp_bt_gap_cancel_discovery (void)
Cancel device discovery. This function should be called after esp_bluedroid_enable() completes successfully
esp_bt_gap_cb_t will is called with ESP_BT_GAP_DISC_STATE_CHANGED_EVT if discovery is stopped.
Return
* ESP_OK : Succeed
* ESP_ERR_INVALID_STATE: if bluetooth stack is not yet enabled

e ESP_FAIL: others

3.3. Bluetooth API 321

Read the Docs Template Documentation, Release v3.2.5

esp_err_t esp_bt_gap_get_remote_services (esp_bd_addr_t remote_bda)
Start SDP to get remote services. This function should be called after esp_bluedroid_enable() completes suc-
cessfully. esp_bt_gap_cb_t will is called with ESP_BT_GAP_RMT_SRVCS_EVT after service discovery ends.
Return
e ESP_OK : Succeed
e ESP_ERR_INVALID_STATE: if bluetooth stack is not yet enabled
e ESP_FAIL: others
esp_err_t esp_bt_gap_get_remote_service_record (esp_bd_addr_t remote_bda, esp_bt_uuid_t

*uuid)
Start SDP to look up the service matching uuid on the remote device. This function should be called after

esp_bluedroid_enable() completes successfully.
esp_bt_gap_cb_t will is called with ESP_BT_GAP_RMT_SRVC_REC_EVT after service discovery ends
Return
* ESP_OK : Succeed
* ESP_ERR_INVALID_STATE: if bluetooth stack is not yet enabled
e ESP_FAIL: others
uint§_t *esp_bt_gap_resolve_eir_data (uint8_t *eir, esp_bt_eir_type_t type, uint8_t *length)
This function is called to get EIR data for a specific type.
Return pointer of starting position of eir data excluding eir data type, NULL if not found
Parameters
* eir: - pointer of raw eir data to be resolved
* type: - specific EIR data type
e length: - return the length of EIR data excluding fields of length and data type
esp_err_t esp_bt_gap_set_cod (esp_bt_cod_t cod, esp_bt_cod_mode_t mode)
This function is called to set class of device. esp_bt_gap_cb_t will is called with
ESP_BT_GAP_SET_COD_EVT after set COD ends Some profile have special restrictions on class of
device, changes may cause these profile do not work.
Return
* ESP_OK : Succeed
¢ ESP_ERR_INVALID_STATE: if bluetooth stack is not yet enabled
e ESP_ERR_INVALID_ARG: if param is invalid
* ESP_FAIL: others
Parameters
e cod: - class of device
* mode: - setting mode

esp_err_t esp_bt_gap_get_cod (esp_bt_cod_t *cod)
This function is called to get class of device.

322 Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

Return
* ESP_OK : Succeed
e ESP_FAIL: others
Parameters
* cod: - class of device
esp_err_t esp_bt_gap_read rssi_delta (esp_bd_addr_t remote_addr)
This function is called to read RSSI delta by address after connected. The RSSI value returned by
ESP_BT_GAP_READ_RSSI_DELTA_EVT.
Return
* ESP_OK : Succeed
e ESP_FAIL: others
Parameters
* remote_addr: - remote device address, corresponding to a certain connection handle.
esp_err_t esp_bt_gap_remove_bond_device (esp_bd_addr_t bd_addr)
Removes a device from the security database list of peer device.
Return - ESP_OK : success
« ESP_FAIL : failed
Parameters
* bd_addr: : BD address of the peer device
int esp_bt_gap_get_bond_device_num (void)
Get the device number from the security database list of peer device. It will return the device bonded number
immediately.
Return - >= 0 : bonded devices number.
« ESP_FAIL : failed
esp_err_t esp_bt_gap_get_bond_device_list (int *dev_num, esp_bd_addr_t *dev_list)
Get the device from the security database list of peer device. It will return the device bonded information
immediately.
Return
e ESP_OK : Succeed
* ESP_ERR_INVALID_STATE: if bluetooth stack is not yet enabled
e ESP_FAIL: others
Parameters

e dev_num: Indicate the dev_list array(buffer) size as input. If dev_num is large enough, it means the
actual number as output. Suggest that dev_num value equal to esp_ble_get_bond_device_num().

e dev_1list: anarray(buffer) of esp_bd_addr_t type. Use for storing the bonded devices address.
The dev_list should be allocated by who call this APL

3.3. Bluetooth API 323

Read the Docs Template Documentation, Release v3.2.5

esp_err_t esp_bt_gap_set_pin (esp_bt_pin_type_t pin_type, uint8_t pin_code_len, esp_bt_pin_code_t
pin_code)
Set pin type and default pin code for legacy pairing.

Return - ESP_OK : success
e ESP_ERR_INVALID_STATE: if bluetooth stack is not yet enabled
e other : failed

Parameters

* pin_type: Use variable or fixed pin. If pin_type is ESP_BT_PIN_TYPE_VARIABLE, pin_code
and pin_code_len will be ignored, and ESP_BT_GAP_PIN_REQ_EVT will come when control re-
quests for pin code. Else, will use fixed pin code and not callback to users.

* pin_code_len: Length of pin_code
¢ pin_code: Pin_code
esp_err_t esp_bt_gap_pin_reply (esp_bd_addr_t bd_addr, bool accept, uint8_t pin_code_len,

esp_bt_pin_code_t pin_code)
Reply the pin_code to the peer device for legacy pairing when ESP_BT_GAP_PIN_REQ_EVT is coming.

Return - ESP_OK : success
* ESP_ERR_INVALID_STATE: if bluetooth stack is not yet enabled
e other : failed
Parameters
* bd_addr: BD address of the peer
* accept: Pin_code reply successful or declined.
e pin_code_len: Length of pin_code
e pin_code: Pin_code

esp_err_t esp_bt_gap_set_security_ param (esp_bt _sp_param_t param_type, void *value, uint8_t

len)
Set a GAP security parameter value. Overrides the default value.

Return - ESP_OK : success
* ESP_ERR_INVALID_STATE: if bluetooth stack is not yet enabled
e other : failed
Parameters
* param_type: : the type of the param which is to be set
e value: : the param value
e len: : the length of the param value
esp_err_t esp_bt_gap_ssp_passkey_reply (esp_bd_addr_t bd_addr, bool accept, uint32_t passkey)
Reply the key value to the peer device in the legacy connection stage.
Return - ESP_OK : success
e ESP_ERR_INVALID_STATE: if bluetooth stack is not yet enabled

324 Chapter 3. API Reference

Read the Docs Template Documentation, Release v3.2.5

* other : failed
Parameters

* bd_addzr: : BD address of the peer

* accept: