Espressif Audio Development Guide¶
This is the documentation for Espressif Audio Development Framework (ADF).
Get Started¶
This document is intended to help users set up the software environment for the development of audio applications using hardware based on the ESP32 family of chips by Espressif. After that, a simple example will show you how to use ESP-ADF (Espressif Audio Development Framework).
Development Board Overview¶
For easier start with ESP-ADF, Espressif designed ESP32, ESP32-S2, and ESP32-S3 based development boards intended for audio applications. Click the links below to learn more about the available boards.
If you do not have any of the above boards, you can still use ESP-ADF for the ESP32 and ESP32-S2 based audio applications. For this, your board needs to have a compatible audio codec or DSP chip; alternatively, you can develop a driver to support communication with your specific chip.
About ESP-ADF¶
The ESP-ADF is available as a set of components to extend the functionality already delivered by the ESP-IDF (Espressif IoT Development Framework).
To use ESP-ADF you need set up the ESP-IDF first, and this is described in the next section.
Note
ESP-ADF provides support for specific ESP-IDF versions (v3.3, v4.0, v4.1, v4.2, v4.3 and v4.4). If your have already set up another version, please switch to a supported ESP-IDF version, or you may not be able to compile ESP-ADF applications.
Quick Start¶
This section provides quick steps to run a simple ADF sample project on an ESP device for experienced users. For beginners, please go through the complete steps from Step 1. Set up ESP-IDF to Step 10. Monitor to build a project.
Note
If you encounter issues in the following steps, you could refer to the complete steps from Step 1. Set up ESP-IDF to Step 10. Monitor or describe them in GitHub Issues or ESP Forum.
Linux and macOS¶
The operating environment below is on Linux Ubuntu 18.04 and above.
Download the full ESP-ADF repository from GitHub by running:
git clone --recursive https://github.com/espressif/esp-adf.git
For users located in China, it is faster to download from Gitee:
git clone --recursive https://gitee.com/EspressifSystems/esp-adf.git
Set the
$ESP-ADF
path by running:cd esp-adf export ADF_PATH=$PWD
Configure the
$ESP-IDF
compilation environment by running:cd $ADF_PATH/esp-idf ./install.sh . ./export.sh
After completing the above environment variable configuration, you can compile the ADF sample project
$ADF_PATH/examples/get-started/play_mp3_control
. Switch to the project’s directory, compile, and flash it onto your ESP device by running the following command. Then, you will see the serial port of the routine is printed.
cd $ADF_PATH/examples/get-started/play_mp3_control idf.py build flash monitor
Windows¶
Download the full ESP-ADF repository from GitHub by running:
git clone --recursive https://github.com/espressif/esp-adf.git
For users located in China, it is faster to download from Gitee:
git clone --recursive https://gitee.com/EspressifSystems/esp-adf.git
Download the full ESP-IDF Windows Installer from ESP-IDF Windows Installer.
Turn off the antivirus software (because it may prevent the installation as the software writes the Windows system regedit) and install the downloaded file. After the installation is complete, open the ESP-IDF-V4.4 CMD shortcut icon on the desktop, the script will automatically help you download submodules, and set environment variables such as
IDF_PATH
.Set the
$ESP-ADF
path by running the following commands. Note that%userprofile%\esp
is used as an installation folder for ESP-ADF. You can use any directory, but you will need to adjust paths for the commands accordingly.set ADF_PATH=%userprofile%espesp-adf echo %ADF_PATH%
If your
ADF_PATH
variable prints correctly, it’s time to compile the ADF routines:cd %ADF_PATH%\examples\get-started\play_mp3_control idf.py build flash monitor
Installation Step by Step¶
This is a detailed roadmap to walk you through the installation process.
Setting up Development Environment¶
Step 1. Set up ESP-IDF for Windows, Linux or Mac OS
Creating Your First Project¶
Step 1. Set up ESP-IDF¶
Configure your PC according to Getting Started section of ESP-IDF Programming Guide. Windows, Linux and Mac OS operating systems are supported. Please select and follow the guide specific to ESP32 or ESP32-S2 chip. The chip name is provided in the board name.
Note
This guide uses the directory ~/esp
on Linux and macOS or %userprofile%\esp
on Windows as an installation folder for ESP-ADF. You can use any directory, but you will need to adjust paths for the commands accordingly. Keep in mind that ESP-ADF does not support spaces in paths.
To make the installation easier and less prone to errors, use the ~/esp
default directory for the installation.
If this is your first exposure to the ESP-IDF, then it is recommended to get familiar with hello_world or blink example first.
After getting familiar with ESP-IDF, decide on which ESP-IDF version to use for your application depending on the Espressif chip that you have and your project type. For this, consult Versions section of ESP-IDF Programming Guide.
Once you successfully build, upload, and run examples for your version of ESP-IDF, you can proceed to the next step.
Step 2. Get ESP-ADF¶
Now you can start installing audio-specific API / libraries provided in ESP-ADF repository.
Windows¶
Open Command Prompt and run the following commands:
cd %userprofile%\esp
git clone --recursive https://github.com/espressif/esp-adf.git
Linux and macOS¶
Open Terminal, and run the following commands:
cd ~/esp
git clone --recursive https://github.com/espressif/esp-adf.git
Step 3. Set up Path to ESP-ADF¶
The toolchain programs access ESP-ADF using ADF_PATH
environment variable. This variable should be set up on your PC, otherwise the projects will not build.
Windows¶
Open Command Prompt and run the following command:
set ADF_PATH=%userprofile%\esp\esp-adf
You need to enter this command each time you start your PC. To avoid retyping you can add it to “ESP-IDF Command Prompt”, batch or Power Shell scripts described in Step 4 below.
To make sure that ADF_PATH has been set up properly, run:
echo %ADF_PATH%
It should return the path to your ESP-ADF directory.
Linux and macOS¶
Open Terminal, and run the following commands:
export ADF_PATH=~/esp/esp-adf
You need to enter this command each time you open a Terminal. To make this setting permanent follow similar instructions for configuration of IDF_PATH
in ESP-IDF Programming Guide.
Check if ADF_PATH
has been set up to point to directory with ESP-ADF:
printenv ADF_PATH
Step 4. Set up the environment variables¶
Before being able to compile ESP-ADF projects, on each new session, ESP-IDF tools should be added to the PATH environment variable. To make the tools usable from the command line, some environment variables must be set. ESP-IDF provides a script which does that.
Windows¶
ESP-IDF Tools Installer for Windows creates an “ESP-IDF Command Prompt” shortcut in the Start Menu. This shortcut opens the Command Prompt and sets up all the required environment variables. You can open this shortcut and proceed to the next step.
Alternatively, if you want to use ESP-IDF in an existing Command Prompt window, you can run:
%userprofile%\esp\esp-idf\export.bat
or with Windows PowerShell
.$HOME/esp/esp-idf/export.ps1
Linux and macOS¶
In the terminal where you have installed ESP-IDF, run:
. $HOME/esp/esp-idf/export.sh
Note the space between the leading dot and the path!
You can also create an alias for the export script to your .profile
or .bash_profile
script. This way you can set up the environment in a new terminal window by typing get_idf
:
alias get_idf='. $HOME/esp/esp-idf/export.sh'
Note that it is not recommended to source export.sh
from the profile script directly. Doing so activates IDF virtual environment in every terminal session (even in those where IDF is not needed), defeating the purpose of the virtual environment and likely affecting other software.
Step 5. Start a Project¶
After initial preparation you are ready to build the first audio application. The process has already been described in ESP-IDF documentation. Now we would like to discuss remaining key steps and show how the toolchain is able to access the ESP-ADF components by using the ADF_PATH
variable.
To demonstrate how to build an application, we will use get-started/play_mp3_control project from examples directory in the ADF.
Windows¶
cd %userprofile%\esp
xcopy /e /i %ADF_PATH%\examples\get-started\play_mp3_control play_mp3_control
Linux and macOS¶
cd ~/esp
cp -r $ADF_PATH/examples/get-started/play_mp3_control .
There is a range of example projects in the examples directory in ESP-ADF. You can copy any project in the same way as presented above and run it.
It is also possible to build examples in-place, without copying them first.
Important
The ESP-IDF build system does not support spaces in the paths to either ESP-IDF or to projects.
Step 6. Connect Your Device¶
Connect the audio board to the PC, check under what serial port the board is visible and verify, if serial communication works as described in ESP-IDF documentation.
Note
Keep the port name handy as you will need it in the next steps.
Step 7. Configure¶
Navigate to your play_mp3_control
directory from Step 5. Start a Project and configure the project:
ESP-IDF v3.3.2 and v4.0 releases¶
Windows¶
cd %userprofile%\esp\play_mp3_control
idf.py menuconfig
Linux and macOS¶
cd ~/esp/play_mp3_control
idf.py menuconfig
ESP-IDF v4.1 and master releases¶
Windows¶
cd %userprofile%\esp\play_mp3_control
idf.py set-target esp32
idf.py menuconfig
Linux and macOS¶
cd ~/esp/play_mp3_control
idf.py set-target esp32
idf.py menuconfig
Note
If you are using an ESP32-S2 based board, then the second command above should be idf.py set-target esp32s2
for ESP-IDF master release or idf.py set-target esp32s2beta
for ESP-IDF v4.1 release.
Setting the target with idf.py set-target <target>
should be done once, after opening a new project. If the project contains some existing builds and configuration, they will be cleared and initialized. The target may be saved in environment variable to skip this step at all. See Selecting the Target in ESP-IDF Programming Guide for additional information.
If the previous steps have been done correctly, the following menu appears:

Project configuration - Home window¶
You are using this menu to set up your board type and other project specific variables, e.g. Wi-Fi network name and password, the processor speed, etc.

Project configuration - Board selection¶
Select your board from the menu, press S
to save configuration and then Q
to exit.
Note
The colors of the menu could be different in your terminal. You can change the appearance with the option
--style
. Please run idf.py menuconfig --help
for further information.
Step 8. Build the Project¶
Build the project by running:
idf.py build
This command will compile the application and all ESP-IDF and ESP-ADF components, then it will generate the bootloader, partition table, and application binaries.
$ idf.py build
Executing action: all (aliases: build)
Running ninja in directory /path/to/esp/play_mp3_control/build
Executing "ninja all"...
[0/1] Re-running CMake...
... (more lines of build system output)
[1064/1064] Generating binary image from built executable
esptool.py v3.0-dev
Generated /path/to/esp/play_mp3_control/build/play_mp3_control.bin
Project build complete. To flash it, run this command:
/path/to/.espressif/python_env/idf4.2_py2.7_env/bin/python ../esp-idf/components/esptool_py/esptool/esptool.py -p (PORT) -b 460800 --before default_reset --after hard_reset --chip esp32 write_flash --flash_mode dio --flash_size detect --flash_freq 40m 0x1000 build/bootloader/bootloader.bin 0x8000 build/partition_table/partition-table.bin 0x10000 build/play_mp3_control.bin
or run 'idf.py -p (PORT) flash'
If there are no errors, the build will finish by generating the firmware binary .bin file.
Step 9. Flash onto the Device¶
Flash the binaries that you just built onto your board by running:
idf.py -p PORT [-b BAUD] flash monitor
Replace PORT with your board’s serial port name from Step 6. Connect Your Device.
You can also change the flasher baud rate by replacing BAUD with the baud rate you need. The default baud rate is 460800
.
For more information on idf.py arguments, see Using the Build System in ESP-IDF Programming Guide.
Note
The option flash
automatically builds and flashes the project, so running idf.py build
is not necessary.
To upload the binaries, the board should be put into upload mode. To do so, hold down Boot button, momentarily press Reset button and release the Boot button. The upload mode may be initiated anytime during the application build, but no later than “Connecting” message is being displayed:
...
esptool.py v3.0-dev
Serial port /dev/ttyUSB0
Connecting........_____....
Without the upload mode enabled, after showing several ....._____
, the connection will eventually time out.
Once build and upload is complete, you should see the following:
...
Leaving...
Hard resetting via RTS pin...
Executing action: monitor
Running idf_monitor in directory /path/to/esp/play_mp3_control
Executing "/path/to/.espressif/python_env/idf4.2_py2.7_env/bin/python /path/to/esp/esp-idf/tools/idf_monitor.py -p /dev/ttyUSB0 -b 115200 --toolchain-prefix xtensa-esp32-elf- /path/to/esp/play_mp3_control/build/play_mp3_control.elf -m '/path/to/.espressif/python_env/idf4.2_py2.7_env/bin/python' '/path/to/esp/esp-idf/tools/idf.py'"...
--- idf_monitor on /dev/ttyUSB0 115200 ---
--- Quit: Ctrl+] | Menu: Ctrl+T | Help: Ctrl+T followed by Ctrl+H ---
If there are no issues by the end of the flash process, the board will reboot and start up the “play_mp3_control” application.
Step 10. Monitor¶
At this point press the Reset button to start the application. Following several lines of start up log, the play_mp3_control
application specific messages should be displayed:
...
I (397) PLAY_FLASH_MP3_CONTROL: [ 1 ] Start audio codec chip
I (427) PLAY_FLASH_MP3_CONTROL: [ 2 ] Create audio pipeline, add all elements to pipeline, and subscribe pipeline event
I (427) PLAY_FLASH_MP3_CONTROL: [2.1] Create mp3 decoder to decode mp3 file and set custom read callback
I (437) PLAY_FLASH_MP3_CONTROL: [2.2] Create i2s stream to write data to codec chip
I (467) PLAY_FLASH_MP3_CONTROL: [2.3] Register all elements to audio pipeline
I (467) PLAY_FLASH_MP3_CONTROL: [2.4] Link it together [mp3_music_read_cb]-->mp3_decoder-->i2s_stream-->[codec_chip]
I (477) PLAY_FLASH_MP3_CONTROL: [ 3 ] Set up event listener
I (477) PLAY_FLASH_MP3_CONTROL: [3.1] Listening event from all elements of pipeline
I (487) PLAY_FLASH_MP3_CONTROL: [ 4 ] Start audio_pipeline
I (507) PLAY_FLASH_MP3_CONTROL: [ * ] Receive music info from mp3 decoder, sample_rates=44100, bits=16, ch=2
I (7277) PLAY_FLASH_MP3_CONTROL: [ 5 ] Stop audio_pipeline
If there are no issues, besides the above log, you should hear a sound played for about 7 seconds by the speakers or headphones connected to your audio board. Reset the board to hear it again if required.
Now you are ready to try some other examples, or go right to developing your own applications. Check how the examples are made aware of location of the ESP-ADF. Open the get-started/play_mp3_control/Makefile and you should see
include($ENV{ADF_PATH}/CMakeLists.txt)
include($ENV{IDF_PATH}/tools/cmake/project.cmake)
The first line contains ADF_PATH
to point the toolchain to another file in ESP-ADF directory that provides configuration variables and path to ESP-ADF components reacquired by the toolchain. You need similar Makefile
in your own applications developed with the ESP-ADF.
VS Code Extension¶
Follow VS Code Extension Quick Installation Guide to install ESP-IDF Visual Studio Code Extension. If the previous steps have been done correctly, the following toolbar appears:

VS Code Extension Toolbar¶
To install the ESP-ADF extension, open
Command Palette
and enterinstall adf
. Then, a progress bar shows up in the lower right corner.
If you have cloned the ESP-ADF repository before, please enter
open settings(ui)
inCommand Palette
. Go toUser > Extensions > ESP_IDF
and manually set the ESP-ADF path inidf.espAdfPath
oridf.espAdfPathWin
(for Windows). You can also set the ESP-ADF path in.vscode/settings.json
.
In
Command Palette
, entershow examples project
, and then a window will be opened with a list of example projects.Select an example, click
Create project using example XX
, and select the directory to save the current example.On the toolbar at the bottom of VS Code, click the gear symbol
menuconfig
to configure the example and click the column symbolBuild
to build the example. See available shortcut keys for VS code extensions.On the toolbar at the bottom of VS Code, click the plug-in symbol
Select Port
to configure the serial port and click the lightning symbolFlash Device
to flash firmware. After the firmware is flashed successfully, clickMonitor Device
to start the monitor function. Or, you can also use the flame symbol to build, flash, and monitor the example at the same time.
IDF Eclipse Plugin and Espressif IDE¶
Install and Set up Environment Variables¶
Follow IDF Eclipse Plugin Quick Installation Guide to install IDF Eclipse Plugin or download and install Espressif IDE from Espressif IDE Download Link. If the previous steps have been done correctly, you can create, build and flash IDF project in the Eclipse environment.

Espressif IDE (Reskinned Eclipse)¶
To install ESP-ADF, follow section Step 2. Get ESP-ADF.
To set
ADF_PATH
environment variable, openWindow
>Preferences
>C/C++
>Build
>Environment
panel, click Add button and fill inADF_PATH
. After you complete the above steps, selectADF_PATH
inEnvironment variables
table and click Edit and OK button without changing any value (There is a bug in Eclipse CDT that is appending a null value before the path hence we need to click on edit and save it.).
If this step does not work, you can delete
ADF_PATH
set in Eclipse and setADF_PATH
as system environment variable. For Windows, set environment variable inAdvanced System Setting
panel. For Linux and macOS, addexport ADF_PATH=your adf path
in file/etc/profile
. However, it is not recommended. Doing so activates ADF virtual environment in every terminal session (including those where ADF is not needed), defeating the purpose of the virtual environment and likely affecting other software.
Create a New Project¶
To create new project, go to
File
>New
>Espressif IDF Project
and provide a project name.Click Finish to create an empty project. Or click Next and check
Create a project using one of the templates
to create a project using ESP-IDF templates.
After creating a new project, you can use ESP-IDF and ESP-ADF to develop the project.
Import Existing Project¶
To import existing ESP-ADF examples, go to File
> Import
> Espressif
> Existing IDF Project
and select an ESP-ADF example (Opening an existing project directly may not be able to set the ESP target).
Quick Start¶
Select a project from
Project Explorer
.In the Launch Mode drop-down menu, select
Run
.In the Launch Configuration (auto-detected) drop-down menu, select your application.
Select ESP target from the third drop-down, which is called Launch Target. Click gear symbol Edit button of Launch Target to set
Serial Port
.Double click
sdkconfig
file to launch theSDK Configuration Editor
.Click Build button to build the project.
Click Launch button to flash the project.
Click Open a Terminal button and select ESP-IDF Serial Monitor to view serial output.
For more information about IDF Eclipse Plugin and Espressif IDE, please refer to ESP-IDF Eclipse Plugin.
Update ESP-ADF¶
After some time of using ESP-ADF, you may want to update it to take advantage of new features or bug fixes. The simplest way to do so is by deleting existing esp-adf
folder and cloning it again, which is same as when doing initial installation described in sections Step 2. Get ESP-ADF.
Another solution is to update only what has changed. This method is useful if you have a slow connection to the GitHub. To do the update run the following commands:
cd ~/esp/esp-adf
git pull
git submodule update --init --recursive
The git pull
command is fetching and merging changes from ESP-ADF repository on GitHub. Then git submodule update --init --recursive
is updating existing submodules or getting a fresh copy of new ones. On GitHub the submodules are represented as links to other repositories and require this additional command to get them onto your PC.
API Reference¶
This API provides a way to develop audio applications using Elements like Codecs (Decoders and Encoders), Streams or Audio Processing functions.

Elements of the Audio Development Framework¶
The application is developed by combining the Elements into a Pipeline. A diagram below presents organization of two elements, MP3 decoder and I2S stream, in the Audio Pipeline, that has been used in get-started/play_mp3_control example.

Sample Organization of Elements in Audio Pipeline¶
The audio data is typically acquired using an input Stream, processed with Codecs and in some cases with Audio Processing functions, and finally output with another Stream. There is an Event Interface to facilitate communication of the application events. Interfacing with specific hardware is done using Peripherals.
See a table of contents below with links to description of all the above components.
Audio Framework¶
Audio Element¶
The basic building block for the application programmer developing with ADF is the audio_element
object. Every decoder, encoder, filter, input stream, or output stream is in fact an Audio Element.
This API has been designed and then used to implement Audio Elements provided by ADF.
The general functionality of an Element is to take some data on input, processes it, and output to the next. Each Element is run as a separate task. To enable control on particular stages of the data lifecycle from the input, during processing and up to the output, the audio_element
object provides possibility to trigger callbacks per stage. There are seven types of available callback functions: open, seek, process, close, destroy, read and write, and they are defined in audio_element_cfg_t
. Particular Elements typically use a subset of all available callbacks. For instance the MP3 Decoder is using open, process, close and destroy callback functions.
The available Audio Element types intended for development with this API are listed in description of audio_common.h header file under audio_element_type_t
enumerator.
API Reference¶
Header File¶
Functions¶
-
audio_element_handle_t
audio_element_init
(audio_element_cfg_t *config)¶ Initialize audio element with config.
- Return
audio_elemenent handle object
NULL
- Parameters
config
: The configuration
-
esp_err_t
audio_element_deinit
(audio_element_handle_t el)¶ Destroy audio element handle object, stop, clear, deletel all.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] el
: The audio element handle
-
esp_err_t
audio_element_setdata
(audio_element_handle_t el, void *data)¶ Set context data to element handle object. It can be retrieved by calling
audio_element_getdata
.- Return
ESP_OK
ESP_FAIL
- Parameters
[in] el
: The audio element handledata
: The data pointer
-
void *
audio_element_getdata
(audio_element_handle_t el)¶ Get context data from element handle object.
- Return
data pointer
- Parameters
[in] el
: The audio element handle
-
esp_err_t
audio_element_set_tag
(audio_element_handle_t el, const char *tag)¶ Set elemenet tag name, or clear if tag = NULL.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] el
: The audio element handle[in] tag
: The tag name pointer
-
char *
audio_element_get_tag
(audio_element_handle_t el)¶ Get element tag name.
- Return
Element tag name pointer
- Parameters
[in] el
: The audio element handle
-
esp_err_t
audio_element_setinfo
(audio_element_handle_t el, audio_element_info_t *info)¶ Set audio element infomation.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] el
: The audio element handleinfo
: The information pointer
-
esp_err_t
audio_element_getinfo
(audio_element_handle_t el, audio_element_info_t *info)¶ Get audio element infomation.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] el
: The audio element handleinfo
: The information pointer
-
esp_err_t
audio_element_set_uri
(audio_element_handle_t el, const char *uri)¶ Set audio element URI.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] el
: The audio element handle[in] uri
: The uri pointer
-
char *
audio_element_get_uri
(audio_element_handle_t el)¶ Get audio element URI.
- Return
URI pointer
- Parameters
[in] el
: The audio element handle
-
esp_err_t
audio_element_run
(audio_element_handle_t el)¶ Start Audio Element. With this function, audio_element will start as freeRTOS task, and put the task into ‘PAUSED’ state. Note: Element does not actually start when this function returns.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] el
: The audio element handle
-
esp_err_t
audio_element_terminate
(audio_element_handle_t el)¶ Terminate Audio Element. With this function, audio_element will exit the task function. Note: this API only sends request. It does not actually terminate immediately when this function returns.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] el
: The audio element handle
-
esp_err_t
audio_element_terminate_with_ticks
(audio_element_handle_t el, TickType_t ticks_to_wait)¶ Terminate Audio Element with specific ticks for timeout. With this function, audio_element will exit the task function. Note: this API only sends request. It does not actually terminate immediately when this function returns.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] el
: The audio element handle[in] ticks_to_wait
: The maximum amount of time to blocking
-
esp_err_t
audio_element_stop
(audio_element_handle_t el)¶ Request stop of the Audio Element. After receiving the stop request, the element will ignore the actions being performed (read/write, wait for the ringbuffer …) and close the task, reset the state variables. Note: this API only sends requests, Element does not actually stop when this function returns.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] el
: The audio element handle
-
esp_err_t
audio_element_wait_for_stop
(audio_element_handle_t el)¶ After the
audio_element_stop
function is called, the Element task will perform some abort procedures. This function will be blocked (Time is DEFAULT_MAX_WAIT_TIME) until Element Task has done and exit.- Return
ESP_OK, Success
ESP_FAIL, The state is not AEL_STATE_RUNNING
ESP_ERR_TIMEOUT, Timeout
- Parameters
[in] el
: The audio element handle
-
esp_err_t
audio_element_wait_for_stop_ms
(audio_element_handle_t el, TickType_t ticks_to_wait)¶ After the
audio_element_stop
function is called, the Element task will perform some abort procedures. The maximum amount of time should block waiting for Element task has stopped.- Return
ESP_OK, Success
ESP_FAIL, The state is not AEL_STATE_RUNNING
ESP_ERR_TIMEOUT, Timeout
- Parameters
[in] el
: The audio element handle[in] ticks_to_wait
: The maximum amount of time to wait for stop
-
esp_err_t
audio_element_pause
(audio_element_handle_t el)¶ Request audio Element enter ‘PAUSE’ state. In this state, the task will wait for any event.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] el
: The audio element handle
-
esp_err_t
audio_element_resume
(audio_element_handle_t el, float wait_for_rb_threshold, TickType_t timeout)¶ Request audio Element enter ‘RUNNING’ state. In this state, the task listens to events and invokes the callback functions. At the same time it will wait until the size/total_size of the output ringbuffer is greater than or equal to
wait_for_rb_threshold
. If the timeout period has been exceeded and ringbuffer output has not yet reachedwait_for_rb_threshold
then the function will return.- Return
ESP_OK
ESP_FAIL
- Parameters
[in] el
: The audio element handle[in] wait_for_rb_threshold
: The wait for rb threshold (0 .. 1)[in] timeout
: The timeout
-
esp_err_t
audio_element_msg_set_listener
(audio_element_handle_t el, audio_event_iface_handle_t listener)¶ This function will add a
listener
to listen to all events from audio elementel
. Any event from el->external_event will be send to thelistener
.- Return
ESP_OK
ESP_FAIL
- Parameters
el
: The audio element handlelistener
: The event will be listen to
-
esp_err_t
audio_element_set_event_callback
(audio_element_handle_t el, event_cb_func cb_func, void *ctx)¶ This function will add a
callback
to be called from audio elementel
. Any event to caller will cause to call callback function.- Return
ESP_OK
ESP_FAIL
- Parameters
el
: The audio element handlecb_func
: The callback functionctx
: Caller context
-
esp_err_t
audio_element_msg_remove_listener
(audio_element_handle_t el, audio_event_iface_handle_t listener)¶ Remove listener out of el. No new events will be sent to the listener.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] el
: The audio element handlelistener
: The listener
-
esp_err_t
audio_element_set_input_ringbuf
(audio_element_handle_t el, ringbuf_handle_t rb)¶ Set Element input ringbuffer.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] el
: The audio element handle[in] rb
: The ringbuffer handle
-
ringbuf_handle_t
audio_element_get_input_ringbuf
(audio_element_handle_t el)¶ Get Element input ringbuffer.
- Return
ringbuf_handle_t
- Parameters
[in] el
: The audio element handle
-
esp_err_t
audio_element_set_output_ringbuf
(audio_element_handle_t el, ringbuf_handle_t rb)¶ Set Element output ringbuffer.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] el
: The audio element handle[in] rb
: The ringbuffer handle
-
ringbuf_handle_t
audio_element_get_output_ringbuf
(audio_element_handle_t el)¶ Get Element output ringbuffer.
- Return
ringbuf_handle_t
- Parameters
[in] el
: The audio element handle
-
audio_element_state_t
audio_element_get_state
(audio_element_handle_t el)¶ Get current Element state.
- Return
audio_element_state_t
- Parameters
[in] el
: The audio element handle
-
esp_err_t
audio_element_abort_input_ringbuf
(audio_element_handle_t el)¶ If the element is requesting data from the input ringbuffer, this function forces it to abort.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] el
: The audio element handle
-
esp_err_t
audio_element_abort_output_ringbuf
(audio_element_handle_t el)¶ If the element is waiting to write data to the ringbuffer output, this function forces it to abort.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] el
: The audio element handle
-
esp_err_t
audio_element_wait_for_buffer
(audio_element_handle_t el, int size_expect, TickType_t timeout)¶ This function will wait until the sizeof the output ringbuffer is greater than or equal to
size_expect
. If the timeout period has been exceeded and ringbuffer output has not yet reachedsize_expect
then the function will returnESP_FAIL
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] el
: The audio element handle[in] size_expect
: The size expect[in] timeout
: The timeout
-
esp_err_t
audio_element_report_status
(audio_element_handle_t el, audio_element_status_t status)¶ Element will sendout event (status) to event by this function.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] el
: The audio element handle[in] status
: The status
-
esp_err_t
audio_element_report_info
(audio_element_handle_t el)¶ Element will sendout event (information) to event by this function.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] el
: The audio element handle
-
esp_err_t
audio_element_report_codec_fmt
(audio_element_handle_t el)¶ Element will sendout event (codec format) to event by this function.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] el
: The audio element handle
-
esp_err_t
audio_element_report_pos
(audio_element_handle_t el)¶ Element will sendout event with a duplicate information by this function.
- Return
ESP_OK
ESP_FAIL
ESP_ERR_NO_MEM
- Parameters
[in] el
: The audio element handle
-
esp_err_t
audio_element_set_input_timeout
(audio_element_handle_t el, TickType_t timeout)¶ Set input read timeout (default is
portMAX_DELAY
).- Return
ESP_OK
ESP_FAIL
- Parameters
[in] el
: The audio element handle[in] timeout
: The timeout
-
esp_err_t
audio_element_set_output_timeout
(audio_element_handle_t el, TickType_t timeout)¶ Set output read timeout (default is
portMAX_DELAY
).- Return
ESP_OK
ESP_FAIL
- Parameters
[in] el
: The audio element handle[in] timeout
: The timeout
-
esp_err_t
audio_element_reset_input_ringbuf
(audio_element_handle_t el)¶ Reset inputbuffer.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] el
: The audio element handle
-
esp_err_t
audio_element_finish_state
(audio_element_handle_t el)¶ Set element finish state.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] el
: The audio element handle
-
esp_err_t
audio_element_change_cmd
(audio_element_handle_t el, audio_element_msg_cmd_t cmd)¶ Change element running state with specific command.
- Return
ESP_OK
ESP_FAIL
ESP_ERR_INVALID_ARG Element handle is null
- Parameters
[in] el
: The audio element handle[in] cmd
: Specific command from audio_element_msg_cmd_t
-
esp_err_t
audio_element_reset_output_ringbuf
(audio_element_handle_t el)¶ Reset outputbuffer.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] el
: The audio element handle
-
audio_element_err_t
audio_element_input
(audio_element_handle_t el, char *buffer, int wanted_size)¶ Call this function to provide Element input data. Depending on setup using ringbuffer or function callback, Element invokes read ringbuffer, or calls read callback funtion.
- Return
> 0 number of bytes produced
<=0 audio_element_err_t
- Parameters
[in] el
: The audio element handlebuffer
: The buffer pointer[in] wanted_size
: The wanted size
-
audio_element_err_t
audio_element_output
(audio_element_handle_t el, char *buffer, int write_size)¶ Call this function to sendout Element output data. Depending on setup using ringbuffer or function callback, Element will invoke write to ringbuffer, or call write callback funtion.
- Return
> 0 number of bytes written
<=0 audio_element_err_t
- Parameters
[in] el
: The audio element handlebuffer
: The buffer pointer[in] write_size
: The write size
-
esp_err_t
audio_element_set_read_cb
(audio_element_handle_t el, stream_func fn, void *context)¶ This API allows the application to set a read callback for the first audio_element in the pipeline for allowing the pipeline to interface with other systems. The callback is invoked every time the audio element requires data to be processed.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] el
: The audio element handle[in] fn
: Callback read function. The callback function should return number of bytes read or -1 in case of error in reading. Note that the callback function may decide to block and that may block the entire pipeline.[in] context
: An optional context which will be passed to callback function on every invocation
-
esp_err_t
audio_element_set_write_cb
(audio_element_handle_t el, stream_func fn, void *context)¶ This API allows the application to set a write callback for the last audio_element in the pipeline for allowing the pipeline to interface with other systems. The callback is invoked every time the audio element has a processed data that needs to be passed forward.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] el
: The audio element[in] fn
: Callback write function The callback function should return number of bytes written or -1 in case of error in writing. Note that the callback function may decide to block and that may block the entire pipeline.[in] context
: An optional context which will be passed to callback function on every invocation
-
stream_func
audio_element_get_write_cb
(audio_element_handle_t el)¶ Get callback write function that register to the element.
- Return
Callback write function pointer
NULL Failed
- Parameters
[in] el
: The audio element
-
stream_func
audio_element_get_read_cb
(audio_element_handle_t el)¶ Get callback read function that register to the element.
- Return
Callback read function pointer
NULL Failed
- Parameters
[in] el
: The audio element
-
QueueHandle_t
audio_element_get_event_queue
(audio_element_handle_t el)¶ Get External queue of Emitter. We can read any event that has been send out of Element from this
QueueHandle_t
.- Return
QueueHandle_t
- Parameters
[in] el
: The audio element handle
-
esp_err_t
audio_element_set_ringbuf_done
(audio_element_handle_t el)¶ Set inputbuffer and outputbuffer have finished.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] el
: The audio element handle
-
esp_err_t
audio_element_reset_state
(audio_element_handle_t el)¶ Enforce ‘AEL_STATE_INIT’ state.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] el
: The audio element handle
-
int
audio_element_get_output_ringbuf_size
(audio_element_handle_t el)¶ Get Element output ringbuffer size.
- Return
=0: Parameter NULL
>0: Size of ringbuffer
- Parameters
[in] el
: The audio element handle
-
esp_err_t
audio_element_set_output_ringbuf_size
(audio_element_handle_t el, int rb_size)¶ Set Element output ringbuffer size.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] el
: The audio element handle[in] rb_size
: Size of the ringbuffer
-
esp_err_t
audio_element_multi_input
(audio_element_handle_t el, char *buffer, int wanted_size, int index, TickType_t ticks_to_wait)¶ Call this function to read data from multi input ringbuffer by given index.
- Return
ESP_OK
ESP_ERR_INVALID_ARG
- Parameters
el
: The audio element handlebuffer
: The buffer pointerwanted_size
: The wanted sizeindex
: The index of multi input ringbuffer, start from0
, should be less thanNUMBER_OF_MULTI_RINGBUF
ticks_to_wait
: Timeout of ringbuffer
-
esp_err_t
audio_element_multi_output
(audio_element_handle_t el, char *buffer, int wanted_size, TickType_t ticks_to_wait)¶ Call this function write data by multi output ringbuffer.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] el
: The audio element handlebuffer
: The buffer pointer[in] wanted_size
: The wanted sizeticks_to_wait
: Timeout of ringbuffer
-
esp_err_t
audio_element_set_multi_input_ringbuf
(audio_element_handle_t el, ringbuf_handle_t rb, int index)¶ Set multi input ringbuffer Element.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] el
: The audio element handle[in] rb
: The ringbuffer handle[in] index
: Index of multi ringbuffer, starts from0
, should be less thanNUMBER_OF_MULTI_RINGBUF
-
esp_err_t
audio_element_set_multi_output_ringbuf
(audio_element_handle_t el, ringbuf_handle_t rb, int index)¶ Set multi output ringbuffer Element.
- Return
ESP_OK
ESP_ERR_INVALID_ARG
- Parameters
[in] el
: The audio element handle[in] rb
: The ringbuffer handle[in] index
: Index of multi ringbuffer, starts from0
, should be less thanNUMBER_OF_MULTI_RINGBUF
-
ringbuf_handle_t
audio_element_get_multi_input_ringbuf
(audio_element_handle_t el, int index)¶ Get handle of multi input ringbuffer Element by index.
- Return
NULL Error
Others ringbuf_handle_t
- Parameters
[in] el
: The audio element handle[in] index
: Index of multi ringbuffer, starts from0
, should be less thanNUMBER_OF_MULTI_RINGBUF
-
ringbuf_handle_t
audio_element_get_multi_output_ringbuf
(audio_element_handle_t el, int index)¶ Get handle of multi output ringbuffer Element by index.
- Return
NULL Error
Others ringbuf_handle_t
- Parameters
[in] el
: The audio element handle[in] index
: Index of multi ringbuffer, starts from0
, should be less thanNUMBER_OF_MULTI_RINGBUF
-
esp_err_t
audio_element_process_init
(audio_element_handle_t el)¶ Provides a way to call element’s
open
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] el
: The audio element handle
-
esp_err_t
audio_element_process_deinit
(audio_element_handle_t el)¶ Provides a way to call element’s
close
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] el
: The audio element handle
-
esp_err_t
audio_element_seek
(audio_element_handle_t el, void *in_data, int in_size, void *out_data, int *out_size)¶ Call element’s
seek
- Return
ESP_OK
ESP_FAIL
ESP_ERR_NOT_SUPPORTED
- Parameters
[in] el
: The audio element handle[in] in_data
: A pointer to in data[in] in_size
: The size of thein_data
[out] out_data
: A pointer to the out data[out] out_size
: The size of theout_data
-
bool
audio_element_is_stopping
(audio_element_handle_t el)¶ Get Element stopping flag.
- Return
element’s stopping flag
- Parameters
[in] el
: The audio element handle
-
esp_err_t
audio_element_update_byte_pos
(audio_element_handle_t el, int pos)¶ Update the byte position of element information.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] el
: The audio element handle[in] pos
: The byte_pos accumulated by this value
-
esp_err_t
audio_element_set_byte_pos
(audio_element_handle_t el, int pos)¶ Set the byte position of element information.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] el
: The audio element handle[in] pos
: This value is assigned to byte_pos
-
esp_err_t
audio_element_update_total_bytes
(audio_element_handle_t el, int total_bytes)¶ Update the total bytes of element information.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] el
: The audio element handle[in] total_bytes
: The total_bytes accumulated by this value
-
esp_err_t
audio_element_set_total_bytes
(audio_element_handle_t el, int total_bytes)¶ Set the total bytes of element information.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] el
: The audio element handle[in] total_bytes
: This value is assigned to total_bytes
-
esp_err_t
audio_element_set_bps
(audio_element_handle_t el, int bit_rate)¶ Set the bps of element information.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] el
: The audio element handle[in] bit_rate
: This value is assigned to bps
-
esp_err_t
audio_element_set_codec_fmt
(audio_element_handle_t el, int format)¶ Set the codec format of element information.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] el
: The audio element handle[in] format
: This value is assigned to codec_fmt
-
esp_err_t
audio_element_set_music_info
(audio_element_handle_t el, int sample_rates, int channels, int bits)¶ Set the sample_rate, channels, bits of element information.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] el
: The audio element handle[in] sample_rates
: Sample_rates of music information[in] channels
: Channels of music information[in] bits
: Bits of music information
-
esp_err_t
audio_element_set_duration
(audio_element_handle_t el, int duration)¶ Set the duration of element information.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] el
: The audio element handle[in] duration
: This value is assigned to duration
-
esp_err_t
audio_element_set_reserve_user0
(audio_element_handle_t el, int user_data0)¶ Set the user_data_0 of element information.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] el
: The audio element handle[in] user_data0
: This value is assigned to user_data_0
-
esp_err_t
audio_element_set_reserve_user1
(audio_element_handle_t el, int user_data1)¶ Set the user_data_1 of element information.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] el
: The audio element handle[in] user_data1
: This value is assigned to user_data_1
-
esp_err_t
audio_element_set_reserve_user2
(audio_element_handle_t el, int user_data2)¶ Set the user_data_2 of element information.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] el
: The audio element handle[in] user_data2
: This value is assigned to user_data_2
-
esp_err_t
audio_element_set_reserve_user3
(audio_element_handle_t el, int user_data3)¶ Set the user_data_3 of element information.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] el
: The audio element handle[in] user_data3
: This value is assigned to user_data_3
-
esp_err_t
audio_element_set_reserve_user4
(audio_element_handle_t el, int user_data4)¶ Set the user_data_4 of element information.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] el
: The audio element handle[in] user_data4
: This value is assigned to user_data_4
Structures¶
-
struct
audio_element_reserve_data_t
¶ Audio Element user reserved data.
-
struct
audio_element_info_t
¶ Audio Element informations.
Public Members
-
int
sample_rates
¶ Sample rates in Hz
-
int
channels
¶ Number of audio channel, mono is 1, stereo is 2
-
int
bits
¶ Bit wide (8, 16, 24, 32 bits)
-
int
bps
¶ Bit per second
-
int64_t
byte_pos
¶ The current position (in bytes) being processed for an element
-
int64_t
total_bytes
¶ The total bytes for an element
-
int
duration
¶ The duration for an element (optional)
-
char *
uri
¶ URI (optional)
-
esp_codec_type_t
codec_fmt
¶ Music format (optional)
-
audio_element_reserve_data_t
reserve_data
¶ This value is reserved for user use (optional)
-
int
-
struct
audio_element_cfg_t
¶ Audio Element configurations. Each Element at startup will be a self-running task. These tasks will execute the callback open -> [loop: read -> process -> write] -> close. These callback functions are provided by the user corresponding to this configuration.
Public Members
-
el_io_func
open
¶ Open callback function
-
process_func
process
¶ Process callback function
-
el_io_func
close
¶ Close callback function
-
el_io_func
destroy
¶ Destroy callback function
-
stream_func
read
¶ Read callback function
-
stream_func
write
¶ Write callback function
-
int
buffer_len
¶ Buffer length use for an Element
-
int
task_stack
¶ Element task stack
-
int
task_prio
¶ Element task priority (based on freeRTOS priority)
-
int
task_core
¶ Element task running in core (0 or 1)
-
int
out_rb_size
¶ Output ringbuffer size
-
void *
data
¶ User context
-
const char *
tag
¶ Element tag
-
bool
stack_in_ext
¶ Try to allocate stack in external memory
-
int
multi_in_rb_num
¶ The number of multiple input ringbuffer
-
int
multi_out_rb_num
¶ The number of multiple output ringbuffer
-
el_io_func
Macros¶
-
AUDIO_ELEMENT_INFO_DEFAULT
()¶
-
DEFAULT_ELEMENT_RINGBUF_SIZE
¶
-
DEFAULT_ELEMENT_BUFFER_LENGTH
¶
-
DEFAULT_ELEMENT_STACK_SIZE
¶
-
DEFAULT_ELEMENT_TASK_PRIO
¶
-
DEFAULT_ELEMENT_TASK_CORE
¶
-
DEFAULT_AUDIO_ELEMENT_CONFIG
()¶
Type Definitions¶
-
typedef struct audio_element *
audio_element_handle_t
¶
-
typedef esp_err_t (*
el_io_func
)(audio_element_handle_t self)¶
-
typedef audio_element_err_t (*
process_func
)(audio_element_handle_t self, char *el_buffer, int el_buf_len)¶
-
typedef audio_element_err_t (*
stream_func
)(audio_element_handle_t self, char *buffer, int len, TickType_t ticks_to_wait, void *context)¶
-
typedef esp_err_t (*
event_cb_func
)(audio_element_handle_t el, audio_event_iface_msg_t *event, void *ctx)¶
-
typedef esp_err_t (*
ctrl_func
)(audio_element_handle_t self, void *in_data, int in_size, void *out_data, int *out_size)¶
Enumerations¶
-
enum
audio_element_err_t
¶ Values:
-
AEL_IO_OK
= ESP_OK¶
-
AEL_IO_FAIL
= ESP_FAIL¶
-
AEL_IO_DONE
= -2¶
-
AEL_IO_ABORT
= -3¶
-
AEL_IO_TIMEOUT
= -4¶
-
AEL_PROCESS_FAIL
= -5¶
-
-
enum
audio_element_state_t
¶ Audio element state.
Values:
-
AEL_STATE_NONE
= 0¶
-
AEL_STATE_INIT
= 1¶
-
AEL_STATE_INITIALIZING
= 2¶
-
AEL_STATE_RUNNING
= 3¶
-
AEL_STATE_PAUSED
= 4¶
-
AEL_STATE_STOPPED
= 5¶
-
AEL_STATE_FINISHED
= 6¶
-
AEL_STATE_ERROR
= 7¶
-
-
enum
audio_element_msg_cmd_t
¶ Audio element action command, process on dispatcher
Values:
-
AEL_MSG_CMD_NONE
= 0¶
-
AEL_MSG_CMD_FINISH
= 2¶
-
AEL_MSG_CMD_STOP
= 3¶
-
AEL_MSG_CMD_PAUSE
= 4¶
-
AEL_MSG_CMD_RESUME
= 5¶
-
AEL_MSG_CMD_DESTROY
= 6¶
-
AEL_MSG_CMD_REPORT_STATUS
= 8¶
-
AEL_MSG_CMD_REPORT_MUSIC_INFO
= 9¶
-
AEL_MSG_CMD_REPORT_CODEC_FMT
= 10¶
-
AEL_MSG_CMD_REPORT_POSITION
= 11¶
-
-
enum
audio_element_status_t
¶ Audio element status report
Values:
-
AEL_STATUS_NONE
= 0¶
-
AEL_STATUS_ERROR_OPEN
= 1¶
-
AEL_STATUS_ERROR_INPUT
= 2¶
-
AEL_STATUS_ERROR_PROCESS
= 3¶
-
AEL_STATUS_ERROR_OUTPUT
= 4¶
-
AEL_STATUS_ERROR_CLOSE
= 5¶
-
AEL_STATUS_ERROR_TIMEOUT
= 6¶
-
AEL_STATUS_ERROR_UNKNOWN
= 7¶
-
AEL_STATUS_INPUT_DONE
= 8¶
-
AEL_STATUS_INPUT_BUFFERING
= 9¶
-
AEL_STATUS_OUTPUT_DONE
= 10¶
-
AEL_STATUS_OUTPUT_BUFFERING
= 11¶
-
AEL_STATUS_STATE_RUNNING
= 12¶
-
AEL_STATUS_STATE_PAUSED
= 13¶
-
AEL_STATUS_STATE_STOPPED
= 14¶
-
AEL_STATUS_STATE_FINISHED
= 15¶
-
AEL_STATUS_MOUNTED
= 16¶
-
AEL_STATUS_UNMOUNTED
= 17¶
-
Audio Pipeline¶
Dynamic combination of a group of linked Elements is done using the Audio Pipeline. You do not deal with the individual elements but with just one audio pipeline. Every element is connected by a ringbuffer. The Audio Pipeline also takes care of forwarding messages from the element tasks to an application.
A diagram below presents organization of three elements, HTTP reader stream, MP3 decoder and I2S writer stream, in the Audio Pipeline, that has been used in player/pipeline_http_mp3 example.

Sample Organization of Elements in Audio Pipeline¶
API Reference¶
Header File¶
Functions¶
-
audio_pipeline_handle_t
audio_pipeline_init
(audio_pipeline_cfg_t *config)¶ Initialize audio_pipeline_handle_t object audio_pipeline is responsible for controlling the audio data stream and connecting the audio elements with the ringbuffer It will connect and start the audio element in order, responsible for retrieving the data from the previous element and passing it to the element after it. Also get events from each element, process events or pass it to a higher layer.
- Return
audio_pipeline_handle_t on success
NULL when any errors
- Parameters
config
: The configuration - audio_pipeline_cfg_t
-
esp_err_t
audio_pipeline_deinit
(audio_pipeline_handle_t pipeline)¶ This function removes all of the element’s links in audio_pipeline, cancels the registration of all events, invokes the destroy functions of the registered elements, and frees the memory allocated by the init function. Briefly, frees all memory.
- Return
ESP_OK
- Parameters
[in] pipeline
: The Audio Pipeline Handle
-
esp_err_t
audio_pipeline_register
(audio_pipeline_handle_t pipeline, audio_element_handle_t el, const char *name)¶ Registering an element for audio_pipeline, each element can be registered multiple times, but
name
(as String) must be unique in audio_pipeline, which is used to identify the element for link creation mentioned in theaudio_pipeline_link
- Note
Because of stop pipeline or pause pipeline depend much on register order. Please register element strictly in the following order: input element first, process middle, output element last.
- Return
ESP_OK on success
ESP_FAIL when any errors
- Parameters
[in] pipeline
: The Audio Pipeline Handle[in] el
: The Audio Element Handle[in] name
: The name identifier of the audio_element in this audio_pipeline
-
esp_err_t
audio_pipeline_unregister
(audio_pipeline_handle_t pipeline, audio_element_handle_t el)¶ Unregister the audio_element in audio_pipeline, remove it from the list.
- Return
ESP_OK on success
ESP_FAIL when any errors
- Parameters
[in] pipeline
: The Audio Pipeline Handle[in] el
: The Audio Element Handle
-
esp_err_t
audio_pipeline_run
(audio_pipeline_handle_t pipeline)¶ Start Audio Pipeline.
With this function audio_pipeline will create tasks for all elements, that have been linked using the linking functions.
- Return
ESP_OK on success
ESP_FAIL when any errors
- Parameters
[in] pipeline
: The Audio Pipeline Handle
-
esp_err_t
audio_pipeline_terminate
(audio_pipeline_handle_t pipeline)¶ Stop Audio Pipeline.
With this function audio_pipeline will destroy tasks of all elements, that have been linked using the linking functions.
- Return
ESP_OK on success
ESP_FAIL when any errors
- Parameters
[in] pipeline
: The Audio Pipeline Handle
-
esp_err_t
audio_pipeline_terminate_with_ticks
(audio_pipeline_handle_t pipeline, TickType_t ticks_to_wait)¶ Stop Audio Pipeline with specific ticks for timeout.
With this function audio_pipeline will destroy tasks of all elements, that have been linked using the linking functions.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] pipeline
: The Audio Pipeline Handle[in] ticks_to_wait
: The maximum amount of time to block wait for element destroy
-
esp_err_t
audio_pipeline_resume
(audio_pipeline_handle_t pipeline)¶ This function will set all the elements to the
RUNNING
state and process the audio data as an inherent feature of audio_pipeline.- Return
ESP_OK on success
ESP_FAIL when any errors
- Parameters
[in] pipeline
: The Audio Pipeline Handle
-
esp_err_t
audio_pipeline_pause
(audio_pipeline_handle_t pipeline)¶ This function will set all the elements to the
PAUSED
state. Everything remains the same except the data processing is stopped.- Return
ESP_OK on success
ESP_FAIL when any errors
- Parameters
[in] pipeline
: The Audio Pipeline Handle
-
esp_err_t
audio_pipeline_stop
(audio_pipeline_handle_t pipeline)¶ Stop all of the linked elements. Used with
audio_pipeline_wait_for_stop
to keep in sync. The link state of the elements in the pipeline is kept, events are still registered. The stopped audio_pipeline restart byaudio_pipeline_resume
.- Return
ESP_OK on success
ESP_FAIL when any errors
- Parameters
[in] pipeline
: The Audio Pipeline Handle
-
esp_err_t
audio_pipeline_wait_for_stop
(audio_pipeline_handle_t pipeline)¶ The
audio_pipeline_stop
function sends requests to the elements and exits. But they need time to get rid of time-blocking tasks. This function will waitportMAX_DELAY
until all the Elements in the pipeline actually stop.- Return
ESP_OK on success
ESP_FAIL when any errors
- Parameters
[in] pipeline
: The Audio Pipeline Handle
-
esp_err_t
audio_pipeline_wait_for_stop_with_ticks
(audio_pipeline_handle_t pipeline, TickType_t ticks_to_wait)¶ The
audio_pipeline_stop
function sends requests to the elements and exits. But they need time to get rid of time-blocking tasks. This function will waitticks_to_wait
until all the Elements in the pipeline actually stop.- Return
ESP_OK on success
ESP_FAIL when any errors
- Parameters
[in] pipeline
: The Audio Pipeline Handle[in] ticks_to_wait
: The maximum amount of time to block wait for stop
-
esp_err_t
audio_pipeline_link
(audio_pipeline_handle_t pipeline, const char *link_tag[], int link_num)¶ The audio_element added to audio_pipeline will be unconnected before it is called by this function. Based on element’s
name
already registered byaudio_pipeline_register
, the path of the data will be linked in the order of the link_tag. Element at index 0 is first, and indexlink_num -1
is final. As well as audio_pipeline will subscribe all element’s events.- Return
ESP_OK on success
ESP_FAIL when any errors
- Parameters
[in] pipeline
: The Audio Pipeline Handlelink_tag
: Array of elementname
was registered byaudio_pipeline_register
[in] link_num
: Total number of elements of thelink_tag
array
-
esp_err_t
audio_pipeline_unlink
(audio_pipeline_handle_t pipeline)¶ Removes the connection of the elements, as well as unsubscribe events.
- Return
ESP_OK on success
ESP_FAIL when any errors
- Parameters
[in] pipeline
: The Audio Pipeline Handle
-
audio_element_handle_t
audio_pipeline_get_el_by_tag
(audio_pipeline_handle_t pipeline, const char *tag)¶ Find un-kept element from registered pipeline by tag.
- Return
NULL when any errors
Others on success
- Parameters
[in] pipeline
: The Audio Pipeline Handle[in] tag
: A char pointer
-
audio_element_handle_t
audio_pipeline_get_el_once
(audio_pipeline_handle_t pipeline, const audio_element_handle_t start_el, const char *tag)¶ Based on beginning element to find un-kept element from registered pipeline by tag.
- Return
NULL when any errors
Others on success
- Parameters
[in] pipeline
: The Audio Pipeline Handle[in] start_el
: Specific beginning element[in] tag
: A char pointer
-
esp_err_t
audio_pipeline_remove_listener
(audio_pipeline_handle_t pipeline)¶ Remove event listener from this audio_pipeline.
- Return
ESP_OK on success
ESP_FAIL when any errors
- Parameters
[in] pipeline
: The Audio Pipeline Handle
-
esp_err_t
audio_pipeline_set_listener
(audio_pipeline_handle_t pipeline, audio_event_iface_handle_t evt)¶ Set event listner for this audio_pipeline, any event from this pipeline can be listen to by
evt
- Return
ESP_OK on success
ESP_FAIL when any errors
- Parameters
[in] pipeline
: The Audio Pipeline Handle[in] evt
: The Event Handle
-
audio_event_iface_handle_t
audio_pipeline_get_event_iface
(audio_pipeline_handle_t pipeline)¶ Get the event iface using by this pipeline.
- Return
The Event Handle
- Parameters
[in] pipeline
: The pipeline
-
esp_err_t
audio_pipeline_link_insert
(audio_pipeline_handle_t pipeline, bool first, audio_element_handle_t prev, ringbuf_handle_t conect_rb, audio_element_handle_t next)¶ Insert the specific audio_element to audio_pipeline, previous element connect to the next element by ring buffer.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] pipeline
: The audio pipeline handle[in] first
: Previous element is first input element, need to settrue
[in] prev
: Previous element[in] conect_rb
: Connect ring buffer[in] next
: Next element
-
esp_err_t
audio_pipeline_register_more
(audio_pipeline_handle_t pipeline, audio_element_handle_t element_1, ...)¶ Register a NULL-terminated list of elements to audio_pipeline.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] pipeline
: The audio pipeline handle[in] element_1
: The element to add to the audio_pipeline.[in] ...
: Additional elements to add to the audio_pipeline.
-
esp_err_t
audio_pipeline_unregister_more
(audio_pipeline_handle_t pipeline, audio_element_handle_t element_1, ...)¶ Unregister a NULL-terminated list of elements to audio_pipeline.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] pipeline
: The audio pipeline handle[in] element_1
: The element to add to the audio_pipeline.[in] ...
: Additional elements to add to the audio_pipeline.
-
esp_err_t
audio_pipeline_link_more
(audio_pipeline_handle_t pipeline, audio_element_handle_t element_1, ...)¶ Adds a NULL-terminated list of elements to audio_pipeline.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] pipeline
: The audio pipeline handle[in] element_1
: The element to add to the audio_pipeline.[in] ...
: Additional elements to add to the audio_pipeline.
-
esp_err_t
audio_pipeline_listen_more
(audio_pipeline_handle_t pipeline, audio_element_handle_t element_1, ...)¶ Subscribe a NULL-terminated list of element’s events to audio_pipeline.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] pipeline
: The audio pipeline handle[in] element_1
: The element event to subscribe to the audio_pipeline.[in] ...
: Additional elements event to subscribe to the audio_pipeline.
-
esp_err_t
audio_pipeline_check_items_state
(audio_pipeline_handle_t pipeline, audio_element_handle_t dest_el, audio_element_status_t status)¶ Update the destination element state and check the all of linked elements state are same.
- Return
ESP_OK All linked elements state are same.
ESP_FAIL All linked elements state are not same.
- Parameters
[in] pipeline
: The audio pipeline handle[in] dest_el
: Destination element[in] status
: The new status
-
esp_err_t
audio_pipeline_reset_items_state
(audio_pipeline_handle_t pipeline)¶ Reset pipeline element items state to
AEL_STATUS_NONE
- Return
ESP_OK on success
ESP_FAIL when any errors
- Parameters
[in] pipeline
: The Audio Pipeline Handle
-
esp_err_t
audio_pipeline_reset_ringbuffer
(audio_pipeline_handle_t pipeline)¶ Reset pipeline element ringbuffer.
- Return
ESP_OK on success
ESP_FAIL when any errors
- Parameters
[in] pipeline
: The Audio Pipeline Handle
-
esp_err_t
audio_pipeline_reset_elements
(audio_pipeline_handle_t pipeline)¶ Reset Pipeline linked elements state.
- Return
ESP_OK on success
ESP_FAIL when any errors
- Parameters
[in] pipeline
: The Audio Pipeline Handle
-
esp_err_t
audio_pipeline_reset_kept_state
(audio_pipeline_handle_t pipeline, audio_element_handle_t el)¶ Reset the specific element kept state.
- Return
ESP_OK on success
ESP_FAIL when any errors
- Parameters
[in] pipeline
: The Audio Pipeline Handle[in] el
: The Audio element Handle
-
esp_err_t
audio_pipeline_breakup_elements
(audio_pipeline_handle_t pipeline, audio_element_handle_t kept_ctx_el)¶ Break up all the linked elements of specific
pipeline
. The include and beforekept_ctx_el
working (AEL_STATE_RUNNING or AEL_STATE_PAUSED) elements and connected ringbuffer will be reserved.- Note
There is no element reserved when
kept_ctx_el
is NULL. This function will unsubscribe all element’s events.- Return
ESP_OK All linked elements state are same.
ESP_ERR_INVALID_ARG Invalid parameters.
- Parameters
[in] pipeline
: The audio pipeline handle[in] kept_ctx_el
: Destination keep elements
-
esp_err_t
audio_pipeline_relink
(audio_pipeline_handle_t pipeline, const char *link_tag[], int link_num)¶ Basing on element’s
name
already registered byaudio_pipeline_register
, relink the pipeline following the order ofnames
in the `link_tag.- Note
If the ringbuffer is not enough to connect the new pipeline will create new ringbuffer.
- Return
ESP_OK All linked elements state are same.
ESP_FAIL Error.
ESP_ERR_INVALID_ARG Invalid parameters.
- Parameters
[in] pipeline
: The Audio Pipeline Handlelink_tag
: Array of elementsname
that was registered byaudio_pipeline_register
[in] link_num
: Total number of elements of thelink_tag
array
-
esp_err_t
audio_pipeline_relink_more
(audio_pipeline_handle_t pipeline, audio_element_handle_t element_1, ...)¶ Adds a NULL-terminated list of elements to audio_pipeline.
- Note
If the ringbuffer is not enough to connect the new pipeline will create new ringbuffer.
- Return
ESP_OK All linked elements state are same.
ESP_FAIL Error.
ESP_ERR_INVALID_ARG Invalid parameters.
- Parameters
[in] pipeline
: The Audio Pipeline Handle[in] element_1
: The element to add to the audio_pipeline.[in] ...
: Additional elements to add to the audio_pipeline.
-
esp_err_t
audio_pipeline_change_state
(audio_pipeline_handle_t pipeline, audio_element_state_t new_state)¶ Set the pipeline state.
- Return
ESP_OK All linked elements state are same.
ESP_FAIL Error.
- Parameters
[in] pipeline
: The Audio Pipeline Handle[in] new_state
: The new state will be set
Structures¶
Macros¶
-
DEFAULT_PIPELINE_RINGBUF_SIZE
¶
-
DEFAULT_AUDIO_PIPELINE_CONFIG
()¶
Type Definitions¶
-
typedef struct audio_pipeline *
audio_pipeline_handle_t
¶
-
typedef struct audio_pipeline_cfg
audio_pipeline_cfg_t
¶ Audio Pipeline configurations.
Event Interface¶
The ADF provides the Event Interface API to establish communication between Audio Elements in a pipeline. The API is built around FreeRTOS queue. It implements ‘listeners’ to watch for incoming messages and inform about them with a callback function.
Application Examples¶
Implementation of this API is demonstrated in couple of examples including get-started/play_mp3_control.
API Reference¶
Header File¶
Functions¶
-
audio_event_iface_handle_t
audio_event_iface_init
(audio_event_iface_cfg_t *config)¶ Initialize audio event.
- Return
ESP_OK
ESP_FAIL
- Parameters
config
: The configurations
-
esp_err_t
audio_event_iface_destroy
(audio_event_iface_handle_t evt)¶ Cleanup event, it doesn’t free evt pointer.
- Return
ESP_OK
ESP_FAIL
- Parameters
evt
: The event
-
esp_err_t
audio_event_iface_set_listener
(audio_event_iface_handle_t evt, audio_event_iface_handle_t listener)¶ Add audio event
evt
to the listener, then we can listenevt
event fromlisten
- Return
ESP_OK
ESP_FAIL
- Parameters
listener
: The event can listen another eventevt
: The event to be added to
-
esp_err_t
audio_event_iface_remove_listener
(audio_event_iface_handle_t listener, audio_event_iface_handle_t evt)¶ Remove audio event
evt
from the listener.- Return
ESP_OK
ESP_FAIL
- Parameters
listener
: The event listenerevt
: The event to be removed from
-
esp_err_t
audio_event_iface_set_cmd_waiting_timeout
(audio_event_iface_handle_t evt, TickType_t wait_time)¶ Set current queue wait time for the event.
- Return
ESP_OK
ESP_FAIL
- Parameters
evt
: The event[in] wait_time
: The wait time
-
esp_err_t
audio_event_iface_waiting_cmd_msg
(audio_event_iface_handle_t evt)¶ Waiting internal queue message.
- Return
ESP_OK
ESP_FAIL
- Parameters
evt
: The event
-
esp_err_t
audio_event_iface_cmd
(audio_event_iface_handle_t evt, audio_event_iface_msg_t *msg)¶ Trigger an event for internal queue with a message.
- Return
ESP_OK
ESP_FAIL
- Parameters
evt
: The eventmsg
: The message
-
esp_err_t
audio_event_iface_cmd_from_isr
(audio_event_iface_handle_t evt, audio_event_iface_msg_t *msg)¶ It’s same with
audio_event_iface_cmd
, but can send a message from ISR.- Return
ESP_OK
ESP_FAIL
- Parameters
[in] evt
: The eventmsg
: The message
-
esp_err_t
audio_event_iface_sendout
(audio_event_iface_handle_t evt, audio_event_iface_msg_t *msg)¶ Trigger and event out with a message.
- Return
ESP_OK
ESP_FAIL
- Parameters
evt
: The eventmsg
: The message
-
esp_err_t
audio_event_iface_discard
(audio_event_iface_handle_t evt)¶ Discard all ongoing event message.
- Return
ESP_OK
ESP_FAIL
- Parameters
evt
: The event
-
esp_err_t
audio_event_iface_listen
(audio_event_iface_handle_t evt, audio_event_iface_msg_t *msg, TickType_t wait_time)¶ Listening and invoke callback function if there are any event are comming.
- Return
ESP_OK
ESP_FAIL
- Parameters
evt
: The eventmsg
: The messagewait_time
: The wait time
-
QueueHandle_t
audio_event_iface_get_queue_handle
(audio_event_iface_handle_t evt)¶ Get External queue handle of Emmitter.
- Return
External QueueHandle_t
- Parameters
[in] evt
: The external queue
-
esp_err_t
audio_event_iface_read
(audio_event_iface_handle_t evt, audio_event_iface_msg_t *msg, TickType_t wait_time)¶ Read the event from all the registered event emitters in the queue set of the interface.
- Return
ESP_OK On successful receiving of event
ESP_FAIL In case of a timeout or invalid parameter passed
- Parameters
[in] evt
: The event interface[out] msg
: The pointer to structure in which event is to be received[in] wait_time
: Timeout for receiving event
-
QueueHandle_t
audio_event_iface_get_msg_queue_handle
(audio_event_iface_handle_t evt)¶ Get Internal queue handle of Emmitter.
- Return
Internal QueueHandle_t
- Parameters
[in] evt
: The Internal queue
-
esp_err_t
audio_event_iface_set_msg_listener
(audio_event_iface_handle_t evt, audio_event_iface_handle_t listener)¶ Add audio internal event
evt
to the listener, then we can listenevt
event fromlisten
- Return
ESP_OK
ESP_FAIL
- Parameters
listener
: The event can listen another eventevt
: The event to be added to
Structures¶
-
struct
audio_event_iface_msg_t
¶ Event message
-
struct
audio_event_iface_cfg_t
¶ Event interface configurations
Public Members
-
int
internal_queue_size
¶ It’s optional, Queue size for event
internal_queue
-
int
external_queue_size
¶ It’s optional, Queue size for event
external_queue
-
int
queue_set_size
¶ It’s optional, QueueSet size for event
queue_set
-
on_event_iface_func
on_cmd
¶ Function callback for listener when any event arrived
-
void *
context
¶ Context will pass to callback function
-
TickType_t
wait_time
¶ Timeout to check for event queue
-
int
type
¶ it will pass to audio_event_iface_msg_t source_type (To know where it came from)
-
int
Macros¶
-
DEFAULT_AUDIO_EVENT_IFACE_SIZE
¶
-
AUDIO_EVENT_IFACE_DEFAULT_CFG
()¶
Type Definitions¶
-
typedef esp_err_t (*
on_event_iface_func
)(audio_event_iface_msg_t *, void *)¶
-
typedef struct audio_event_iface *
audio_event_iface_handle_t
¶
Audio Common¶
Enumerations that define type of Audio Elements, type and format of Codecs and type of Streams.
API Reference¶
Header File¶
Macros¶
-
ELEMENT_SUB_TYPE_OFFSET
¶
-
mem_assert
(x)¶
Enumerations¶
-
enum
audio_element_type_t
¶ Values:
-
AUDIO_ELEMENT_TYPE_UNKNOW
= 0x01 << ELEMENT_SUB_TYPE_OFFSET¶
-
AUDIO_ELEMENT_TYPE_ELEMENT
= 0x01 << (ELEMENT_SUB_TYPE_OFFSET + 1)¶
-
AUDIO_ELEMENT_TYPE_PLAYER
= 0x01 << (ELEMENT_SUB_TYPE_OFFSET + 2)¶
-
AUDIO_ELEMENT_TYPE_SERVICE
= 0x01 << (ELEMENT_SUB_TYPE_OFFSET + 3)¶
-
AUDIO_ELEMENT_TYPE_PERIPH
= 0x01 << (ELEMENT_SUB_TYPE_OFFSET + 4)¶
-
ESP Audio¶
This component provides several simple high level APIs. It is intended for quick implementation of audio applications based on typical interconnections of standardized audio elements.
API Reference¶
Header File¶
Structures¶
-
struct
esp_audio_state_t
¶ esp_audio status information parameters
Public Members
-
esp_audio_status_t
status
¶ Status of esp_audio
-
audio_err_t
err_msg
¶ Status is
AUDIO_STATUS_ERROR
, err_msg will be setup
-
media_source_type_t
media_src
¶ Media source type
-
esp_audio_status_t
Macros¶
-
ESP_ERR_AUDIO_BASE
¶ Starting number of ESP audio error codes
Type Definitions¶
-
typedef void (*
esp_audio_event_callback
)(esp_audio_state_t *audio, void *ctx)¶
-
typedef esp_err_t (*
audio_volume_set
)(void *hd, int vol)¶
-
typedef esp_err_t (*
audio_volume_get
)(void *hd, int *vol)¶
Enumerations¶
-
enum
audio_err_t
¶ Values:
-
ESP_ERR_AUDIO_NO_ERROR
= ESP_OK¶
-
ESP_ERR_AUDIO_FAIL
= ESP_FAIL¶
-
ESP_ERR_AUDIO_NO_INPUT_STREAM
= ESP_ERR_AUDIO_BASE + 1¶
-
ESP_ERR_AUDIO_NO_OUTPUT_STREAM
= ESP_ERR_AUDIO_BASE + 2¶
-
ESP_ERR_AUDIO_NO_CODEC
= ESP_ERR_AUDIO_BASE + 3¶
-
ESP_ERR_AUDIO_HAL_FAIL
= ESP_ERR_AUDIO_BASE + 4¶
-
ESP_ERR_AUDIO_MEMORY_LACK
= ESP_ERR_AUDIO_BASE + 5¶
-
ESP_ERR_AUDIO_INVALID_URI
= ESP_ERR_AUDIO_BASE + 6¶
-
ESP_ERR_AUDIO_INVALID_PATH
= ESP_ERR_AUDIO_BASE + 7¶
-
ESP_ERR_AUDIO_INVALID_PARAMETER
= ESP_ERR_AUDIO_BASE + 8¶
-
ESP_ERR_AUDIO_NOT_READY
= ESP_ERR_AUDIO_BASE + 9¶
-
ESP_ERR_AUDIO_NOT_SUPPORT
= ESP_ERR_AUDIO_BASE + 10¶
-
ESP_ERR_AUDIO_TIMEOUT
= ESP_ERR_AUDIO_BASE + 11¶
-
ESP_ERR_AUDIO_ALREADY_EXISTS
= ESP_ERR_AUDIO_BASE + 12¶
-
ESP_ERR_AUDIO_LINK_FAIL
= ESP_ERR_AUDIO_BASE + 13¶
-
ESP_ERR_AUDIO_UNKNOWN
= ESP_ERR_AUDIO_BASE + 14¶
-
ESP_ERR_AUDIO_OUT_OF_RANGE
= ESP_ERR_AUDIO_BASE + 15¶
-
ESP_ERR_AUDIO_STOP_BY_USER
= ESP_ERR_AUDIO_BASE + 16¶
-
ESP_ERR_AUDIO_OPEN
= ESP_ERR_AUDIO_BASE + 0x100¶
-
ESP_ERR_AUDIO_INPUT
= ESP_ERR_AUDIO_BASE + 0x101¶
-
ESP_ERR_AUDIO_PROCESS
= ESP_ERR_AUDIO_BASE + 0x102¶
-
ESP_ERR_AUDIO_OUTPUT
= ESP_ERR_AUDIO_BASE + 0x103¶
-
ESP_ERR_AUDIO_CLOSE
= ESP_ERR_AUDIO_BASE + 0x104¶
-
-
enum
esp_audio_status_t
¶ Values:
-
AUDIO_STATUS_UNKNOWN
= 0¶
-
AUDIO_STATUS_RUNNING
= 1¶
-
AUDIO_STATUS_PAUSED
= 2¶
-
AUDIO_STATUS_STOPPED
= 3¶
-
AUDIO_STATUS_FINISHED
= 4¶
-
AUDIO_STATUS_ERROR
= 5¶
-
-
enum
audio_termination_type_t
¶ Values:
-
TERMINATION_TYPE_NOW
= 0¶ Audio operation will be terminated immediately
-
TERMINATION_TYPE_DONE
= 1¶ Audio operation will be stopped when finished
-
TERMINATION_TYPE_MAX
¶
-
-
enum
media_source_type_t
¶ Values:
-
MEDIA_SRC_TYPE_NULL
= 0¶
-
MEDIA_SRC_TYPE_MUSIC_BASE
= 0x100¶
-
MEDIA_SRC_TYPE_MUSIC_SD
= MEDIA_SRC_TYPE_MUSIC_BASE + 1¶
-
MEDIA_SRC_TYPE_MUSIC_HTTP
= MEDIA_SRC_TYPE_MUSIC_BASE + 2¶
-
MEDIA_SRC_TYPE_MUSIC_FLASH
= MEDIA_SRC_TYPE_MUSIC_BASE + 3¶
-
MEDIA_SRC_TYPE_MUSIC_A2DP
= MEDIA_SRC_TYPE_MUSIC_BASE + 4¶
-
MEDIA_SRC_TYPE_MUSIC_DLNA
= MEDIA_SRC_TYPE_MUSIC_BASE + 5¶
-
MEDIA_SRC_TYPE_MUSIC_RAW
= MEDIA_SRC_TYPE_MUSIC_BASE + 6¶
-
MEDIA_SRC_TYPE_MUSIC_MAX
= 0x1FF¶
-
MEDIA_SRC_TYPE_TONE_BASE
= 0x200¶
-
MEDIA_SRC_TYPE_TONE_SD
= MEDIA_SRC_TYPE_TONE_BASE + 1¶
-
MEDIA_SRC_TYPE_TONE_HTTP
= MEDIA_SRC_TYPE_TONE_BASE + 2¶
-
MEDIA_SRC_TYPE_TONE_FLASH
= MEDIA_SRC_TYPE_TONE_BASE + 3¶
-
MEDIA_SRC_TYPE_TONE_MAX
= 0x2FF¶
-
MEDIA_SRC_TYPE_RESERVE_BASE
= 0x800¶
-
MEDIA_SRC_TYPE_RESERVE_MAX
= 0xFFF¶
-
Header File¶
Functions¶
-
esp_audio_handle_t
esp_audio_create
(const esp_audio_cfg_t *cfg)¶ Create esp_audio instance according to ‘cfg’ parameter.
This function create an esp_audio instance, at the specified configuration.
- Return
NULL: Error
Others: esp_audio instance fully certifying
- Parameters
[in] cfg
: Provide esp_audio initialization configuration
-
audio_err_t
esp_audio_destroy
(esp_audio_handle_t handle)¶ Specific esp_audio instance will be destroyed.
- Return
ESP_ERR_AUDIO_NO_ERROR: on success
ESP_ERR_AUDIO_INVALID_PARAMETER: no instance to free, call esp_audio_init first
- Parameters
[in] handle
: The esp_audio instance
-
audio_err_t
esp_audio_input_stream_add
(esp_audio_handle_t handle, audio_element_handle_t in_stream)¶ Add audio input stream to specific esp_audio instance.
- Return
ESP_ERR_AUDIO_NO_ERROR: on success
ESP_ERR_AUDIO_INVALID_PARAMETER: invalid arguments
ESP_ERR_AUDIO_MEMORY_LACK: allocate memory fail
- Parameters
[in] handle
: The esp_audio instance[in] in_stream
: Audio stream instance
-
audio_err_t
esp_audio_output_stream_add
(esp_audio_handle_t handle, audio_element_handle_t out_stream)¶ Add audio output stream to specific esp_audio instance.
- Return
ESP_ERR_AUDIO_NO_ERROR: on success
ESP_ERR_AUDIO_INVALID_PARAMETER: invalid arguments
ESP_ERR_AUDIO_MEMORY_LACK: allocate memory fail
- Parameters
[in] handle
: The esp_audio instance[in] out_stream
: The audio stream element instance
-
audio_err_t
esp_audio_codec_lib_add
(esp_audio_handle_t handle, audio_codec_type_t type, audio_element_handle_t lib)¶ Add a new codec lib that can decode or encode a music file.
- Return
ESP_ERR_AUDIO_NO_ERROR: on success
ESP_ERR_AUDIO_INVALID_PARAMETER: invalid arguments
ESP_ERR_AUDIO_MEMORY_LACK: allocate memory fail
- Parameters
[in] handle
: The esp_audio instance[in] type
: The audio codec type(encoder or decoder)[in] lib
: To provide audio stream element
-
audio_err_t
esp_audio_codec_lib_query
(esp_audio_handle_t handle, audio_codec_type_t type, const char *extension)¶ Check if this kind of music extension is supported or not.
- Note
This function just query the codec which has already add by esp_audio_codec_lib_add. The max length of extension is 6.
- Return
ESP_ERR_AUDIO_NO_ERROR: supported
ESP_ERR_AUDIO_NOT_SUPPORT: not support
ESP_ERR_AUDIO_INVALID_PARAMETER: invalid arguments
- Parameters
[in] handle
: The esp_audio instance[in] type
: The CODEC_ENCODER or CODEC_DECODER[in] extension
: Such as “mp3”, “wav”, “aac”
-
audio_err_t
esp_audio_play
(esp_audio_handle_t handle, audio_codec_type_t type, const char *uri, int pos)¶ Play the given uri.
The esp_audio_play have follow activity, setup inputstream, outputstream and codec by uri, start all of them. There is a rule that esp_audio will select input stream, codec and output stream by URI field.
Rule of URI field are as follow.
UF_SCHEMA
field of URI for choose input stream from existing streams. e.g:”http”,”file”UF_PATH
field of URI for choose codec from existing codecs. e.g:”/audio/mp3_music.mp3”UF_FRAGMENT
field of URI for choose output stream from existing streams, output stream is I2S by default.UF_USERINFO
field of URI for specific sample rate and channels at encode mode.
The format “user:password” in the userinfo field, “user” is sample rate, “password” is channels.
Now esp_audio_play support follow URIs.
”https://dl.espressif.com/dl/audio/mp3_music.mp3”
”http://media-ice.musicradio.com/ClassicFMMP3”
”file://sdcard/test.mp3”
”iis://16000:2@from.pcm/rec.wav#file”
”iis://16000:1@record.pcm/record.wav#raw”
”aadp://44100:2@bt/sink/stream.pcm”
”hfp://8000:1@bt/hfp/stream.pcm”
- Note
The URI parse by
http_parser_parse_url
,any illegal string will be returnESP_ERR_AUDIO_INVALID_URI
.If the esp_decoder codec is added to
handle
, then thehandle
of esp_decoder will be set as the default decoder, even if other decoders are added.Enabled
CONFIG_FATFS_API_ENCODING_UTF_8
, the URI can be support Chinese characters.Asynchronous interface
The maximum of block time can be modify by
esp_audio_play_timeout_set
, default value is 25 seconds.
- Return
ESP_ERR_AUDIO_NO_ERROR: on success
ESP_ERR_AUDIO_TIMEOUT: timeout the play activity
ESP_ERR_AUDIO_NOT_SUPPORT: Currently status is AUDIO_STATUS_RUNNING
ESP_ERR_AUDIO_INVALID_URI: URI is illegal
ESP_ERR_AUDIO_INVALID_PARAMETER: invalid arguments
ESP_ERR_AUDIO_STOP_BY_USER: Exit without play due to esp_audio_stop has been called.
- Parameters
handle
: The esp_audio_handle_t instanceuri
: Such as “file://sdcard/test.wav” or “http://iot.espressif.com/file/example.mp3”. If NULL to be set, the uri setup byesp_audio_setup
will used.type
: Specific handle type decoder or encoderpos
: Specific starting position by bytes
-
audio_err_t
esp_audio_sync_play
(esp_audio_handle_t handle, const char *uri, int pos)¶ Play the given uri until music finished or error occured.
- Note
All features are same with
esp_audio_play
Synchronous interface
Support decoder mode only
No any events post during playing
- Return
ESP_ERR_AUDIO_NO_ERROR: on success
ESP_ERR_AUDIO_TIMEOUT: timeout the play activity
ESP_ERR_AUDIO_NOT_SUPPORT: Currently status is AUDIO_STATUS_RUNNING
ESP_ERR_AUDIO_INVALID_URI: URI is illegal
ESP_ERR_AUDIO_INVALID_PARAMETER: invalid arguments
- Parameters
handle
: The esp_audio_handle_t instanceuri
: Such as “file://sdcard/test.wav” or “http://iot.espressif.com/file/example.mp3”,pos
: Specific starting position by bytes
-
audio_err_t
esp_audio_stop
(esp_audio_handle_t handle, audio_termination_type_t type)¶ A synchronous interface for stop the esp_audio. The maximum of block time is 8000ms.
- Note
1. If user queue has been registered by evt_que, AUDIO_STATUS_STOPPED event for success or AUDIO_STATUS_ERROR event for error will be received.
TERMINATION_TYPE_DONE
only works with input stream which can’t stopped by itself, e.g.raw read/write stream
, others streams are no effect.The synchronous interface is used to ensure that working pipeline is stopped.
- Return
ESP_ERR_AUDIO_NO_ERROR: on success
ESP_ERR_AUDIO_INVALID_PARAMETER: invalid arguments
ESP_ERR_AUDIO_NOT_READY: The status is not AUDIO_STATUS_RUNNING or AUDIO_STATUS_PAUSED or element has not created
ESP_ERR_AUDIO_TIMEOUT: timeout(8000ms) the stop activity.
- Parameters
[in] handle
: The esp_audio instance[in] type
: Stop immediately or done
-
audio_err_t
esp_audio_pause
(esp_audio_handle_t handle)¶ Pause the esp_audio.
- Note
1. Only support music and without live stream. If user queue has been registered by evt_que, AUDIO_STATUS_PAUSED event for success or AUDIO_STATUS_ERROR event for error will be received.
The Paused music must be stoped by
esp_audio_stop
before new playing, otherwise got block on new play.
- Return
ESP_ERR_AUDIO_NO_ERROR: on success
ESP_ERR_AUDIO_INVALID_PARAMETER: invalid arguments
ESP_ERR_AUDIO_NOT_READY: the status is not running
ESP_ERR_AUDIO_TIMEOUT: timeout the pause activity.
- Parameters
[in] handle
: The esp_audio instance
-
audio_err_t
esp_audio_resume
(esp_audio_handle_t handle)¶ Resume the music paused.
- Note
Only support music and without live stream. If user queue has been registered by evt_que, AUDIO_STATUS_RUNNING event for success or AUDIO_STATUS_ERROR event for error will be received.
- Return
ESP_ERR_AUDIO_NO_ERROR: on success
ESP_ERR_AUDIO_INVALID_PARAMETER: invalid arguments
ESP_ERR_AUDIO_TIMEOUT: timeout the resume activity.
- Parameters
[in] handle
: The esp_audio instance
-
audio_err_t
esp_audio_eq_gain_set
(esp_audio_handle_t handle, int band_index, int nch, int eq_gain)¶ Set the audio gain to be processed by the equalizer.
- Return
ESP_ERR_AUDIO_NO_ERROR: on success
ESP_ERR_AUDIO_INVALID_PARAMETER: invalid arguments
- Parameters
[in] handle
: The esp_audio instance[in] band_index
: The position of center frequencies of equalizer. The range of eq band index is [0 - 9].[in] nch
: The number of channel. As for mono, the nch can only set to 1. As for dual, thc nch can set to 1 and 2.[in] eq_gain
: The value of audio gain which inband_index
.
-
audio_err_t
esp_audio_eq_gain_get
(esp_audio_handle_t handle, int band_index, int nch, int *eq_gain)¶ Get the audio gain to be processed by the equalizer.
- Return
ESP_ERR_AUDIO_NO_ERROR: on success
ESP_ERR_AUDIO_INVALID_PARAMETER: invalid arguments
- Parameters
[in] handle
: Audio element handle[in] band_index
: The position of center frequencies of equalizer. The range of eq band index is [0 - 9].[in] nch
: The number of channel. As for mono, the nch can only set to 1. As for dual, thc nch can set to 1 and 2.[out] eq_gain
: The pointer of the gain processed by equalizer
-
audio_err_t
esp_audio_speed_get
(esp_audio_handle_t handle, esp_audio_play_speed_t *speed_index)¶ Getting esp_audio play speed index, index value is from “esp_audio_speed_t” enum.
- Return
ESP_ERR_AUDIO_NO_ERROR: on success
ESP_ERR_AUDIO_INVALID_PARAMETER: invalid arguments
- Parameters
[in] handle
: The esp_audio instance[out] speed_index
: Current audio play speed index.
-
audio_err_t
esp_audio_speed_set
(esp_audio_handle_t handle, esp_audio_play_speed_t speed_index)¶ Use speed_index which is from “esp_audio_speed_t” enum to set esp_audio play speed.
- Return
ESP_ERR_AUDIO_NO_ERROR: on success
ESP_ERR_AUDIO_INVALID_PARAMETER: invalid arguments
- Parameters
[in] handle
: The esp_audio instance[in] speed_index
: Value from “esp_audio_speed_t” enum.
-
audio_err_t
esp_audio_speed_idx_to_float
(esp_audio_handle_t handle, esp_audio_play_speed_t speed_index, float *speed)¶ Use speed_index which is from “esp_audio_speed_t” enum to get esp_audio play speed which is float type.
- Return
ESP_ERR_AUDIO_NO_ERROR: on success
ESP_ERR_AUDIO_INVALID_PARAMETER: invalid arguments
- Parameters
[in] handle
: The esp_audio instance[in] speed_index
: Current audio play speed index.[out] speed
: Current audio play speed.
-
audio_err_t
esp_audio_vol_set
(esp_audio_handle_t handle, int vol)¶ Setting esp_audio volume.
- Return
ESP_ERR_AUDIO_NO_ERROR: on success
ESP_ERR_AUDIO_CTRL_HAL_FAIL: error with hardware.
ESP_ERR_AUDIO_INVALID_PARAMETER: invalid arguments
- Parameters
[in] handle
: The esp_audio instance[in] vol
: Specific volume will be set. 0-100 is legal. 0 will be mute.
-
audio_err_t
esp_audio_vol_get
(esp_audio_handle_t handle, int *vol)¶ Get esp_audio volume.
- Return
ESP_ERR_AUDIO_NO_ERROR: on success
ESP_ERR_AUDIO_CTRL_HAL_FAIL: error with hardware.
ESP_ERR_AUDIO_INVALID_PARAMETER: invalid arguments
- Parameters
[in] handle
: The esp_audio instance[out] vol
: A pointer to int that indicates esp_audio volume.
-
audio_err_t
esp_audio_state_get
(esp_audio_handle_t handle, esp_audio_state_t *state)¶ Get esp_audio status.
- Return
ESP_ERR_AUDIO_NO_ERROR: on success
ESP_ERR_AUDIO_INVALID_PARAMETER: no esp_audio instance or esp_audio does not playing
- Parameters
[in] handle
: The esp_audio instance[out] state
: A pointer to esp_audio_state_t that indicates esp_audio status.
-
audio_err_t
esp_audio_pos_get
(esp_audio_handle_t handle, int *pos)¶ Get the position in bytes of currently played music.
- Note
This function works only with decoding music.
- Return
ESP_ERR_AUDIO_NO_ERROR: on success
ESP_ERR_AUDIO_INVALID_PARAMETER: no esp_audio instance
ESP_ERR_AUDIO_NOT_READY: no codec element
- Parameters
[in] handle
: The esp_audio instance[out] pos
: A pointer to int that indicates esp_audio decoding position.
-
audio_err_t
esp_audio_time_get
(esp_audio_handle_t handle, int *time)¶ Get the position in microseconds of currently played music.
- Note
This function works only with decoding music.
- Return
ESP_ERR_AUDIO_NO_ERROR: on success
ESP_ERR_AUDIO_INVALID_PARAMETER: no esp_audio instance
ESP_ERR_AUDIO_NOT_READY: no out stream
- Parameters
[in] handle
: The esp_audio instance[out] time
: A pointer to int that indicates esp_audio decoding position.
-
audio_err_t
esp_audio_setup
(esp_audio_handle_t handle, esp_audio_setup_t *sets)¶ Choose the
in_stream
,codec
andout_stream
definitely, and seturi
.- Note
This function provide a manual way to select in/out stream and codec, should be called before the
esp_audio_play
, then ignore theesp_audio_play
URI parameter only one time.- Return
ESP_ERR_AUDIO_NO_ERROR: on success
ESP_ERR_AUDIO_INVALID_PARAMETER: no esp_audio instance
ESP_ERR_AUDIO_MEMORY_LACK: allocate memory fail
- Parameters
[in] handle
: The esp_audio instance[in] sets
: A pointer to esp_audio_setup_t.
-
audio_err_t
esp_audio_media_type_set
(esp_audio_handle_t handle, media_source_type_t type)¶
-
audio_err_t
esp_audio_music_info_get
(esp_audio_handle_t handle, esp_audio_music_info_t *info)¶
-
audio_err_t
esp_audio_info_get
(esp_audio_handle_t handle, esp_audio_info_t *info)¶
-
audio_err_t
esp_audio_info_set
(esp_audio_handle_t handle, esp_audio_info_t *info)¶
-
audio_err_t
esp_audio_callback_set
(esp_audio_handle_t handle, esp_audio_event_callback cb, void *cb_ctx)¶
-
audio_err_t
esp_audio_seek
(esp_audio_handle_t handle, int seek_time_sec)¶ Seek the position in second of currently played music.
- Note
This function works only with decoding music.
- Return
ESP_ERR_AUDIO_NO_ERROR: on success
ESP_ERR_AUDIO_FAIL: codec or allocation fail
ESP_ERR_AUDIO_TIMEOUT: timeout for sync the element status
ESP_ERR_AUDIO_INVALID_PARAMETER: no esp_audio instance
ESP_ERR_AUDIO_NOT_SUPPORT: codec has finished
ESP_ERR_AUDIO_OUT_OF_RANGE: the seek_time_ms is out of the range
ESP_ERR_AUDIO_NOT_READY: the status is neither running nor paused
- Parameters
[in] handle
: The esp_audio instance[out] seek_time_sec
: A pointer to int that indicates esp_audio decoding position.
-
audio_err_t
esp_audio_duration_get
(esp_audio_handle_t handle, int *duration)¶ Get the duration in microseconds of playing music.
- Note
This function works only with decoding music.
- Return
ESP_ERR_AUDIO_NO_ERROR: on success
ESP_ERR_AUDIO_INVALID_PARAMETER: no esp_audio instance
ESP_ERR_AUDIO_NOT_READY: no codec element or no in element
- Parameters
[in] handle
: The esp_audio instance[out] duration
: A pointer to int that indicates decoding total time.
-
audio_err_t
esp_audio_play_timeout_set
(esp_audio_handle_t handle, int time_ms)¶ Setting the maximum amount of time to waiting for
esp_audio_play
only.- Return
ESP_ERR_AUDIO_NO_ERROR: on success
ESP_ERR_AUDIO_INVALID_PARAMETER: invalid arguments
- Parameters
[in] handle
: The esp_audio instance[in] time_ms
: The maximum amount of time
-
audio_err_t
esp_audio_prefer_type_get
(esp_audio_handle_t handle, esp_audio_prefer_t *type)¶ Get the type of
esp_audio_prefer_t
- Return
ESP_ERR_AUDIO_NO_ERROR: on success
ESP_ERR_AUDIO_INVALID_PARAMETER: no esp_audio instance
- Parameters
[in] handle
: The esp_audio instance[out] type
: A pointer to esp_audio_prefer_t
-
audio_err_t
esp_audio_event_que_set
(esp_audio_handle_t handle, QueueHandle_t que)¶ Set event queue to notify the esp_audio status.
- Return
ESP_ERR_AUDIO_NO_ERROR: on success
ESP_ERR_AUDIO_INVALID_PARAMETER: no esp_audio instance
- Parameters
[in] handle
: The esp_audio instance[out] que
: A pointer to QueueHandle_t
Structures¶
-
struct
esp_audio_cfg_t
¶ esp_audio configuration parameters
Public Members
-
int
in_stream_buf_size
¶ Input buffer size
-
int
out_stream_buf_size
¶ Output buffer size
-
int
resample_rate
¶ Destination sample rate, 0: disable resample; others: 44.1K, 48K, 32K, 16K, 8K has supported It should be make sure same with I2S stream
sample_rate
-
int
component_select
¶ The select of audio forge component. eg. To choose equalizer and ALC together, please enter ESP_AUDIO_COMPONENT_SELECT_ALC | ESP_AUDIO_COMPONENT_SELECT_EQUALIZER.
-
QueueHandle_t
evt_que
¶ For received esp_audio events (optional)
-
esp_audio_event_callback
cb_func
¶ esp_audio events callback (optional)
-
void *
cb_ctx
¶ esp_audio callback context (optional)
-
esp_audio_prefer_t
prefer_type
¶ esp_audio works on sepcific type, default memory is preferred.
ESP_AUDIO_PREFER_MEM
mode stopped the previous linked elements before the new pipeline starting, except out stream element.ESP_AUDIO_PREFER_SPEED
mode kept the previous linked elements before the new pipeline starting, except out stream element.
-
void *
vol_handle
¶ Volume change instance
-
audio_volume_set
vol_set
¶ Set volume callback
-
audio_volume_get
vol_get
¶ Get volume callback
-
int
task_prio
¶ esp_audio task priority
-
int
task_stack
¶ Size of esp_audio task stack
-
int
-
struct
esp_audio_setup_t
¶ esp_audio setup parameters by manual
Public Members
-
audio_codec_type_t
set_type
¶ Set codec type
-
int
set_sample_rate
¶ Set music sample rate
-
int
set_channel
¶ Set music channels
-
int
set_pos
¶ Set starting position
-
int
set_time
¶ Set starting position of the microseconds time (optional)
-
char *
set_uri
¶ Set URI
-
char *
set_in_stream
¶ Tag of in_stream
-
char *
set_codec
¶ Tag of the codec
-
char *
set_out_stream
¶ Tag of out_stream
-
audio_codec_type_t
-
struct
esp_audio_info_t
¶ esp_audio information
Public Members
-
audio_element_info_t
codec_info
¶ Codec information
-
audio_element_handle_t
in_el
¶ Handle of the in stream
-
audio_element_handle_t
out_el
¶ Handle of the out stream
-
audio_element_handle_t
codec_el
¶ Handle of the codec
-
audio_element_handle_t
filter_el
¶ Handle of the filter
-
esp_audio_state_t
st
¶ The state of esp_audio
-
int
time_pos
¶ Position of the microseconds time
-
float
audio_speed
¶ Play speed of audio
-
int64_t
in_stream_total_size
¶ Total size of in stream
-
audio_element_info_t
-
struct
esp_audio_music_info_t
¶ The music informations.
Macros¶
-
ESP_AUDIO_COMPONENT_SELECT_DEFAULT
¶ Default selected
-
ESP_AUDIO_COMPONENT_SELECT_ALC
¶ ALC selected
-
ESP_AUDIO_COMPONENT_SELECT_EQUALIZER
¶ Equalizer selected
-
DEFAULT_ESP_AUDIO_CONFIG
()¶
Type Definitions¶
-
typedef void *
esp_audio_handle_t
¶
Enumerations¶
-
enum
esp_audio_play_speed_t
¶ esp_audio play speed
Values:
-
ESP_AUDIO_PLAY_SPEED_UNKNOW
= -1¶
-
ESP_AUDIO_PLAY_SPEED_0_50
= 0¶
-
ESP_AUDIO_PLAY_SPEED_0_75
= 1¶
-
ESP_AUDIO_PLAY_SPEED_1_00
= 2¶
-
ESP_AUDIO_PLAY_SPEED_1_25
= 3¶
-
ESP_AUDIO_PLAY_SPEED_1_50
= 4¶
-
ESP_AUDIO_PLAY_SPEED_1_75
= 5¶
-
ESP_AUDIO_PLAY_SPEED_2_00
= 6¶
-
ESP_AUDIO_PLAY_SPEED_MAX
= 7¶
-
Audio Streams¶
The Audio Stream refers to an Audio Element that is responsible for acquiring of audio data and then sending the data out after processing.
The following stream types are supported:
Each stream is initialized with a structure as an input, and the returned audio_element_handle_t
handle is used to call the functions in audio_element.h
. Most streams have two types, AUDIO_STREAM_READER
(reader) and AUDIO_STREAM_WRITER
(writer). For example, to set the I2S stream type, use i2s_stream_init()
and i2s_stream_cfg_t
.
See description below for the API details.
Algorithm Stream¶
The algorithm stream integrates front-end algorithms such as acoustic echo cancellation (AEC), automatic gain control (AGC), and noise suppression (NS) to process the received audio. It is often used in audio preprocessing scenarios, including VoIP, speech recognition, and keyword wake-up. The stream calls esp-sr and thus occupies large memory. The stream only supports the AUDIO_STREAM_READER
type.
Application Example¶
Header File¶
Functions¶
-
audio_element_handle_t
algo_stream_init
(algorithm_stream_cfg_t *config)¶ Initialize algorithm stream.
- Return
The audio element handle
- Parameters
config
: The algorithm Stream configuration
-
audio_element_err_t
algo_stream_set_delay
(audio_element_handle_t el, ringbuf_handle_t ringbuf, int delay_ms)¶ Set playback signal or recording signal delay when use type2.
- Note
The AEC internal buffering mechanism requires that the recording signal is delayed by around 0 - 10 ms compared to the corresponding reference (playback) signal.
- Return
ESP_OK
ESP_FAIL
ESP_ERR_INVALID_ARG
- Parameters
el
: Handle of elementringbuf
: Handle of ringbufdelay_ms
: The delay between playback and recording in ms This delay_ms can be debugged by yourself, you can set the configuration debug_input to true, then get the original input data (left channel is the signal captured from the microphone, right channel is the signal played to the speaker), and check the delay with an audio analysis tool.
-
esp_err_t
algorithm_mono_fix
(uint8_t *sbuff, uint32_t len)¶ Fix I2S mono noise issue.
- Note
This API only for ESP32 with I2S 16bits
- Return
ESP_OK
- Parameters
sbuff
: I2S data bufferlen
: I2S data len
Structures¶
-
struct
algorithm_stream_cfg_t
¶ Algorithm stream configurations.
Public Members
-
algorithm_stream_input_type_t
input_type
¶ Input type of stream
-
int
task_stack
¶ Task stack size
-
int
task_prio
¶ Task peroid
-
int
task_core
¶ The core that task to be created
-
int
out_rb_size
¶ Size of output ringbuffer
-
bool
stack_in_ext
¶ Try to allocate stack in external memory
-
int
rec_linear_factor
¶ The linear amplication factor of record signal
-
int
ref_linear_factor
¶ The linear amplication factor of reference signal
-
bool
debug_input
¶ debug algorithm input data
-
bool
swap_ch
¶ Swap left and right channels
-
int8_t
algo_mask
¶ Choose algorithm to use
-
int
sample_rate
¶ The sampling rate of the input PCM (in Hz)
-
int
mic_ch
¶ MIC channel num
-
int
agc_gain
¶ AGC gain(dB) for voice communication
-
bool
aec_low_cost
¶ AEC uses less cpu and ram resources, but has poor suppression of nonlinear distortion
-
algorithm_stream_input_type_t
Macros¶
-
ALGORITHM_STREAM_PINNED_TO_CORE
¶
-
ALGORITHM_STREAM_TASK_PERIOD
¶
-
ALGORITHM_STREAM_RINGBUFFER_SIZE
¶
-
ALGORITHM_STREAM_TASK_STACK_SIZE
¶
-
ALGORITHM_STREAM_DEFAULT_SAMPLE_RATE_HZ
¶
-
ALGORITHM_STREAM_DEFAULT_SAMPLE_BIT
¶
-
ALGORITHM_STREAM_DEFAULT_MIC_CHANNELS
¶
-
ALGORITHM_STREAM_DEFAULT_AGC_GAIN_DB
¶
-
ALGORITHM_STREAM_DEFAULT_MASK
¶
-
ALGORITHM_STREAM_CFG_DEFAULT
()¶
Enumerations¶
-
enum
algorithm_stream_input_type_t
¶ Two types of algorithm stream input method.
Values:
-
ALGORITHM_STREAM_INPUT_TYPE1
= 0¶ Type 1 is default used by mini-board, the reference signal and the recording signal are respectively read in from the left channel and the right channel of the same I2S
-
ALGORITHM_STREAM_INPUT_TYPE2
= 1¶ As the simple diagram above shows, when type2 is choosen, the recording signal and reference signal should be input by users.
-
FatFs Stream¶
The FatFs stream reads and writes data from FatFs. It has two types: “reader” and “writer”. The type is defined by audio_stream_type_t
.
Application Example¶
Reader example: player/pipeline_play_sdcard_music
Writer example: recorder/pipeline_recording_to_sdcard
Header File¶
Functions¶
-
audio_element_handle_t
fatfs_stream_init
(fatfs_stream_cfg_t *config)¶ Create a handle to an Audio Element to stream data from FatFs to another Element or get data from other elements written to FatFs, depending on the configuration the stream type, either AUDIO_STREAM_READER or AUDIO_STREAM_WRITER.
- Return
The Audio Element handle
- Parameters
config
: The configuration
Structures¶
-
struct
fatfs_stream_cfg_t
¶ FATFS Stream configurations, if any entry is zero then the configuration will be set to default values.
Public Members
-
audio_stream_type_t
type
¶ Stream type
-
int
buf_sz
¶ Audio Element Buffer size
-
int
out_rb_size
¶ Size of output ringbuffer
-
int
task_stack
¶ Task stack size
-
int
task_core
¶ Task running in core (0 or 1)
-
int
task_prio
¶ Task priority (based on freeRTOS priority)
-
bool
ext_stack
¶ Allocate stack on extern ram
-
bool
write_header
¶ Choose to write amrnb/amrwb header in fatfs whether or not (true or false, true means choose to write amrnb header)
-
audio_stream_type_t
Macros¶
-
FATFS_STREAM_BUF_SIZE
¶
-
FATFS_STREAM_TASK_STACK
¶
-
FATFS_STREAM_TASK_CORE
¶
-
FATFS_STREAM_TASK_PRIO
¶
-
FATFS_STREAM_RINGBUFFER_SIZE
¶
-
FATFS_STREAM_CFG_DEFAULT
()¶
HTTP Stream¶
The HTTP stream obtains and sends data through esp_http_client()
. The stream has two types: “reader” and “writer”, and the type is defined by audio_stream_type_t
. AUDIO_STREAM_READER
supports HTTP, HTTPS, HTTP Live Stream, and other protocols. Make sure the network is connected before using the stream.
Application Example¶
Reader example
Writer example
Header File¶
Functions¶
-
audio_element_handle_t
http_stream_init
(http_stream_cfg_t *config)¶ Create a handle to an Audio Element to stream data from HTTP to another Element or get data from other elements sent to HTTP, depending on the configuration the stream type, either AUDIO_STREAM_READER or AUDIO_STREAM_WRITER.
- Return
The Audio Element handle
- Parameters
config
: The configuration
-
esp_err_t
http_stream_next_track
(audio_element_handle_t el)¶ Connect to next track in the playlist.
This function can be used in event_handler of http_stream. User can call this function to connect to next track in playlist when he/she gets
HTTP_STREAM_FINISH_TRACK
event- Return
ESP_OK on success
ESP_FAIL on errors
- Parameters
el
: The http_stream element handle
-
esp_err_t
http_stream_restart
(audio_element_handle_t el)¶
-
esp_err_t
http_stream_fetch_again
(audio_element_handle_t el)¶ Try to fetch the tracks again.
If this is live stream we will need to keep fetching URIs.
- Return
ESP_OK on success
ESP_ERR_NOT_SUPPORTED if playlist is finished
- Parameters
el
: The http_stream element handle
-
esp_err_t
http_stream_set_server_cert
(audio_element_handle_t el, const char *cert)¶ Set SSL server certification.
- Note
EM format as string, if the client requires to verify server
- Return
ESP_OK on success
- Parameters
el
: The http_stream element handlecert
: server certification
Structures¶
-
struct
http_stream_event_msg_t
¶ Stream event message.
Public Members
-
http_stream_event_id_t
event_id
¶ Event ID
-
void *
http_client
¶ Reference to HTTP Client using by this HTTP Stream
-
void *
buffer
¶ Reference to Buffer using by the Audio Element
-
int
buffer_len
¶ Length of buffer
-
void *
user_data
¶ User data context, from
http_stream_cfg_t
-
audio_element_handle_t
el
¶ Audio element context
-
http_stream_event_id_t
-
struct
http_stream_cfg_t
¶ HTTP Stream configurations Default value will be used if any entry is zero.
Public Members
-
audio_stream_type_t
type
¶ Type of stream
-
int
out_rb_size
¶ Size of output ringbuffer
-
int
task_stack
¶ Task stack size
-
int
task_core
¶ Task running in core (0 or 1)
-
int
task_prio
¶ Task priority (based on freeRTOS priority)
-
bool
stack_in_ext
¶ Try to allocate stack in external memory
-
http_stream_event_handle_t
event_handle
¶ The hook function for HTTP Stream
-
void *
user_data
¶ User data context
-
bool
auto_connect_next_track
¶ connect next track without open/close
-
bool
enable_playlist_parser
¶ Enable playlist parser
-
int
multi_out_num
¶ The number of multiple output
-
const char *
cert_pem
¶ SSL server certification, PEM format as string, if the client requires to verify server
-
esp_err_t (*
crt_bundle_attach
)(void *conf)¶ Function pointer to esp_crt_bundle_attach. Enables the use of certification bundle for server verification, must be enabled in menuconfig
-
int
request_size
¶ Request data size each time from
http_client
Defaults use DEFAULT_ELEMENT_BUFFER_LENGTH if set to 0 Need care this setting if audio frame size is small and want low latency playback
-
int
request_range_size
¶ Range size setting for header
Range: bytes=start-end
Request full range of resource if set to 0 Range size bigger than request size is recommended
-
audio_stream_type_t
Macros¶
-
HTTP_STREAM_TASK_STACK
¶
-
HTTP_STREAM_TASK_CORE
¶
-
HTTP_STREAM_TASK_PRIO
¶
-
HTTP_STREAM_RINGBUFFER_SIZE
¶
-
HTTP_STREAM_CFG_DEFAULT
()¶
Type Definitions¶
-
typedef int (*
http_stream_event_handle_t
)(http_stream_event_msg_t *msg)¶
Enumerations¶
-
enum
http_stream_event_id_t
¶ HTTP Stream hook type.
Values:
-
HTTP_STREAM_PRE_REQUEST
= 0x01¶ The event handler will be called before HTTP Client making the connection to the server
-
HTTP_STREAM_ON_REQUEST
¶ The event handler will be called when HTTP Client is requesting data, If the fucntion return the value (-1: ESP_FAIL), HTTP Client will be stopped If the fucntion return the value > 0, HTTP Stream will ignore the post_field If the fucntion return the value = 0, HTTP Stream continue send data from post_field (if any)
-
HTTP_STREAM_ON_RESPONSE
¶ The event handler will be called when HTTP Client is receiving data If the fucntion return the value (-1: ESP_FAIL), HTTP Client will be stopped If the fucntion return the value > 0, HTTP Stream will ignore the read function If the fucntion return the value = 0, HTTP Stream continue read data from HTTP Server
-
HTTP_STREAM_POST_REQUEST
¶ The event handler will be called after HTTP Client send header and body to the server, before fetching the headers
-
HTTP_STREAM_FINISH_REQUEST
¶ The event handler will be called after HTTP Client fetch the header and ready to read HTTP body
-
HTTP_STREAM_RESOLVE_ALL_TRACKS
¶
-
HTTP_STREAM_FINISH_TRACK
¶
-
HTTP_STREAM_FINISH_PLAYLIST
¶
-
I2S Stream¶
The I2S stream receives and transmits audio data through the chip’s I2S, PDM, ADC, and DAC interfaces. To use the ADC and DAC functions, the chip needs to define SOC_I2S_SUPPORTS_ADC_DAC
. The stream integrates automatic level control (ALC) to adjust volume, multi-channel output, and sending audio data with extended bit width. The relevant control bits are defined in i2s_stream_cfg_t
.
Application Example¶
Reader example: recorder/pipeline_wav_amr_sdcard
Writer example: get-started/play_mp3_control
Header File¶
Functions¶
-
audio_element_handle_t
i2s_stream_init
(i2s_stream_cfg_t *config)¶ Create a handle to an Audio Element to stream data from I2S to another Element or get data from other elements sent to I2S, depending on the configuration of stream type is AUDIO_STREAM_READER or AUDIO_STREAM_WRITER.
- Note
If I2S stream is enabled with built-in DAC mode, please don’t use I2S_NUM_1. The built-in DAC functions are only supported on I2S0 for the current ESP32 chip.
- Return
The Audio Element handle
- Parameters
config
: The configuration
-
esp_err_t
i2s_stream_set_clk
(audio_element_handle_t i2s_stream, int rate, int bits, int ch)¶ Setup clock for I2S Stream, this function is only used with handle created by
i2s_stream_init
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] i2s_stream
: The i2s element handle[in] rate
: Clock rate (in Hz)[in] bits
: Audio bit width (8, 16, 24, 32)[in] ch
: Number of Audio channels (1: Mono, 2: Stereo)
-
esp_err_t
i2s_alc_volume_set
(audio_element_handle_t i2s_stream, int volume)¶ Setup volume of stream by using ALC.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] i2s_stream
: The i2s element handle[in] volume
: The volume of stream will be set.
-
esp_err_t
i2s_alc_volume_get
(audio_element_handle_t i2s_stream, int *volume)¶ Get volume of stream.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] i2s_stream
: The i2s element handle[in] volume
: The volume of stream
-
esp_err_t
i2s_stream_sync_delay
(audio_element_handle_t i2s_stream, int delay_ms)¶ Set sync delay of stream.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] i2s_stream
: The i2s element handle[in] delay_ms
: The delay of stream
Structures¶
-
struct
i2s_stream_cfg_t
¶ I2S Stream configurations Default value will be used if any entry is zero.
Public Members
-
audio_stream_type_t
type
¶ Type of stream
-
i2s_config_t
i2s_config
¶ I2S driver configurations
-
i2s_port_t
i2s_port
¶ I2S driver hardware port
-
bool
use_alc
¶ It is a flag for ALC. If use ALC, the value is true. Or the value is false
-
int
volume
¶ The volume of audio input data will be set.
-
int
out_rb_size
¶ Size of output ringbuffer
-
int
task_stack
¶ Task stack size
-
int
task_core
¶ Task running in core (0 or 1)
-
int
task_prio
¶ Task priority (based on freeRTOS priority)
-
bool
stack_in_ext
¶ Try to allocate stack in external memory
-
int
multi_out_num
¶ The number of multiple output
-
bool
uninstall_drv
¶ whether uninstall the i2s driver when stream destroyed
-
bool
need_expand
¶ whether to expand i2s data
-
i2s_bits_per_sample_t
expand_src_bits
¶ The source bits per sample when data expand
-
int
buffer_len
¶ Buffer length use for an Element. Note: when ‘bits_per_sample’ is 24 bit, the buffer length must be a multiple of 3. The recommended value is 3600
-
audio_stream_type_t
Macros¶
-
I2S_STREAM_TASK_STACK
¶
-
I2S_STREAM_BUF_SIZE
¶
-
I2S_STREAM_TASK_PRIO
¶
-
I2S_STREAM_TASK_CORE
¶
-
I2S_STREAM_RINGBUFFER_SIZE
¶
-
I2S_STREAM_CFG_DEFAULT
()¶
-
I2S_STREAM_INTERNAL_DAC_CFG_DEFAULT
()¶
-
I2S_STREAM_TX_PDM_CFG_DEFAULT
()¶
PWM Stream¶
In some cost-sensitive scenarios, the audio signal is not converted by the DAC but is modulated by the PWM (pulse width modulation) and then implemented by a filter circuit. The PWM stream modulates the audio signal with the chip’s PWM and sends out the processed audio. It only has the AUDIO_STREAM_WRITER
type. Note that the digital-to-analog conversion by PWM has a lower signal-to-noise ratio.
Application Example¶
Writer example: player/pipeline_play_mp3_with_dac_or_pwm
Header File¶
Functions¶
-
audio_element_handle_t
pwm_stream_init
(pwm_stream_cfg_t *config)¶ Initialize PWM stream Only support AUDIO_STREAM_READER type.
- Return
The audio element handle
- Parameters
config
: The PWM Stream configuration
-
esp_err_t
pwm_stream_set_clk
(audio_element_handle_t pwm_stream, int rate, int bits, int ch)¶ Setup clock for PWM Stream, this function is only used with handle created by
pwm_stream_init
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] pwm_stream
: The pwm element handle[in] rate
: Clock rate (in Hz)[in] bits
: Audio bit width (16, 32)[in] ch
: Number of Audio channels (1: Mono, 2: Stereo)
Structures¶
-
struct
audio_pwm_config_t
¶ PWM audio configurations.
Public Members
-
timer_group_t
tg_num
¶ timer group number (0 - 1)
-
timer_idx_t
timer_num
¶ timer number (0 - 1)
-
int
gpio_num_left
¶ the LEDC output gpio_num, Left channel
-
int
gpio_num_right
¶ the LEDC output gpio_num, Right channel
-
ledc_channel_t
ledc_channel_left
¶ LEDC channel (0 - 7), Corresponding to left channel
-
ledc_channel_t
ledc_channel_right
¶ LEDC channel (0 - 7), Corresponding to right channel
-
ledc_timer_t
ledc_timer_sel
¶ Select the timer source of channel (0 - 3)
-
ledc_timer_bit_t
duty_resolution
¶ ledc pwm bits
-
uint32_t
data_len
¶ ringbuffer size
-
timer_group_t
-
struct
pwm_stream_cfg_t
¶ PWM Stream configurations Default value will be used if any entry is zero.
Public Members
-
audio_stream_type_t
type
¶ Type of stream
-
audio_pwm_config_t
pwm_config
¶ driver configurations
-
int
out_rb_size
¶ Size of output ringbuffer
-
int
task_stack
¶ Task stack size
-
int
task_core
¶ Task running in core (0 or 1)
-
int
task_prio
¶ Task priority (based on freeRTOS priority)
-
int
buffer_len
¶ pwm_stream buffer length
-
bool
ext_stack
¶ Allocate stack on extern ram
-
audio_stream_type_t
Macros¶
-
PWM_STREAM_GPIO_NUM_LEFT
¶
-
PWM_STREAM_GPIO_NUM_RIGHT
¶
-
PWM_STREAM_TASK_STACK
¶
-
PWM_STREAM_BUF_SIZE
¶
-
PWM_STREAM_TASK_PRIO
¶
-
PWM_STREAM_TASK_CORE
¶
-
PWM_STREAM_RINGBUFFER_SIZE
¶
-
PWM_CONFIG_RINGBUFFER_SIZE
¶
-
PWM_STREAM_CFG_DEFAULT
()¶
Raw Stream¶
The raw stream is used to obtain the output data of the previous element of the connection or to provide the data for the next element of the connection. It does not create a thread. For AUDIO_STREAM_READER
, the connection is [i2s] -> [filter] -> [raw] or [i2s] -> [codec-amr] -> [raw]. For AUDIO_STREAM_WRITER
, the connection is [raw] ->[codec-mp3]->[i2s].
Application Example¶
Reader example: protocols/voip
Writer example: advanced_examples/downmix_pipeline
Header File¶
Functions¶
-
audio_element_handle_t
raw_stream_init
(raw_stream_cfg_t *cfg)¶ Initialize RAW stream.
- Return
The audio element handle
- Parameters
cfg
: The RAW Stream configuration
-
int
raw_stream_read
(audio_element_handle_t pipeline, char *buffer, int buf_size)¶ Read data from Stream.
- Return
Number of bytes actually read.
- Parameters
pipeline
: The audio pipeline handlebuffer
: The bufferbuf_size
: Maximum number of bytes to be read.
-
int
raw_stream_write
(audio_element_handle_t pipeline, char *buffer, int buf_size)¶ Write data to Stream.
- Return
Number of bytes written
- Parameters
pipeline
: The audio pipeline handlebuffer
: The bufferbuf_size
: Number of bytes to write
Structures¶
-
struct
raw_stream_cfg_t
¶ Raw stream provides APIs to obtain the pipeline data without output stream or fill the pipeline data without input stream. The stream has two types / modes, reader and writer:
AUDIO_STREAM_READER, e.g. [i2s]->[filter]->[raw],[i2s]->[codec-amr]->[raw]
AUDIO_STREAM_WRITER, e.g. [raw]->[codec-mp3]->[i2s] Raw Stream configurations
Macros¶
-
RAW_STREAM_RINGBUFFER_SIZE
¶
-
RAW_STREAM_CFG_DEFAULT
()¶
SPIFFS Stream¶
The SPIFFS stream reads and writes audio data from or into SPIFFS.
Application Example¶
Header File¶
Functions¶
-
audio_element_handle_t
spiffs_stream_init
(spiffs_stream_cfg_t *config)¶ Create a handle to an Audio Element to stream data from SPIFFS to another Element or get data from other elements written to SPIFFS, depending on the configuration the stream type, either AUDIO_STREAM_READER or AUDIO_STREAM_WRITER.
- Return
The Audio Element handle
- Parameters
config
: The configuration
Structures¶
-
struct
spiffs_stream_cfg_t
¶ SPIFFS Stream configuration, if any entry is zero then the configuration will be set to default values.
Public Members
-
audio_stream_type_t
type
¶ Stream type
-
int
buf_sz
¶ Audio Element Buffer size
-
int
out_rb_size
¶ Size of output ringbuffer
-
int
task_stack
¶ Task stack size
-
int
task_core
¶ Task running in core (0 or 1)
-
int
task_prio
¶ Task priority (based on freeRTOS priority)
-
bool
write_header
¶ Choose to write amrnb/armwb header in spiffs whether or not (true or false, true means choose to write amrnb header)
-
audio_stream_type_t
Macros¶
-
SPIFFS_STREAM_BUF_SIZE
¶
-
SPIFFS_STREAM_TASK_STACK
¶
-
SPIFFS_STREAM_TASK_CORE
¶
-
SPIFFS_STREAM_TASK_PRIO
¶
-
SPIFFS_STREAM_RINGBUFFER_SIZE
¶
-
SPIFFS_STREAM_CFG_DEFAULT
()¶
TCP Client Stream¶
The TCP client stream reads and writes server data over TCP.
Application Example¶
Header File¶
Functions¶
-
audio_element_handle_t
tcp_stream_init
(tcp_stream_cfg_t *config)¶ Initialize a TCP stream to/from an audio element This function creates a TCP stream to/from an audio element depending on the stream type configuration (e.g., AUDIO_STREAM_READER or AUDIO_STREAM_WRITER). The handle of the audio element is the returned.
- Return
The audio element handle
- Parameters
config
: The configuration
Structures¶
-
struct
tcp_stream_event_msg
¶ TCP Stream massage configuration.
-
struct
tcp_stream_cfg_t
¶ TCP Stream configuration, if any entry is zero then the configuration will be set to default values.
Public Members
-
audio_stream_type_t
type
¶ Type of stream
-
int
timeout_ms
¶ time timeout for read/write
-
int
port
¶ TCP port>
-
char *
host
¶ TCP host>
-
int
task_stack
¶ Task stack size
-
int
task_core
¶ Task running in core (0 or 1)
-
int
task_prio
¶ Task priority (based on freeRTOS priority)
-
bool
ext_stack
¶ Allocate stack on extern ram
-
tcp_stream_event_handle_cb
event_handler
¶ TCP stream event callback
-
void *
event_ctx
¶ User context
-
audio_stream_type_t
Macros¶
-
TCP_STREAM_DEFAULT_PORT
¶ TCP stream parameters.
-
TCP_STREAM_TASK_STACK
¶
-
TCP_STREAM_BUF_SIZE
¶
-
TCP_STREAM_TASK_PRIO
¶
-
TCP_STREAM_TASK_CORE
¶
-
TCP_SERVER_DEFAULT_RESPONSE_LENGTH
¶
-
TCP_STREAM_CFG_DEFAULT
()¶
Type Definitions¶
-
typedef struct tcp_stream_event_msg
tcp_stream_event_msg_t
¶ TCP Stream massage configuration.
-
typedef esp_err_t (*
tcp_stream_event_handle_cb
)(tcp_stream_event_msg_t *msg, tcp_stream_status_t state, void *event_ctx)¶
Enumerations¶
Tone Stream¶
The tone stream reads the data generated by tools/audio_tone/mk_audio_tone.py. It only supports the AUDIO_STREAM_READER
type.
Application Example¶
Header File¶
Functions¶
-
audio_element_handle_t
tone_stream_init
(tone_stream_cfg_t *config)¶ Create an Audio Element handle to stream data from flash to another Element, only support AUDIO_STREAM_READER type.
- Return
The Audio Element handle
- Parameters
config
: The configuration
Structures¶
-
struct
tone_stream_cfg_t
¶ TONE Stream configurations, if any entry is zero then the configuration will be set to default values.
Public Members
-
audio_stream_type_t
type
¶ Stream type
-
int
buf_sz
¶ Audio Element Buffer size
-
int
out_rb_size
¶ Size of output ringbuffer
-
int
task_stack
¶ Task stack size
-
int
task_core
¶ Task running in core (0 or 1)
-
int
task_prio
¶ Task priority (based on freeRTOS priority)
-
const char *
label
¶ Label of tone stored in flash. The default value is
flash_tone
-
bool
extern_stack
¶ Task stack allocate on the extern ram
-
bool
use_delegate
¶ Read tone partition with esp_delegate. If task stack is on extern ram, this MUST be TRUE
-
audio_stream_type_t
Macros¶
-
TONE_STREAM_BUF_SIZE
¶
-
TONE_STREAM_TASK_STACK
¶
-
TONE_STREAM_TASK_CORE
¶
-
TONE_STREAM_TASK_PRIO
¶
-
TONE_STREAM_RINGBUFFER_SIZE
¶
-
TONE_STREAM_EXT_STACK
¶
-
TONE_STREAM_USE_DELEGATE
¶
-
TONE_STREAM_CFG_DEFAULT
()¶
Flash-Embedding Stream¶
The flash-embedding stream reads the data generated by tools/audio_tone/mk_embed_flash.py. It only supports the AUDIO_STREAM_READER
type.
Application Example¶
Header File¶
Functions¶
-
audio_element_handle_t
embed_flash_stream_init
(embed_flash_stream_cfg_t *config)¶ Create an Audio Element handle to stream data from flash to another Element, only support AUDIO_STREAM_READER type.
- Return
The Audio Element handle
- Parameters
config
: The configuration
-
esp_err_t
embed_flash_stream_set_context
(audio_element_handle_t embed_stream, const embed_item_info_t *context, int max_num)¶ Set the embed flash context.
This function mainly provides information about embed flash data
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] embed_stream
: The embed flash element handle[in] context
: The embed flash context[in] max_num
: The number of embed flash context
Structures¶
-
struct
embed_flash_stream_cfg_t
¶ Flash-embedding stream configurations, if any entry is zero then the configuration will be set to default values.
Public Members
-
int
buf_sz
¶ Audio Element Buffer size
-
int
out_rb_size
¶ Size of output ringbuffer
-
int
task_stack
¶ Task stack size
-
int
task_core
¶ Task running in core (0 or 1)
-
int
task_prio
¶ Task priority (based on freeRTOS priority)
-
bool
extern_stack
¶ At present, task stack can only be placed on
SRAM
, so it should always be set tofalse
-
int
-
struct
embed_item_info
¶ Embed tone information in flash.
Macros¶
-
EMBED_FLASH_STREAM_BUF_SIZE
¶
-
EMBED_FLASH_STREAM_TASK_STACK
¶
-
EMBED_FLASH_STREAM_TASK_CORE
¶
-
EMBED_FLASH_STREAM_TASK_PRIO
¶
-
EMBED_FLASH_STREAM_RINGBUFFER_SIZE
¶
-
EMBED_FLASH_STREAM_EXT_STACK
¶
-
EMBED_FLASH_STREAM_CFG_DEFAULT
()¶
Type Definitions¶
-
typedef struct embed_item_info
embed_item_info_t
¶ Embed tone information in flash.
TTS Stream¶
The tex-to-speech stream (TTS stream) obtains the esp_tts_voice
data of esp-sr. It only supports the AUDIO_STREAM_READER
type.
Application Example¶
Reader example: player/pipeline_tts_stream
Header File¶
Functions¶
-
audio_element_handle_t
tts_stream_init
(tts_stream_cfg_t *config)¶ Create a handle to an Audio Element to stream data from TTS to another Element, the stream type only support AUDIO_STREAM_READER for now.
- Return
The Audio Element handle
- Parameters
config
: The configuration
-
esp_err_t
tts_stream_set_strings
(audio_element_handle_t el, const char *strings)¶ Set tts stream strings.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] el
: The audio element handle[in] strings
: The string pointer
-
esp_err_t
tts_stream_set_speed
(audio_element_handle_t el, tts_voice_speed_t speed)¶ Setting tts stream voice speed.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] el
: The esp_audio instance[in] speed
: Speed will be set. 0-5 is legal. 0 is the slowest speed.
-
esp_err_t
tts_stream_get_speed
(audio_element_handle_t el, tts_voice_speed_t *speed)¶ Get tts stream voice speed.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] el
: The esp_audio instance[in] speed
: Return tts stream Speed will be [0,5]
Structures¶
-
struct
tts_stream_cfg_t
¶ TTS Stream configurations, if any entry is zero then the configuration will be set to default values.
Public Members
-
audio_stream_type_t
type
¶ Stream type
-
int
buf_sz
¶ Audio Element Buffer size
-
int
out_rb_size
¶ Size of output ringbuffer
-
int
task_stack
¶ Task stack size
-
int
task_core
¶ Task running in core (0 or 1)
-
int
task_prio
¶ Task priority (based on freeRTOS priority)
-
bool
ext_stack
¶ Allocate stack on extern ram
-
audio_stream_type_t
Macros¶
-
TTS_STREAM_BUF_SIZE
¶
-
TTS_STREAM_TASK_STACK
¶
-
TTS_STREAM_TASK_CORE
¶
-
TTS_STREAM_TASK_PRIO
¶
-
TTS_STREAM_RINGBUFFER_SIZE
¶
-
TTS_STREAM_CFG_DEFAULT
()¶
Enumerations¶
Playlist¶
A playlist is a list of audio files that can be played back either sequentially or in a specified order.
The sdcard_scan()
function in the playlist/include/sdcard_scan.h scans the audio files in a microSD card and generate a playlist of files. You can specify file depth and filter out file types when scanning. The playlist instances can be saved to a variety of storage media. The following are the supported storage media:
After scanning the audio files, you can use the playlist_operator_handle_t
handle to call the corresponding functions to create, save, print playlists, and obtain the path corresponding to the audio ID. Currently, most of the storage media mentioned in this document support the above functions.
See the description below for the API details.
Scanning MicroSD Card¶
The sdcard_scan()
function can scan audio files in a specified path and generate playlists. It supports the scanning of files at a specified depth and filtering of file types. Then, the playlist can be saved to the specified storage medium using a callback function.
Application Example¶
Header File¶
Functions¶
-
esp_err_t
sdcard_scan
(sdcard_scan_cb_t cb, const char *path, int depth, const char *file_extension[], int filter_num, void *user_data)¶ Scan files in SD card and use callback function to save files that meet filtering conditions.
- Note
example sdcard_scan(callback, “/sdcard”, 5, const char *[]{“mp3”, “aac”}, 2, user_data); Scan 5 levels folder in sdcard and save mp3 files and aac files.
- Return
ESP_OK success
ESP_FAIL failed
- Parameters
cb
: The callback functionpath
: The path to be scanneddepth
: The depth of file scanning // .e.g. if you only want to save files in “/test” , depth = 0. // if you want to save files in “/test/scan_test/”, depth = 1file_extension
: File extension of files that are supposed to be saved // .e.g. const char *[]{“mp3”, “aac”}filter_num
: Number of filtersuser_data
: The data to be used by callback function
Type Definitions¶
-
typedef void (*
sdcard_scan_cb_t
)(void *user_data, char *url)¶
Saving Playlist¶
Saving to MicroSD Card¶
The playlist can be stored in the microSD card. Functions, such as those to save and display the playlist, can be called through the playlist_operator_handle_t
handle.
Application Example¶
Header File¶
Functions¶
-
esp_err_t
sdcard_list_create
(playlist_operator_handle_t *handle)¶ Create a playlist in sdcard by list id.
- Return
ESP_OK success
ESP_FAIL failed
- Parameters
[out] handle
: The playlist handle from application layer
-
esp_err_t
sdcard_list_show
(playlist_operator_handle_t handle)¶ Show all the URLs in sdcard playlist.
- Return
ESP_OK success
ESP_FAIL failed
- Parameters
handle
: Playlist handle
-
esp_err_t
sdcard_list_next
(playlist_operator_handle_t handle, int step, char **url_buff)¶ The following URLs in sdcard playlist.
- Return
ESP_OK success
ESP_FAIL failed
- Parameters
handle
: Playlist handlestep
: The offset of URL from current URL[out] url_buff
: A second rank pointer to get a address of URL
-
esp_err_t
sdcard_list_prev
(playlist_operator_handle_t handle, int step, char **url_buff)¶ The previous URLs in sdcard playlist.
- Return
ESP_OK success
ESP_FAIL failed
- Parameters
handle
: Playlist handlestep
: The offset of URL from current URL[out] url_buff
: A second rank pointer to get a address of URL
-
bool
sdcard_list_exist
(playlist_operator_handle_t handle, const char *url)¶ Judge whether the url exists in sdcard playlist.
- Return
true existence
false Non-existent
- Parameters
handle
: Playlist handleurl
: The url to be checked
-
esp_err_t
sdcard_list_reset
(playlist_operator_handle_t handle)¶ Reset sdcard playlist.
- Return
ESP_OK success
ESP_FAIL failed
- Parameters
handle
: Playlist handle
-
esp_err_t
sdcard_list_current
(playlist_operator_handle_t handle, char **url_buff)¶ Get current URL in sdcard playlist.
- Return
ESP_OK success
ESP_FAIL failed
- Parameters
handle
: Playlist handle[out] url_buff
: A second rank pointer to get a address of URL
-
esp_err_t
sdcard_list_choose
(playlist_operator_handle_t handle, int url_id, char **url_buff)¶ Choose a url by url id.
- Return
ESP_OK success
ESP_FAIL failed
- Parameters
handle
: Playlist handleurl_id
: The id of url in sdcard list[out] url_buff
: A second rank pointer to get a address of URL
-
int
sdcard_list_get_url_num
(playlist_operator_handle_t handle)¶ Get URLs number in sdcard playlist.
- Return
URLs number in sdcard playlist
ESP_FAIL Fail to get number of urls
- Parameters
handle
: Playlist handle
-
int
sdcard_list_get_url_id
(playlist_operator_handle_t handle)¶ Get current url id in the sdcard playlist.
- Return
Current url id in partition playlist
ESP_FAIL Fail to get url id
- Parameters
handle
: Playlist handle
-
esp_err_t
sdcard_list_destroy
(playlist_operator_handle_t handle)¶ Destroy sdcard playlist.
- Return
ESP_OK success
ESP_FAIL failed
- Parameters
handle
: Playlist handle
-
esp_err_t
sdcard_list_save
(playlist_operator_handle_t handle, const char *url)¶ Save URL to sdcard playlist.
- Return
ESP_OK success
ESP_FAIL failed
- Parameters
handle
: Playlist handleurl
: URL to be saved
Saving to DRAM¶
The playlist can be stored in DRAM. Functions, such as those to save and display the playlist, can be called through the playlist_operator_handle_t
handle.
Header File¶
Functions¶
-
esp_err_t
dram_list_create
(playlist_operator_handle_t *handle)¶ Create a playlist in dram.
- Return
ESP_OK success
ESP_FAIL failed
- Parameters
[out] handle
: The playlist handle from application layer
-
esp_err_t
dram_list_save
(playlist_operator_handle_t handle, const char *url)¶ Save URL to dram playlist.
- Return
ESP_OK success
ESP_FAIL failed
- Parameters
handle
: Playlist handleurl
: URL to be saved
-
esp_err_t
dram_list_next
(playlist_operator_handle_t handle, int step, char **url_buff)¶ The following URLs in dram playlist.
- Return
ESP_OK success
ESP_FAIL failed
- Parameters
handle
: Playlist handlestep
: The offset of URL from current URL[out] url_buff
: A second rank pointer to get a address of URL
-
esp_err_t
dram_list_prev
(playlist_operator_handle_t handle, int step, char **url_buff)¶ The previous URLs in dram playlist.
- Return
ESP_OK success
ESP_FAIL failed
- Parameters
handle
: Playlist handlestep
: The offset of URL from current URL[out] url_buff
: A second rank pointer to get a address of URL
-
bool
dram_list_exist
(playlist_operator_handle_t handle, const char *url)¶ Judge whether the url exists in dram playlist.
- Return
true existence
false Non-existent
- Parameters
handle
: Playlist handleurl
: The url to be checked
-
esp_err_t
dram_list_reset
(playlist_operator_handle_t handle)¶ Reset dram playlist.
- Return
ESP_OK success
ESP_FAIL failed
- Parameters
handle
: Playlist handle
-
esp_err_t
dram_list_current
(playlist_operator_handle_t handle, char **url_buff)¶ The current URL in current playlist.
- Return
ESP_OK success
ESP_FAIL failed
- Parameters
handle
: Playlist handle[out] url_buff
: A second rank pointer to get a address of URL
-
esp_err_t
dram_list_choose
(playlist_operator_handle_t handle, int url_id, char **url_buff)¶ Choose a url by url id.
- Return
ESP_OK success
ESP_FAIL failed
- Parameters
handle
: Playlist handleurl_id
: The id of url in dram list[out] url_buff
: A second rank pointer to get a address of URL
-
int
dram_list_get_url_num
(playlist_operator_handle_t handle)¶ Get URLs number in the dram playlist.
- Return
URLs number in dram playlist
ESP_FAIL Fail to get number of urls
- Parameters
handle
: Playlist handle
-
int
dram_list_get_url_id
(playlist_operator_handle_t handle)¶ Get current url id in the dram playlist.
- Return
Current url id in dram playlist
ESP_FAIL Fail to get url id
- Parameters
handle
: Playlist handle
-
esp_err_t
dram_list_show
(playlist_operator_handle_t handle)¶ Show all the URLs in the dram playlist.
- Return
ESP_OK success
ESP_FAIL failed
- Parameters
handle
: Playlist handle
-
esp_err_t
dram_list_remove_by_url
(playlist_operator_handle_t handle, const char *url)¶ Remove corrsponding url in dram list.
- Return
ESP_OK success
ESP_FAIL failed
- Parameters
handle
: Playlist handleurl
: The url to be removed
-
esp_err_t
dram_list_remove_by_url_id
(playlist_operator_handle_t handle, uint16_t url_id)¶ Remove url by id.
- Return
ESP_OK success
ESP_FAIL failed
- Parameters
handle
: Playlist handleurl_id
: The url id to be removed
-
esp_err_t
dram_list_destroy
(playlist_operator_handle_t handle)¶ Destroy the dram playlist.
- Return
ESP_OK success
ESP_FAIL failed
- Parameters
handle
: Playlist handle
Saving to NVS Partition in Flash¶
The playlist can be stored in the NVS partition in flash. Functions, such as those to save and display the playlist, can be called through the playlist_operator_handle_t
handle.
Header File¶
Functions¶
-
esp_err_t
flash_list_create
(playlist_operator_handle_t *handle)¶ Create a playlist in nvs flash.
- Return
ESP_OK success
ESP_FAIL failed
- Parameters
[out] handle
: Playlist handle
-
esp_err_t
flash_list_save
(playlist_operator_handle_t handle, const char *url)¶ Save URL to nvs flash list.
- Return
ESP_OK success
ESP_FAIL failed
- Parameters
handle
: Playlist handleurl
: URL to be saved
-
esp_err_t
flash_list_show
(playlist_operator_handle_t handle)¶ Show all the URLs in nvs flash list.
- Return
ESP_OK success
ESP_FAIL failed
- Parameters
handle
: Playlist handle
-
esp_err_t
flash_list_next
(playlist_operator_handle_t handle, int step, char **url_buff)¶ The following URLs in nvs flash playlist.
- Return
ESP_OK success
ESP_FAIL failed
- Parameters
handle
: Playlist handlestep
: The offset of URL from current URL[out] url_buff
: A second rank pointer to get a address of URL
-
esp_err_t
flash_list_prev
(playlist_operator_handle_t handle, int step, char **url_buff)¶ The previous URLs in nvs flash playlist.
- Return
ESP_OK success
ESP_FAIL failed
- Parameters
handle
: Playlist handlestep
: The offset of URL from current URL[out] url_buff
: A second rank pointer to get a address of URL
-
esp_err_t
flash_list_current
(playlist_operator_handle_t handle, char **url_buff)¶ The current URL in nvs flash playlist.
- Return
ESP_OK success
ESP_FAIL failed
- Parameters
handle
: Playlist handle[out] url_buff
: A second rank pointer to get a address of URL
-
bool
flash_list_exist
(playlist_operator_handle_t handle, const char *url)¶ Judge whether the url exists in flash playlist.
- Return
true existence
false Non-existent
- Parameters
handle
: Playlist handleurl
: The url to be checked
-
esp_err_t
flash_list_reset
(playlist_operator_handle_t handle)¶ Reset flash playlist.
- Return
ESP_OK success
ESP_FAIL failed
- Parameters
handle
: Playlist handle
-
esp_err_t
flash_list_choose
(playlist_operator_handle_t handle, int url_id, char **url_buff)¶ Choose a url by url id.
- Return
ESP_OK success
ESP_FAIL failed
- Parameters
handle
: Playlist handleurl_id
: The id of url in flash list[out] url_buff
: A second rank pointer to get a address of URL
-
int
flash_list_get_url_num
(playlist_operator_handle_t handle)¶ Get URLs number in the flash playlist.
- Return
URLs number in flash playlist
ESP_FAIL Fail to get number of urls
- Parameters
handle
: Playlist handle
-
int
flash_list_get_url_id
(playlist_operator_handle_t handle)¶ Get current url id in the flash playlist.
- Return
Curernt url id in flash playlist
ESP_FAIL Fail to get url id
- Parameters
handle
: Playlist handle
-
esp_err_t
flash_list_destroy
(playlist_operator_handle_t handle)¶ Destroy the nvs flash playlist.
- Return
ESP_OK success
ESP_FAIL failed
- Parameters
handle
: Playlist handle
Saving to DATA_UNDEFINED
Partition in Flash¶
The playlist can be stored in the DATA_UNDEFINED
partition (see Partition Tables for details) in flash. Functions, such as those to save and display the playlist, can be called through the playlist_operator_handle_t
handle. Please add the two partitions whose subtypes are 0x06 and 0x07 to the flash partition table first.
Header File¶
Functions¶
-
esp_err_t
partition_list_create
(playlist_operator_handle_t *handle)¶ Create a playlist in flash partition by list id.
- Note
Please add 2 partitions to partition table whose subtype are 0x06 and 0x07 first
- Return
ESP_OK success
ESP_FAIL failed
- Parameters
[out] handle
: The playlist handle from application layer
-
esp_err_t
partition_list_save
(playlist_operator_handle_t handle, const char *url)¶ Save URL to partition playlist.
- Return
ESP_OK success
ESP_FAIL failed
- Parameters
handle
: Playlist handleurl
: URL to be saved
-
esp_err_t
partition_list_next
(playlist_operator_handle_t handle, int step, char **url_buff)¶ The following URLs in partition playlist.
- Return
ESP_OK success
ESP_FAIL failed
- Parameters
handle
: Playlist handlestep
: The offset of URL from current URL[out] url_buff
: A second rank pointer to get a address of URL
-
esp_err_t
partition_list_prev
(playlist_operator_handle_t handle, int step, char **url_buff)¶ The previous URLs in partition playlist.
- Return
ESP_OK success
ESP_FAIL failed
- Parameters
handle
: Playlist handlestep
: The offset of URL from current URL[out] url_buff
: A second rank pointer to get a address of URL
-
bool
partition_list_exist
(playlist_operator_handle_t handle, const char *url)¶ Judge whether the url exists in partition playlist.
- Return
true existence
false Non-existent
- Parameters
handle
: Playlist handleurl
: The url to be checked
-
esp_err_t
partition_list_reset
(playlist_operator_handle_t handle)¶ Reset partition playlist.
- Return
ESP_OK success
ESP_FAIL failed
- Parameters
handle
: Playlist handle
-
esp_err_t
partition_list_current
(playlist_operator_handle_t handle, char **url_buff)¶ Get current URL in the partition playlist.
- Return
ESP_OK success
ESP_FAIL failed
- Parameters
handle
: Playlist handle[out] url_buff
: A second rank pointer to get a address of URL
-
esp_err_t
partition_list_choose
(playlist_operator_handle_t handle, int url_id, char **url_buff)¶ Choose a url by url id.
- Return
ESP_OK success
ESP_FAIL failed
- Parameters
handle
: Playlist handleurl_id
: The id of url in partition list[out] url_buff
: A second rank pointer to get a address of URL
-
int
partition_list_get_url_num
(playlist_operator_handle_t handle)¶ Get URLs number in the partition playlist.
- Return
URLs number in partition playlist
ESP_FAIL Fail to get number of urls
- Parameters
handle
: Playlist handle
-
int
partition_list_get_url_id
(playlist_operator_handle_t handle)¶ Get curernt url id in the partition playlist.
- Return
Current url id in partition playlist
ESP_FAIL Fail to get url id
- Parameters
handle
: Playlist handle
-
esp_err_t
partition_list_show
(playlist_operator_handle_t handle)¶ Show all the URLs in the partition playlist.
- Return
ESP_OK success
ESP_FAIL failed
- Parameters
handle
: Playlist handle
-
esp_err_t
partition_list_destroy
(playlist_operator_handle_t handle)¶ Destroy the partition playlist.
- Return
ESP_OK success
ESP_FAIL failed
- Parameters
handle
: Playlist handle
Playlist Manager¶
Playlist Manager manages the above playlists and can add multiple playlist instances to the playlist_handle_t
handle.
Header File¶
Functions¶
-
playlist_handle_t
playlist_create
(void)¶ Create a playlist manager handle.
- Return
playlist handle success
NULL failed
-
esp_err_t
playlist_add
(playlist_handle_t handle, playlist_operator_handle_t list_handle, uint8_t list_id)¶ Create a playlist manager and add playlist handle to it.
- Note
The partition playlist can only be added once, or it will be overwrited by the newest partiiton playlist
- Note
Different lists must use different IDs, because even if they are in different handles, list_id is the only indicator that distinguishes them.
- Return
ESP_OK success
ESP_FAIL failed
- Parameters
handle
: Playlist manager handlelist_handle
: The playlist handle to be addedlist_id
: The playlist id to be registered
-
esp_err_t
playlist_checkout_by_id
(playlist_handle_t handle, uint8_t id)¶ Playlist checkout by list id.
- Return
ESP_OK success
ESP_FAIL failed
- Parameters
handle
: Playlist handleid
: Specified list id
-
int
playlist_get_list_num
(playlist_handle_t handle)¶ Get number of playlists in the handle.
- Return
success Number of playlists in handle
failed -1
- Parameters
handle
: Playlist handle
-
playlist_type_t
playlist_get_current_list_type
(playlist_handle_t handle)¶ Get current playlist type.
- Return
success Type of current playlist
failed -1
- Parameters
handle
: Playlist handle
-
int
playlist_get_current_list_id
(playlist_handle_t handle)¶ Get current playlist id.
- Return
success Current playlist id
failed -1
- Parameters
handle
: Playlist handle
-
esp_err_t
playlist_get_current_list_url
(playlist_handle_t handle, char **url_buff)¶ Get current URL in current playlist.
- Return
ESP_OK success
ESP_FAIL failed
- Parameters
handle
: Playlist handle[out] url_buff
: A second rank pointer to get a address of URL
-
int
playlist_get_current_list_url_num
(playlist_handle_t handle)¶ Get number of URLs in current playlist.
- Return
Number of URLS in current playlsit
- Parameters
handle
: Playlist handle
-
int
playlist_get_current_list_url_id
(playlist_handle_t handle)¶ Get current url id in current playlist.
- Return
Current url’s id in current playlsit
- Parameters
handle
: Playlist handle
-
esp_err_t
playlist_save
(playlist_handle_t handle, const char *url)¶ Save a URL to the current playlist.
- Return
ESP_OK success
ESP_FAIL failed
- Parameters
handle
: Playlist handleurl
: The URL to be saved ot sdcard
-
esp_err_t
playlist_next
(playlist_handle_t handle, int step, char **url_buff)¶ Next URl in current playlist.
- Return
ESP_OK success
ESP_FAIL failed
- Parameters
handle
: Playlist handlestep
: Next steps from current position[out] url_buff
: A second rank pointer to get a address of URL
-
esp_err_t
playlist_prev
(playlist_handle_t handle, int step, char **url_buff)¶ Previous URL in current playlist.
- Return
ESP_OK success
ESP_FAIL failed
- Parameters
handle
: Playlist handlestep
: Previous steps from current position[out] url_buff
: A second rank pointer to get a address of URL
-
esp_err_t
playlist_choose
(playlist_handle_t handle, int url_id, char **url_buff)¶ Choose a url by url id.
- Return
ESP_OK success
ESP_FAIL failed
- Parameters
handle
: Playlist handleurl_id
: The id of url in current list[out] url_buff
: A second rank pointer to get a address of URL
-
esp_err_t
playlist_show
(playlist_handle_t handle)¶ Show URLs in current playlist.
- Return
ESP_OK success
ESP_FAIL failed
- Parameters
handle
: Playlist handle
-
esp_err_t
playlist_reset
(playlist_handle_t handle)¶ Reset current playlist.
- Return
ESP_OK success
ESP_FAIL failed
- Parameters
handle
: Playlist handle
-
esp_err_t
playlist_remove_by_url
(playlist_handle_t handle, const char *url)¶ Remove corresponding url.
- Return
ESP_OK success
ESP_FAIL failed
- Parameters
handle
: Playlist handleurl
: The url to be removed
-
esp_err_t
playlist_remove_by_url_id
(playlist_handle_t handle, uint16_t url_id)¶ Remove url by url id.
- Return
ESP_OK success
ESP_FAIL failed
- Parameters
handle
: Playlist handleurl_id
: The id of url to be removed
-
bool
playlist_exist
(playlist_handle_t handle, const char *url)¶ Judge whether the url exists in current playlist.
- Return
true existence
false Non-existent
- Parameters
handle
: Playlist handleurl
: The url to be checked
-
esp_err_t
playlist_destroy
(playlist_handle_t handle)¶ Destroy all playlists in the handle.
- Return
ESP_OK success
ESP_FAIL failed
- Parameters
handle
: Playlist handle
Structures¶
-
struct
playlist_operation_t
¶ All types of Playlists’ operation.
Public Members
-
esp_err_t (*
show
)(void *playlist)¶ Show all the URLs in playlist
-
esp_err_t (*
save
)(void *playlist, const char *url)¶ Save URLs to playlist
-
esp_err_t (*
next
)(void *playlist, int step, char **url_buff)¶ Get next URL in playlist
-
esp_err_t (*
prev
)(void *playlist, int step, char **url_buff)¶ Get previous URL in playlist
-
esp_err_t (*
reset
)(void *playlist)¶ Reset the playlist
-
esp_err_t (*
choose
)(void *playlist, int url_id, char **url_buff)¶ Get url by url id
-
esp_err_t (*
current
)(void *playlist, char **url_buff)¶ Get current URL in playlist
-
esp_err_t (*
destroy
)(void *playlist)¶ Destroy playlist
-
bool (*
exist
)(void *playlist, const char *url)¶ Judge whether the url exists
-
int (*
get_url_num
)(void *playlist)¶ Get number of URLS in current playlist
-
int (*
get_url_id
)(void *playlist)¶ Get current url id in playlist
-
playlist_type_t
type
¶ Type of playlist
-
esp_err_t (*
remove_by_url
)(void *playlist, const char *url)¶ Remove the corresponding url
-
esp_err_t (*
remove_by_id
)(void *playlist, uint16_t url_id)¶ Remove url by id
-
esp_err_t (*
-
struct
playlist_operator_t
¶ Information of playlist manager node.
Public Members
-
void *
playlist
¶ Specific playlist’s pointer
-
esp_err_t (*
get_operation
)(playlist_operation_t *operation)¶ Function pointer to get playlists’ handle
-
void *
Type Definitions¶
-
typedef playlist_operator_t *
playlist_operator_handle_t
¶
-
typedef struct playlist_handle *
playlist_handle_t
¶
Enumerations¶
Codecs¶
AAC Decoder¶
Decode an audio data stream provided in AAC format.
API Reference¶
Header File¶
Functions¶
-
audio_element_handle_t
aac_decoder_init
(aac_decoder_cfg_t *config)¶ Create an Audio Element handle to decode incoming AAC data.
- Return
The audio element handle
- Parameters
config
: The configuration
Structures¶
-
struct
aac_decoder_cfg_t
¶ AAC Decoder configuration.
Public Members
-
int
out_rb_size
¶ Size of output ringbuffer
-
int
task_stack
¶ Task stack size
-
int
task_core
¶ CPU core number (0 or 1) where decoder task in running
-
int
task_prio
¶ Task priority (based on freeRTOS priority)
-
bool
stack_in_ext
¶ Try to allocate stack in external memory
-
bool
plus_enable
¶ Dynamically enable HE-AAC (v1 v2) decoding
-
int
Macros¶
-
AAC_DECODER_TASK_STACK_SIZE
¶
-
AAC_DECODER_TASK_CORE
¶
-
AAC_DECODER_TASK_PRIO
¶
-
AAC_DECODER_RINGBUFFER_SIZE
¶
-
DEFAULT_AAC_DECODER_CONFIG
()¶
AMR Decoder and Encoder¶
Decode and encode an audio data stream from / to AMR format. Encoders cover both AMR-NB and AMR-WB formats.
Application Examples¶
Implementation of this API is demonstrated in the following examples:
API Reference - Decoder¶
Header File¶
Functions¶
-
audio_element_handle_t
amr_decoder_init
(amr_decoder_cfg_t *config)¶ Create an Audio Element handle to decode incoming AMR data.
- Return
The audio element handle
- Parameters
config
: The configuration
Structures¶
-
struct
amr_decoder_cfg_t
¶ AMR Decoder configuration.
Macros¶
-
AMR_DECODER_TASK_STACK_SIZE
¶
-
AMR_DECODER_TASK_CORE
¶
-
AMR_DECODER_TASK_PRIO
¶
-
AMR_DECODER_RINGBUFFER_SIZE
¶
-
DEFAULT_AMR_DECODER_CONFIG
()¶
API Reference - AMR-NB Encoder¶
Header File¶
Functions¶
-
esp_err_t
amrnb_encoder_set_bitrate
(audio_element_handle_t self, amrnb_encoder_bitrate_t bitrate_mode)¶ Set AMRNB encoder bitrate.
- Return
ESP_OK ESP_FAIL
- Parameters
self
: Audio element handlebitrate_mode
: Bitrate choose, value from amrnb_encoder_bitrate_t
-
audio_element_handle_t
amrnb_encoder_init
(amrnb_encoder_cfg_t *config)¶ Create an Audio Element handle to encode incoming AMRNB data.
- Return
The audio element handle
- Parameters
config
: The configuration
Structures¶
-
struct
amrnb_encoder_cfg_t
¶ AMRNB Encoder configurations.
Public Members
-
int
out_rb_size
¶ Size of output ringbuffer
-
int
task_stack
¶ Task stack size
-
int
task_core
¶ Task running in core (0 or 1)
-
int
task_prio
¶ Task priority (based on freeRTOS priority)
-
amrnb_encoder_bitrate_t
bitrate_mode
¶ AMRNB Encoder bitrate choose
-
bool
contain_amrnb_header
¶ Choose to contain amrnb header in amrnb encoder whether or not (true or false, true means choose to contain amrnb header)
-
bool
stack_in_ext
¶ Try to allocate stack in external memory
-
int
Macros¶
-
AMRNB_ENCODER_TASK_STACK
¶
-
AMRNB_ENCODER_TASK_CORE
¶
-
AMRNB_ENCODER_TASK_PRIO
¶
-
AMRNB_ENCODER_RINGBUFFER_SIZE
¶
-
DEFAULT_AMRNB_ENCODER_CONFIG
()¶
Enumerations¶
-
enum
amrnb_encoder_bitrate_t
¶ Enum of AMRNB Encoder bitrate choose.
Values:
-
AMRNB_ENC_BITRATE_UNKNOW
= -1¶ Invalid mode
-
AMRNB_ENC_BITRATE_MR475
= 0¶
-
AMRNB_ENC_BITRATE_MR515
= 1¶
-
AMRNB_ENC_BITRATE_MR59
= 2¶
-
AMRNB_ENC_BITRATE_MR67
= 3¶
-
AMRNB_ENC_BITRATE_MR74
= 4¶
-
AMRNB_ENC_BITRATE_MR795
= 5¶
-
AMRNB_ENC_BITRATE_MR102
= 6¶
-
AMRNB_ENC_BITRATE_MR122
= 7¶
-
AMRNB_ENC_BITRATE_MRDTX
= 8¶
-
AMRNB_ENC_BITRATE_N_MODES
= 9¶
-
API Reference - AMR-WB Encoder¶
Header File¶
Functions¶
-
esp_err_t
amrwb_encoder_set_bitrate
(audio_element_handle_t self, amrwb_encoder_bitrate_t bitrate_mode)¶ Set AMRWB encoder bitrate.
- Return
ESP_OK ESP_FAIL
- Parameters
self
: Audio element handlebitrate_mode
: Bitrate choose, value from amrwb_encoder_bitrate_t
-
audio_element_handle_t
amrwb_encoder_init
(amrwb_encoder_cfg_t *config)¶ Create an Audio Element handle to encode incoming amrwb data.
- Return
The audio element handle
- Parameters
config
: The configuration
Structures¶
-
struct
amrwb_encoder_cfg_t
¶ AMRWB Encoder configurations.
Public Members
-
int
out_rb_size
¶ Size of output ringbuffer
-
int
task_stack
¶ Task stack size
-
int
task_core
¶ Task running in core (0 or 1)
-
int
task_prio
¶ Task priority (based on freeRTOS priority)
-
amrwb_encoder_bitrate_t
bitrate_mode
¶ AMRWB Encoder bitrate choose
-
bool
contain_amrwb_header
¶ Choose to contain amrwb header in amrwb encoder whether or not (true or false, true means choose to contain amrwb header)
-
bool
stack_in_ext
¶ Try to allocate stack in external memory
-
int
Macros¶
-
AMRWB_ENCODER_TASK_STACK
¶
-
AMRWB_ENCODER_TASK_CORE
¶
-
AMRWB_ENCODER_TASK_PRIO
¶
-
AMRWB_ENCODER_RINGBUFFER_SIZE
¶
-
DEFAULT_AMRWB_ENCODER_CONFIG
()¶
Enumerations¶
-
enum
amrwb_encoder_bitrate_t
¶ Enum of AMRWB Encoder bitrate choose.
Values:
-
AMRWB_ENC_BITRATE_MDNONE
= -1¶ Invalid mode
-
AMRWB_ENC_BITRATE_MD66
= 0¶ 6.60kbps
-
AMRWB_ENC_BITRATE_MD885
= 1¶ 8.85kbps
-
AMRWB_ENC_BITRATE_MD1265
= 2¶ 12.65kbps
-
AMRWB_ENC_BITRATE_MD1425
= 3¶ 14.25kbps
-
AMRWB_ENC_BITRATE_MD1585
= 4¶ 15.85bps
-
AMRWB_ENC_BITRATE_MD1825
= 5¶ 18.25bps
-
AMRWB_ENC_BITRATE_MD1985
= 6¶ 19.85kbps
-
AMRWB_ENC_BITRATE_MD2305
= 7¶ 23.05kbps
-
AMRWB_ENC_BITRATE_MD2385
= 8¶ 23.85kbps>
-
AMRWB_ENC_BITRATE_N_MODES
= 9¶ Invalid mode
-
FLAC Decoder¶
Decode an audio data stream provided in FLAC format.
API Reference¶
Header File¶
Functions¶
-
audio_element_handle_t
flac_decoder_init
(flac_decoder_cfg_t *config)¶ Create an Audio Element handle to decode incoming FLAC data.
- Return
The audio element handle
- Parameters
config
: The configuration
Structures¶
-
struct
flac_decoder_cfg_t
¶ FLAC Decoder configuration.
Macros¶
-
FLAC_DECODER_TASK_STACK_SIZE
¶
-
FLAC_DECODER_TASK_CORE
¶
-
FLAC_DECODER_TASK_PRIO
¶
-
FLAC_DECODER_RINGBUFFER_SIZE
¶
-
DEFAULT_FLAC_DECODER_CONFIG
()¶
MP3 Decoder¶
Decode an audio data stream provided in MP3 format.
Application Examples¶
Implementation of this API is demonstrated in the following examples:
API Reference¶
Header File¶
Functions¶
-
audio_element_handle_t
mp3_decoder_init
(mp3_decoder_cfg_t *config)¶ Create an Audio Element handle to decode incoming MP3 data.
- Return
The audio element handle
- Parameters
config
: The configuration
Structures¶
-
struct
mp3_decoder_cfg_t
¶ Mp3 Decoder configuration.
Macros¶
-
MP3_DECODER_TASK_STACK_SIZE
¶
-
MP3_DECODER_TASK_CORE
¶
-
MP3_DECODER_TASK_PRIO
¶
-
MP3_DECODER_RINGBUFFER_SIZE
¶
-
DEFAULT_MP3_DECODER_CONFIG
()¶
OGG Decoder¶
Decode an audio data stream provided in OGG format.
API Reference¶
Header File¶
Functions¶
-
audio_element_handle_t
ogg_decoder_init
(ogg_decoder_cfg_t *config)¶ Create an Audio Element handle to decode incoming OGG data.
- Return
The audio element handle
- Parameters
config
: The configuration
Structures¶
-
struct
ogg_decoder_cfg_t
¶ OGG Decoder configuration.
Macros¶
-
OGG_DECODER_TASK_STACK_SIZE
¶
-
OGG_DECODER_TASK_CORE
¶
-
OGG_DECODER_TASK_PRIO
¶
-
OGG_DECODER_RINGBUFFER_SIZE
¶
-
DEFAULT_OGG_DECODER_CONFIG
()¶
OPUS Decoder¶
Decode an audio data stream provided in OPUS format.
API Reference¶
Header File¶
Functions¶
-
audio_element_handle_t
decoder_opus_init
(opus_decoder_cfg_t *config)¶ Create an Audio Element handle to decode incoming OPUS data.
- Return
The audio element handle
- Parameters
config
: The configuration
Structures¶
-
struct
opus_decoder_cfg_t
¶ OPUS Decoder configuration.
Macros¶
-
OPUS_DECODER_TASK_STACK_SIZE
¶
-
OPUS_DECODER_TASK_CORE
¶
-
OPUS_DECODER_TASK_PRIO
¶
-
OPUS_DECODER_RINGBUFFER_SIZE
¶
-
DEFAULT_OPUS_DECODER_CONFIG
()¶
WAV Decoder and Encoder¶
Decode and encode an audio data stream from / to WAV format.
Application Examples¶
Implementation of this API is demonstrated in the following examples:
API Reference - Decoder¶
Header File¶
Functions¶
-
audio_element_handle_t
wav_decoder_init
(wav_decoder_cfg_t *config)¶ Create an Audio Element handle to decode incoming WAV data.
- Return
The audio element handle
- Parameters
config
: The configuration
Structures¶
-
struct
wav_decoder_cfg_t
¶ brief WAV Decoder configurations
Macros¶
-
WAV_DECODER_TASK_STACK
¶
-
WAV_DECODER_TASK_CORE
¶
-
WAV_DECODER_TASK_PRIO
¶
-
WAV_DECODER_RINGBUFFER_SIZE
¶
-
DEFAULT_WAV_DECODER_CONFIG
()¶
API Reference - Encoder¶
Header File¶
Functions¶
-
audio_element_handle_t
wav_encoder_init
(wav_encoder_cfg_t *config)¶ Create a handle to an Audio Element to encode incoming data using WAV format.
- Return
The audio element handle
- Parameters
config
: The configuration
Structures¶
-
struct
wav_encoder_cfg_t
¶ WAV Encoder configurations.
Macros¶
-
WAV_ENCODER_TASK_STACK
¶
-
WAV_ENCODER_TASK_CORE
¶
-
WAV_ENCODER_TASK_PRIO
¶
-
WAV_ENCODER_RINGBUFFER_SIZE
¶
-
DEFAULT_WAV_ENCODER_CONFIG
()¶
Audio Processing¶
There are couple of options implemented in the ESP-ADF to modify contents of an audio stream:
Combine contents of two audio streams using Downmix
Apply ten band Equalizer
Change audio sampling frequency and convert between single and two channel with Resample Filter
Modify pitch and speed of the stream using Sonic
Please refer to description of respective APIs below.
Downmix¶
This API is intended for mixing of two audio files (streams), defined as the base audio file and the newcome audio file, into one output audio file.
The newcome audio file will be downmixed into the base audio file with individual gains applied to each file.

Illustration of Downmixing Process¶
The number of channel(s) of the output audio file will be the same with that of the base audio file. The number of channel(s) of the newcome audio file will also be changed to the same with the base audio file, if it is different from that of the base audio file.
The downmix process has 3 states:
Bypass Downmixing – Only the base audio file will be processed;
Switch on Downmixing – The base audio file and the target audio file will first enter the transition period, during which the gains of these two files will be changed from the original level to the target level; then enter the stable period, sharing a same target gain;
Switch off Downmixing – The base audio file and the target audio file will first enter the transition period, during which the gains of these two files will be changed back to their original levels; then enter the stable period, with their original gains, respectively. After that, the downmix process enters the bypass state.
Note that, the sample rates of the base audio file and the newcome audio file must be the same, otherwise an error occurs.
Application Example¶
Implementation of this API is demonstrated in advanced_examples/downmix_pipeline example.
API Reference¶
Header File¶
Functions¶
-
void
downmix_set_input_rb_timeout
(audio_element_handle_t self, int ticks_to_wait, int index)¶ Sets the downmix timeout.
- Parameters
self
: audio element handleticks_to_wait
: input ringbuffer timeoutindex
: The index of multi input ringbuffer.
-
void
downmix_set_input_rb
(audio_element_handle_t self, ringbuf_handle_t rb, int index)¶ Sets the downmix input ringbuffer. refer to
ringbuf.h
- Parameters
self
: audio element handlerb
: handle of ringbufferindex
: The index of multi input ringbuffer.
-
esp_err_t
downmix_set_output_type
(audio_element_handle_t self, esp_downmix_output_type_t output_type)¶ Passes number of channels for output stream. Only supported mono and dual.
- Return
ESP_OK ESP_FAIL
- Parameters
self
: audio element handleoutput_type
: down-mixer output type.
-
esp_err_t
downmix_set_work_mode
(audio_element_handle_t self, esp_downmix_work_mode_t mode)¶ Sets BYPASS, ON or OFF status of down-mixer.
- Return
ESP_OK ESP_FAIL
- Parameters
self
: audio element handlemode
: down-mixer work mode.
-
esp_err_t
downmix_set_out_ctx_info
(audio_element_handle_t self, esp_downmix_out_ctx_type_t out_ctx)¶ Passes content of per channel output stream by down-mixer.
- Return
ESP_OK ESP_FAIL
- Parameters
self
: audio element handleout_ctx
: content of output stream.
-
esp_err_t
downmix_set_source_stream_info
(audio_element_handle_t self, int rate, int ch, int index)¶ Sets the sample rate and the number of channels of input stream to be processed.
- Return
ESP_OK ESP_FAIL
- Parameters
self
: audio element handlerate
: sample rate of the input streamch
: number of channel(s) of the input streamindex
: The index of input stream. The index must be in [0, SOURCE_NUM_MAX - 1] range.
-
esp_err_t
downmix_set_gain_info
(audio_element_handle_t self, float *gain, int index)¶ Sets the audio gain to be processed.
- Return
ESP_OK ESP_FAIL
- Parameters
self
: audio element handlegain
: the reset value ofgain
. Thegain
is an array of two elements.index
: The index of input stream. The index must be in [0, SOURCE_NUM_MAX - 1] range.
-
esp_err_t
downmix_set_transit_time_info
(audio_element_handle_t self, int transit_time, int index)¶ Sets the audio
transit_time
to be processed.- Return
ESP_OK ESP_FAIL
- Parameters
self
: audio element handletransit_time
: the reset value oftransit_time
index
: The index of input stream. The index must be in [0, SOURCE_NUM_MAX - 1] range
-
esp_err_t
source_info_init
(audio_element_handle_t self, esp_downmix_input_info_t *source_num)¶ Initializes information of the source streams for downmixing.
- Return
ESP_OK ESP_FAIL
- Parameters
self
: audio element handlesource_num
: The information array of source streams
-
audio_element_handle_t
downmix_init
(downmix_cfg_t *config)¶ Initializes the Audio Element handle for downmixing.
- Return
The initialized Audio Element handle
- Parameters
config
: the configuration
Structures¶
-
struct
downmix_cfg_t
¶ Downmix configuration.
Public Members
-
esp_downmix_info_t
downmix_info
¶ Downmix information
-
int
max_sample
¶ The number of samples per downmix processing
-
int
out_rb_size
¶ Size of ring buffer
-
int
task_stack
¶ Size of task stack
-
int
task_core
¶ Task running in core…
-
int
task_prio
¶ Task priority (based on the FreeRTOS priority)
-
bool
stack_in_ext
¶ Try to allocate stack in external memory
-
esp_downmix_info_t
Macros¶
-
DOWNMIX_TASK_STACK
¶
-
DOWNMIX_TASK_CORE
¶
-
DOWNMIX_TASK_PRIO
¶
-
DOWNMIX_RINGBUFFER_SIZE
¶
-
DM_BUF_SIZE
¶
-
DEFAULT_DOWNMIX_CONFIG
()¶
Equalizer¶
Provided in this API equalizer supports:
fixed number of ten (10) bands;
four sample rates: 11025 Hz, 22050 Hz, 44100 Hz and 48000 Hz.
The center frequencies of bands are shown in table below.
Band Index |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
---|---|---|---|---|---|---|---|---|---|---|
Frequency |
31 Hz |
62 Hz |
125 Hz |
250 Hz |
500 Hz |
1 kHz |
2 kHz |
4 kHz |
8 kHz |
16 kHz |
Default gain of each band is -13 dB. To set the gains of all bands use structure equalizer_cfg
. To set the gain of individual band use function equalizer_set_gain_info()
.
Application Example¶
Implementation of this API is demonstrated in the audio_processing/pipeline_equalizer example.
API Reference¶
Header File¶
Functions¶
-
esp_err_t
equalizer_set_info
(audio_element_handle_t self, int rate, int ch)¶ Set the audio sample rate and the number of channels to be processed by the equalizer.
- Return
ESP_OK ESP_FAIL
- Parameters
self
: Audio element handlerate
: Audio sample ratech
: Audio channel
-
esp_err_t
equalizer_set_gain_info
(audio_element_handle_t self, int index, int value_gain, bool is_channels_gain_equal)¶ Set the audio gain to be processed by the equalizer.
- Return
ESP_OK ESP_FAIL
- Parameters
self
: Audio element handleindex
: the position of center frequencies of equalizervalue_gain
: the value of audio gain which inindex
is_channels_gain_equal
: if Number of audio channel is equal 2, the value of audio gains which two channels are equal by checkingis_channels_gain_equal
. ifis_channels_gain_equal
istrue
,it means equal,otherwise unequal.
-
audio_element_handle_t
equalizer_init
(equalizer_cfg_t *config)¶ Create an Audio Element handle that equalizes incoming data.
- Return
The created audio element handle
- Parameters
config
: The configuration
Structures¶
-
struct
equalizer_cfg
¶ Equalizer Configuration.
Public Members
-
int
samplerate
¶ Audio sample rate (in Hz)
-
int
channel
¶ Number of audio channels (Mono=1, Dual=2)
-
int *
set_gain
¶ Equalizer gain
-
int
out_rb_size
¶ Size of output ring buffer
-
int
task_stack
¶ Task stack size
-
int
task_core
¶ Task running in core…
-
int
task_prio
¶ Task priority
-
bool
stack_in_ext
¶ Try to allocate stack in external memory
-
int
Macros¶
-
EQUALIZER_TASK_STACK
¶
-
EQUALIZER_TASK_CORE
¶
-
EQUALIZER_TASK_PRIO
¶
-
EQUALIZER_RINGBUFFER_SIZE
¶
-
DEFAULT_EQUALIZER_CONFIG
()¶
Type Definitions¶
-
typedef struct equalizer_cfg
equalizer_cfg_t
¶ Equalizer Configuration.
Resample Filter¶
The Resample Filter is an Audio Element designed to downsample or upsample the incoming data stream as well as to convert the data between stereo and mono.
Application Example¶
Implementation of this API is demonstrated in the following examples:
API Reference¶
Header File¶
Functions¶
-
esp_err_t
rsp_filter_set_src_info
(audio_element_handle_t self, int src_rate, int src_ch)¶ Set the source audio sample rate and the number of channels to be processed by the resample. If need change bits or don’t consure source data infomation, please use rsp_filter_change_src_info ti instead this function. In future, the function will be forbidden.
- Return
ESP_OK ESP_FAIL
- Parameters
self
: Audio element handlesrc_rate
: The sample rate of stream datasrc_ch
: The number channels of stream data
-
esp_err_t
rsp_filter_change_src_info
(audio_element_handle_t self, int src_rate, int src_ch, int src_bit)¶ Set the source audio sample rate and the number of channels, bit per sample to be processed by the resample.
- Return
ESP_OK ESP_FAIL
- Parameters
self
: Audio element handlesrc_rate
: The sample rate of stream datasrc_ch
: The number channels of stream datasrc_bit
: The bit per sample of stream data
-
audio_element_handle_t
rsp_filter_init
(rsp_filter_cfg_t *config)¶ Create an Audio Element handle to resample incoming data.
Depending on configuration, there are upsampling, downsampling, as well as converting data between mono and dual.
If the esp_resample_mode_t is
RESAMPLE_DECODE_MODE
,src_rate
andsrc_ch
will be fetched fromaudio_element_getinfo
.If the esp_resample_mode_t is
RESAMPLE_ENCODE_MODE
,src_rate
,src_ch
,dest_rate
anddest_ch
must be configured.
- Return
The audio element handler
- Parameters
config
: The configuration
Structures¶
-
struct
rsp_filter_cfg_t
¶ Resample Filter Configuration.
Public Members
-
int
src_rate
¶ The sampling rate of the source PCM file (in Hz)
-
int
src_ch
¶ The number of channel(s) of the source PCM file (Mono=1, Dual=2)
-
int
dest_rate
¶ The sampling rate of the destination PCM file (in Hz)
-
int
dest_bits
¶ The bit for sample of the destination PCM data. Currently, supported bit width :16 bits.
-
int
dest_ch
¶ The number of channel(s) of the destination PCM file (Mono=1, Dual=2)
-
int
src_bits
¶ The bit for sample of the source PCM data. Currently, supported bit width :8bits 16 bits 24bits 32bits.
-
esp_resample_mode_t
mode
¶ The resampling mode (the encoding mode or the decoding mode). For decoding mode, input PCM length is constant; for encoding mode, output PCM length is constant.
-
int
max_indata_bytes
¶ The maximum buffer size of the input PCM (in bytes)
-
int
out_len_bytes
¶ The buffer length of the output stream data. This parameter must be configured in encoding mode.
-
esp_resample_type_t
type
¶ The resampling type (Automatic, Upsampling and Downsampling)
-
int
complexity
¶ Indicates the complexity of the resampling. This parameter is only valid when a FIR filter is used. Range:[1, 5]; 1 indicates the lowest complexity, which means the accuracy is the lowest and the speed is the fastest; Meanwhile, 5 indicates the highest complexity, which means the accuracy is the highest and the speed is the slowest.If user set
complexity
less than 1,complexity
can be set 1. If user setcomplexity
more than 5,complexity
can be set 5.
-
int
down_ch_idx
¶ Indicates the channel that is selected (the right channel or the left channel). This parameter is only valid when the complexity parameter is set to 0 and the number of channel(s) of the input file has changed from dual to mono.
-
esp_rsp_prefer_type_t
prefer_flag
¶ The select flag about lesser CPU usage or lower INRAM usage, refer to esp_resample.h
-
int
out_rb_size
¶ Output ringbuffer size
-
int
task_stack
¶ Task stack size
-
int
task_core
¶ Task running on core
-
int
task_prio
¶ Task priority
-
bool
stack_in_ext
¶ Try to allocate stack in external memory
-
int
Macros¶
-
RSP_FILTER_BUFFER_BYTE
¶
-
RSP_FILTER_TASK_STACK
¶
-
RSP_FILTER_TASK_CORE
¶
-
RSP_FILTER_TASK_PRIO
¶
-
RSP_FILTER_RINGBUFFER_SIZE
¶
-
DEFAULT_RESAMPLE_FILTER_CONFIG
()¶
Sonic¶
The Sonic component acts as a multidimensional filter that lets you adjust audio parameters of a WAV stream. This functionality may be useful to e.g. increase playback speed of an audio recording by a user selectable rate.
The following parameters can be adjusted:
speed
pitch
interpolation type
The adjustments of the first two parameters are represented by float values that provide the rate of adjustment. For example, to increase the speed of an audio sample by 2 times, call sonic_set_pitch_and_speed_info(el, 1.0, 2.0)
. To keep the speed as it is, call sonic_set_pitch_and_speed_info(el, 1.0, 1.0)
.
For the interpolation type you may select either faster but less accurate linear interpolation, or slower but more accurate FIR interpolation.
Application Example¶
Implementation of this API is demonstrated in audio_processing/pipeline_sonic example.
API Reference¶
Header File¶
Functions¶
-
esp_err_t
sonic_set_info
(audio_element_handle_t self, int rate, int ch)¶ Sets the audio sample rate and the number of channels to be processed by the sonic.
- Return
ESP_OK ESP_FAIL
- Parameters
self
: Audio element handlerate
: The sample rate of stream datach
: The number channels of stream data
-
esp_err_t
sonic_set_pitch_and_speed_info
(audio_element_handle_t self, float pitch, float speed)¶ Sets the audio pitch and speed to be processed by the sonic.
- Return
ESP_OK ESP_FAIL
- Parameters
self
: Audio element handlepitch
: Scale factor of pitch of audio file. 0 means the original pitch. The range is [0.2 4.0].speed
: Scale factor of speed of audio file. 0 means the original speed. The range is [0.1 8.0].
-
audio_element_handle_t
sonic_init
(sonic_cfg_t *config)¶ Creates an Audio Element handle for sonic.
- Return
The sonic audio element handle
- Parameters
config
: The sonic configuration
Structures¶
-
struct
sonic_info_t
¶ Information on audio file and configuration parameters required by sonic to process the file.
Public Members
-
int
samplerate
¶ Audio file sample rate (in Hz)
-
int
channel
¶ Number of audio file channels (Mono=1, Dual=2)
-
int
resample_linear_interpolate
¶ Flag of using simple linear interpolation. 1 indicates using simple linear interpolation. 0 indicates not using simple linear interpolation.
-
float
pitch
¶ Scale factor of pitch of audio file. If the value of ‘pitch’ is 0.3, the pitch of audio file processed by sonic islower than the original. If the value of ‘pitch’ is 1.3, the pitch of audio file processed by sonic is 30% higher than the original.
-
float
speed
¶ Scale factor of speed of audio file. If the value of ‘speed’ is 0.3, the speed of audio file processed by sonic is 70% slower than the original. If the value of ‘speed’ is 1.3, the speed of audio file processed by sonic is 30% faster than the original.
-
int
-
struct
sonic_cfg_t
¶ Sonic configuration.
Macros¶
-
SONIC_SET_VALUE_FOR_INITIALIZATION
¶
-
SONIC_TASK_STACK
¶
-
SONIC_TASK_CORE
¶
-
SONIC_TASK_PRIO
¶
-
SONIC_RINGBUFFER_SIZE
¶
-
DEFAULT_SONIC_CONFIG
()¶
Services¶
A service is a software implementation of specific product functions, such as input keys, network configuration management, and battery check. Each service is also an abstraction of hardware. For example, the input key service supports ADC keys and GPIO keys. Services can be reused on different products, and high-level APIs and events allow easy and convenient product development.
For details please refer to descriptions listed below.
Bluetooth Service¶
The Bluetooth service is dedicated to interface with Bluetooth devices and provides support for the following protocols:
HFP (Hands-Free Profile): remotely controlling the mobile phone by the Hands-Free device and the voice connections between them
A2DP (Advanced Audio Distribution Profile): implementing streaming of multimedia audio using a Bluetooth connection
AVRCP (Audio Video Remote Control Profile): used together with A2DP for remote control of devices such as headphones, car audio systems, or speakers
Application Example¶
Implementation of this API is demonstrated in the following example:
Header File¶
Functions¶
-
esp_err_t
bluetooth_service_start
(bluetooth_service_cfg_t *config)¶ Initialize and start the Bluetooth service. This function can only be called for one time, and
bluetooth_service_destroy
must be called after use.- Return
ESP_OK
ESP_FAIL
- Parameters
config
: The configuration
-
audio_element_handle_t
bluetooth_service_create_stream
()¶ Create Bluetooth stream, it is valid when Bluetooth service has started. The returned audio stream compatible with existing audio streams and can be used with the Audio Pipeline.
- Return
The Audio Element handle
-
esp_periph_handle_t
bluetooth_service_create_periph
()¶ Create Bluetooth peripheral, it is valid when Bluetooth service has started. The returned bluetooth peripheral compatible with existing peripherals and can be used with the ESP Peripherals.
- Return
The Peripheral handle
-
esp_err_t
periph_bluetooth_play
(esp_periph_handle_t periph)¶ Send the AVRC passthrough command (PLAY) to the Bluetooth device.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] periph
: The periph
-
esp_err_t
periph_bluetooth_pause
(esp_periph_handle_t periph)¶ Send the AVRC passthrough command (PAUSE) to the Bluetooth device.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] periph
: The periph
-
esp_err_t
periph_bluetooth_stop
(esp_periph_handle_t periph)¶ Send the AVRC passthrough command (STOP) to the Bluetooth device.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] periph
: The periph
-
esp_err_t
periph_bluetooth_next
(esp_periph_handle_t periph)¶ Send the AVRC passthrough command (NEXT) to the Bluetooth device.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] periph
: The periph
-
esp_err_t
periph_bluetooth_prev
(esp_periph_handle_t periph)¶ Send the AVRC passthrough command (PREV) to the Bluetooth device.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] periph
: The periph
-
esp_err_t
periph_bluetooth_rewind
(esp_periph_handle_t periph)¶ Send the AVRC passthrough command (REWIND) to the Bluetooth device.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] periph
: The periph
-
esp_err_t
periph_bluetooth_fast_forward
(esp_periph_handle_t periph)¶ Send the AVRC passthrough command (FAST FORWARD) to the Bluetooth device.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] periph
: The periph
-
esp_err_t
periph_bluetooth_discover
(esp_periph_handle_t periph)¶ Start device discovery.
- Return
ESP_OK : Succeed
ESP_ERR_INVALID_STATE: if bluetooth stack is not yet enabled
ESP_ERR_INVALID_ARG: if invalid parameters are provided
ESP_FAIL: others
- Parameters
[in] periph
: The periph
-
esp_err_t
periph_bluetooth_cancel_discover
(esp_periph_handle_t periph)¶ Cancel device discovery.
- Return
ESP_OK : Succeed
ESP_ERR_INVALID_STATE: if bluetooth stack is not yet enabled
ESP_FAIL: others
- Parameters
[in] periph
: The periph
-
esp_err_t
periph_bluetooth_connect
(esp_periph_handle_t periph, bluetooth_addr_t remote_bda)¶ Connect remote Device.
- Return
ESP_OK : Succeed
ESP_ERR_INVALID_STATE: if bluetooth stack is not yet enabled
ESP_FAIL: others
- Parameters
[in] periph
: The periph[in] remote_bda
: remote Bluetooth device address
-
esp_err_t
bluetooth_service_destroy
()¶ Destroy and cleanup bluetooth service, this function must be called after destroying the Bluetoth Stream and Bluetooth Peripheral created by
bluetooth_service_create_stream
andbluetooth_service_create_periph
- Return
ESP_OK
ESP_FAIL
-
int
periph_bluetooth_get_a2dp_sample_rate
()¶ Get a2dp sample rate.
- Return
sample rate
Structures¶
-
struct
bluetooth_service_user_cb_t
¶ brief Bluetooth service user callback
-
struct
bluetooth_service_cfg_t
¶ brief Bluetooth service configuration
Public Members
-
const char *
device_name
¶ Bluetooth local device name
-
const char *
remote_name
¶ Bluetooth remote device name
-
bluetooth_service_mode_t
mode
¶ Bluetooth working mode
-
bluetooth_service_user_cb_t
user_callback
¶ Bluetooth user callback
-
const char *
Macros¶
-
ESP_A2DP_SAMPLE_RATE
¶
-
BLUETOOTH_ADDR_LEN
¶ brief Bluetooth address length
Type Definitions¶
-
typedef uint8_t
bluetooth_addr_t
[BLUETOOTH_ADDR_LEN
]¶ brief Bluetooth device address
Enumerations¶
Header File¶
Header File¶
Header File¶
Input Key Service¶
The input key service provides GPIO input interrupts and ADC key functions in the form of events. For what common key functions are defined by the events for audio products, see input_key_user_id_t
.
Application Example¶
Implementation of this API is demonstrated in the following example:
Header File¶
Functions¶
-
periph_service_handle_t
input_key_service_create
(input_key_service_cfg_t *input_key_config)¶ Initialize and start the input key service.
- Return
NULL failed others input key service handle
- Parameters
input_key_config
: Configuration of input key service
-
periph_service_state_t
get_input_key_service_state
(periph_service_handle_t input_handle)¶ Get the state of input key service.
- Return
state of input key service
- Parameters
input_handle
: The handle of input key service
-
esp_err_t
input_key_service_add_key
(periph_service_handle_t input_key_handle, input_key_service_info_t *input_key_info, int add_key_num)¶ Add input key’s information to service list.
- Return
ESP_OK success ESP_FAIL failed
- Parameters
input_key_handle
: handle of serviceinput_key_info
: input key’s informationadd_key_num
: number of keys
Structures¶
-
struct
input_key_service_info_t
¶ input key’s infomation
Public Members
-
esp_periph_id_t
type
¶ ID of peripherals
-
int
user_id
¶ The key’s user id
-
int
act_id
¶ The key’s action id
-
esp_periph_id_t
-
struct
input_key_service_cfg_t
¶ input key’s configuration
Public Members
-
periph_service_config_t
based_cfg
¶ Peripheral service configuration
-
esp_periph_set_handle_t
handle
¶ Peripheral set handle
-
periph_service_config_t
Macros¶
-
INPUT_KEY_SERVICE_TASK_STACK_SIZE
¶
-
INPUT_KEY_SERVICE_TASK_PRIORITY
¶
-
INPUT_KEY_SERVICE_TASK_ON_CORE
¶
-
INPUT_KEY_SERVICE_DEFAULT_CONFIG
()¶
Enumerations¶
-
enum
input_key_service_action_id_t
¶ input key action id
Values:
-
INPUT_KEY_SERVICE_ACTION_UNKNOWN
= 0¶ unknown action id
-
INPUT_KEY_SERVICE_ACTION_CLICK
¶ click action id
-
INPUT_KEY_SERVICE_ACTION_CLICK_RELEASE
¶ click release action id
-
INPUT_KEY_SERVICE_ACTION_PRESS
¶ long press action id
-
INPUT_KEY_SERVICE_ACTION_PRESS_RELEASE
¶ long press release id
-
Header File¶
Enumerations¶
-
enum
input_key_user_id_t
¶ input key user user-defined id
Values:
-
INPUT_KEY_USER_ID_UNKNOWN
= -1¶ unknown user id
-
INPUT_KEY_USER_ID_REC
= 0x01¶ user id for recording
-
INPUT_KEY_USER_ID_SET
= 0x02¶ user id for settings
-
INPUT_KEY_USER_ID_PLAY
= 0x03¶ user id for playing
-
INPUT_KEY_USER_ID_MODE
= 0x04¶ user id for mode
-
INPUT_KEY_USER_ID_VOLDOWN
= 0x05¶ user id for volume down
-
INPUT_KEY_USER_ID_VOLUP
= 0x06¶ user id for volume up
-
INPUT_KEY_USER_ID_MUTE
= 0x07¶ user id for mute
-
INPUT_KEY_USER_ID_CAPTURE
= 0x08¶ user id for capture photo
-
INPUT_KEY_USER_ID_MSG
= 0x09¶ user id for message
-
INPUT_KEY_USER_ID_BATTERY_CHARGING
= 0x0A¶ user id for battery charging
-
INPUT_KEY_USER_ID_WAKEUP
= 0x0B¶ user id for GPIO wakeup
-
INPUT_KEY_USER_ID_COLOR
= 0x0C¶ user id for color
-
INPUT_KEY_USER_ID_MAX
= 0x101¶
-
Wi-Fi Service¶
The Wi-Fi service can configure and manage the network. SmartConfig, BluFi, and AirKiss are supported for network configuration.
Application Example¶
Implementation of this API is demonstrated in the following example:
Header File¶
Functions¶
-
periph_service_handle_t
wifi_service_create
(wifi_service_config_t *config)¶
-
esp_err_t
wifi_service_destroy
(periph_service_handle_t handle)¶
-
esp_err_t
wifi_service_register_setting_handle
(periph_service_handle_t handle, esp_wifi_setting_handle_t setting, int *out_index)¶
-
esp_err_t
wifi_service_setting_start
(periph_service_handle_t handle, int index)¶
-
esp_err_t
wifi_service_update_sta_info
(periph_service_handle_t handle, wifi_config_t *wifi_conf)¶
-
esp_err_t
wifi_service_setting_stop
(periph_service_handle_t handle, int index)¶
-
esp_err_t
wifi_service_connect
(periph_service_handle_t handle)¶
-
esp_err_t
wifi_service_disconnect
(periph_service_handle_t handle)¶
-
esp_err_t
wifi_service_set_sta_info
(periph_service_handle_t handle, wifi_config_t *info)¶
-
periph_service_state_t
wifi_service_state_get
(periph_service_handle_t handle)¶
-
wifi_service_disconnect_reason_t
wifi_service_disconnect_reason_get
(periph_service_handle_t handle)¶
-
esp_err_t
wifi_service_erase_ssid_manager_info
(periph_service_handle_t handle)¶
-
esp_err_t
wifi_service_get_last_ssid_cfg
(periph_service_handle_t handle, wifi_config_t *wifi_cfg)¶
Structures¶
-
struct
wifi_service_config_t
¶ WiFi service configurations.
Public Members
-
int
task_stack
¶ >0 Service task stack; =0 with out task created
-
int
task_prio
¶ Service task priority (based on freeRTOS priority)
-
int
task_core
¶ Service task running in core (0 or 1)
-
bool
extern_stack
¶ Task stack allocate on the extern ram
-
periph_service_cb
evt_cb
¶ Service callback function
-
void *
cb_ctx
¶ Callback context
-
char *
user_data
¶ User data
-
int
setting_timeout_s
¶ Timeout of setting WiFi
-
int
max_retry_time
¶ Maximum times of reconnection
-
int
max_prov_retry_time
¶ Maximum times of reconnection after wifi provision
-
uint8_t
max_ssid_num
¶ Maximum ssid that can be stored
-
int
Macros¶
-
WIFI_SERVICE_DEFAULT_CONFIG
()¶
Enumerations¶
Header File¶
Functions¶
-
esp_wifi_setting_handle_t
esp_wifi_setting_create
(const char *tag)¶ brief Create wifi setting handle instance
- Return
NULL, Fail
Others, Success
- Parameters
tag
: Tag of the wifi setting handle
-
esp_err_t
esp_wifi_setting_destroy
(esp_wifi_setting_handle_t handle)¶ brief Destroy wifi setting handle instance
- Return
ESP_OK
ESP_FAIL
- Parameters
handle
: The wifi setting handle instance
-
esp_err_t
esp_wifi_setting_register_function
(esp_wifi_setting_handle_t handle, wifi_setting_func start, wifi_setting_func stop, wifi_setting_teardown_func teardown)¶ Register the wifi setting execute functions.
- Return
ESP_OK
ESP_FAIL
- Parameters
handle
: The wifi setting handle instancestart
: The start wifi settingstop
: The stopteardown
: The destroy
-
esp_err_t
esp_wifi_setting_regitster_notify_handle
(esp_wifi_setting_handle_t handle, void *on_handle)¶ Register the notify execute handle.
- Return
ESP_OK
ESP_FAIL
- Parameters
handle
: The peripheral handleon_handle
: The notify execute handle
-
esp_err_t
esp_wifi_setting_info_notify
(esp_wifi_setting_handle_t handle, wifi_config_t *info)¶ Call this to notify the
wifi_config_t
toon_handle
- Return
ESP_OK
ESP_FAIL
- Parameters
handle
: The wifi setting handle instanceinfo
: Thewifi_config_t
-
esp_err_t
esp_wifi_setting_set_data
(esp_wifi_setting_handle_t handle, void *data)¶ Set the user data.
- Note
Make sure the
data
lifetime is sufficient, this function does not copy all data, it only stores the data pointer- Return
ESP_OK
ESP_FAIL
- Parameters
[in] handle
: The wifi setting handle instancedata
: The user data
-
void *
esp_wifi_setting_get_data
(esp_wifi_setting_handle_t handle)¶ Get the user data stored on
handle
- Return
user data pointer
- Parameters
[in] handle
: The wifi setting handle instance
-
esp_err_t
esp_wifi_setting_start
(esp_wifi_setting_handle_t handle)¶ Call this to execute
start
function of wifi setting instance.- Return
ESP_OK
ESP_FAIL
- Parameters
handle
: The wifi setting handle instance
-
esp_err_t
esp_wifi_setting_stop
(esp_wifi_setting_handle_t handle)¶ Call this to execute
stop
function of wifi setting instance.- Return
ESP_OK
ESP_FAIL
- Parameters
handle
: The wifi setting handle instance
-
esp_err_t
esp_wifi_setting_teardown
(esp_wifi_setting_handle_t handle, wifi_config_t *info)¶ Call this to execute
teardown
function of wifi setting instance.- Return
ESP_OK
ESP_FAIL
- Parameters
handle
: The wifi setting handle instanceinfo
: Thewifi_config_t
Type Definitions¶
-
typedef struct esp_wifi_setting *
esp_wifi_setting_handle_t
¶
-
typedef esp_err_t (*
wifi_setting_func
)(esp_wifi_setting_handle_t handle)¶
-
typedef esp_err_t (*
wifi_setting_teardown_func
)(esp_wifi_setting_handle_t handle, wifi_config_t *info)¶
Header File¶
Functions¶
-
esp_wifi_setting_handle_t
smart_config_create
(smart_config_info_t *info)¶ brief Create smartconfig setting handle instance
- Return
NULL, Fail
Others, Success
- Parameters
info
: Configuration of the smartconfig
Structures¶
Macros¶
-
SMART_CONFIG_INFO_DEFAULT
()¶
Header File¶
Functions¶
-
esp_wifi_setting_handle_t
blufi_config_create
(void *info)¶ Create blufi setting handle instance.
- Return
NULL, Fail
Others, Success
- Parameters
[in] info
: A pointer to void
-
esp_err_t
blufi_set_sta_connected_flag
(esp_wifi_setting_handle_t handle, bool flag)¶ Set flag to judge whether the station has connected to the AP.
- Return
NULL, Fail
Others, Success
- Parameters
[in] handle
: Wifi setting handle[in] flag
: bool type of station connection state
-
esp_err_t
blufi_set_customized_data
(esp_wifi_setting_handle_t handle, char *data, int data_len)¶ Set customized data to be sent after configurate wifi successfully.
- Return
ESP_FAIL, Fail
ESP_OK, Success
- Parameters
[in] handle
: Wifi setting handle[in] data
: Customized data[in] data_len
: Customized data length
-
esp_err_t
blufi_send_customized_data
(esp_wifi_setting_handle_t handle)¶ Send customized data that be set before.
- Return
ESP_FAIL, Fail
ESP_OK, Success
- Parameters
[in] handle
: Wifi setting handle
Header File¶
Functions¶
-
esp_wifi_setting_handle_t
airkiss_config_create
(airkiss_config_info_t *info)¶ brief Create airkiss setting handle instance
- Return
NULL, Fail
Others, Success
- Parameters
info
: Configuration of the airkiss
Structures¶
-
struct
airkiss_lan_pack_param_t
¶ airkiss lan data pack
-
struct
airkiss_config_info_t
¶ airkiss configurations
Public Members
-
airkiss_lan_pack_param_t
lan_pack
¶ User lan pack parameter
-
bool
ssdp_notify_enable
¶ Notify enable flag
-
char *
aes_key
¶ Airkiss aes key data
-
airkiss_lan_pack_param_t
Macros¶
-
AIRKISS_CONFIG_INFO_DEFAULT
()¶
Header File¶
Functions¶
-
wifi_ssid_manager_handle_t
wifi_ssid_manager_create
(uint8_t max_ssid_num)¶
-
esp_err_t
wifi_ssid_manager_get_latest_config
(wifi_ssid_manager_handle_t handle, wifi_config_t *config)¶
-
esp_err_t
wifi_ssid_manager_save
(wifi_ssid_manager_handle_t handle, const char *ssid, const char *pwd)¶
-
esp_err_t
wifi_ssid_manager_get_best_config
(wifi_ssid_manager_handle_t handle, wifi_config_t *config)¶
-
int
wifi_ssid_manager_get_ssid_num
(wifi_ssid_manager_handle_t handle)¶
-
esp_err_t
wifi_ssid_manager_list_show
(wifi_ssid_manager_handle_t handle)¶
-
esp_err_t
wifi_ssid_manager_erase_all
(wifi_ssid_manager_handle_t handle)¶
-
esp_err_t
wifi_ssid_manager_destroy
(wifi_ssid_manager_handle_t handle)¶
Type Definitions¶
-
typedef struct wifi_ssid_manager *
wifi_ssid_manager_handle_t
¶
OTA Service¶
OTA service can upgrade firmware over the air (OTA). The firmware can be fetched from local files or the network.
Application Example¶
Implementation of this API is demonstrated in the following example:
Header File¶
Functions¶
-
periph_service_handle_t
ota_service_create
(ota_service_config_t *config)¶ Create the OTA service instance.
- Return
NULL: Failed
Others: Success
- Parameters
config
: configuration of the OTA service
-
esp_err_t
ota_service_set_upgrade_param
(periph_service_handle_t handle, ota_upgrade_ops_t *list, int list_len)¶ Configure the upgrade parameter This function is not thread safe.
This function will set the parameter table to ota service, and the ota service will upgrade the partitions defined in the table one by one,
- Return
ESP_OK: Success
Others: Failed
- Parameters
[in] handle
: pointer to ‘periph_service_handle_t’ structure[in] list
: pointer to ‘ota_upgrade_ops_t’ structure[in] list_len
: length of the ‘list’
Structures¶
-
struct
ota_service_config_t
¶ The OTA service configuration.
-
struct
ota_node_attr_t
¶ The OTA node attributions.
-
struct
ota_upgrade_ops_t
¶ The upgrade operation.
Public Members
-
ota_node_attr_t
node
¶ The OTA node
-
ota_service_err_reason_t (*
prepare
)(void **handle, ota_node_attr_t *node)¶ Functions ready for upgrade
-
ota_service_err_reason_t (*
need_upgrade
)(void *handle, ota_node_attr_t *node)¶ Detect whether an upgrade is required
-
ota_service_err_reason_t (*
execute_upgrade
)(void *handle, ota_node_attr_t *node)¶ For execute upgrade
-
ota_service_err_reason_t (*
finished_check
)(void *handle, ota_node_attr_t *node, ota_service_err_reason_t result)¶ Check result of upgrade
-
bool
reboot_flag
¶ Reboot or not after upgrade
-
bool
break_after_fail
¶ Abort upgrade when got failed
-
ota_node_attr_t
-
struct
ota_result_t
¶ The result of the OTA upgrade.
Macros¶
-
OTA_SERVICE_ERR_REASON_BASE
¶
-
OTA_SERVICE_DEFAULT_CONFIG
()¶
Enumerations¶
-
enum
ota_service_event_type_t
¶ The OTA service event type.
Values:
-
OTA_SERV_EVENT_TYPE_RESULT
¶
-
OTA_SERV_EVENT_TYPE_FINISH
¶
-
-
enum
ota_service_err_reason_t
¶ The OTA service error reasons.
Values:
-
OTA_SERV_ERR_REASON_UNKNOWN
= ESP_FAIL¶
-
OTA_SERV_ERR_REASON_SUCCESS
= ESP_OK¶
-
OTA_SERV_ERR_REASON_NULL_POINTER
= OTA_SERVICE_ERR_REASON_BASE + 1¶
-
OTA_SERV_ERR_REASON_URL_PARSE_FAIL
= OTA_SERVICE_ERR_REASON_BASE + 2¶
-
OTA_SERV_ERR_REASON_ERROR_VERSION
= OTA_SERVICE_ERR_REASON_BASE + 3¶
-
OTA_SERV_ERR_REASON_NO_HIGHER_VERSION
= OTA_SERVICE_ERR_REASON_BASE + 4¶
-
OTA_SERV_ERR_REASON_ERROR_MAGIC_WORD
= OTA_SERVICE_ERR_REASON_BASE + 5¶
-
OTA_SERV_ERR_REASON_ERROR_PROJECT_NAME
= OTA_SERVICE_ERR_REASON_BASE + 6¶
-
OTA_SERV_ERR_REASON_FILE_NOT_FOUND
= OTA_SERVICE_ERR_REASON_BASE + 7¶
-
OTA_SERV_ERR_REASON_PARTITION_NOT_FOUND
= OTA_SERVICE_ERR_REASON_BASE + 8¶
-
OTA_SERV_ERR_REASON_PARTITION_WT_FAIL
= OTA_SERVICE_ERR_REASON_BASE + 9¶
-
OTA_SERV_ERR_REASON_PARTITION_RD_FAIL
= OTA_SERVICE_ERR_REASON_BASE + 10¶
-
OTA_SERV_ERR_REASON_STREAM_INIT_FAIL
= OTA_SERVICE_ERR_REASON_BASE + 11¶
-
OTA_SERV_ERR_REASON_STREAM_RD_FAIL
= OTA_SERVICE_ERR_REASON_BASE + 12¶
-
OTA_SERV_ERR_REASON_GET_NEW_APP_DESC_FAIL
= OTA_SERVICE_ERR_REASON_BASE + 13¶
-
Header File¶
Functions¶
-
void
ota_app_get_default_proc
(ota_upgrade_ops_t *ops)¶ get the default process of
app partition
upgrade- Return
void
- Parameters
[in] ops
: pointer toota_upgrade_ops_t
structure
-
void
ota_data_get_default_proc
(ota_upgrade_ops_t *ops)¶ get the default process of
data partition
upgrade- Return
void
- Parameters
[in] ops
: pointer toota_upgrade_ops_t
structure
-
ota_service_err_reason_t
ota_data_image_stream_read
(void *handle, char *buf, int wanted_size)¶ read from the stream of upgrading
- Return
OTA_SERV_ERR_REASON_SUCCESS: Success
Others: Failed
- Parameters
[in] handle
: pointer to upgrade handle[in] buf
: pointer to receive buffer[in] wanted_size
: bytes to read
-
ota_service_err_reason_t
ota_data_partition_write
(void *handle, char *buf, int size)¶ write to the data partition under upgrading
- Return
OTA_SERV_ERR_REASON_SUCCESS: Success
Others: Failed
- Parameters
[in] handle
: pointer to upgrade handle[in] buf
: pointer to data buffer[in] size
: bytes to write
-
void
ota_data_partition_erase_mark
(void *handle)¶ Indicates that the ota partition has been erased By default, this part of flash will be erased during ota. If the behavior of erasing is called in applition, this API needs to be called.
- Return
void
- Parameters
[in] handle
: pointer to upgrade handle
-
int
ota_get_version_number
(char *version)¶ Convert string of version to integer The version should be (V0.0.0 - V255.255.255)
- Return
-1: Failed
Others: version number
- Parameters
[in] version
: pointer to the string of version
Header File¶
Functions¶
-
esp_err_t
esp_fs_ota
(esp_fs_ota_config_t *ota_config)¶ Upgrade the firmware from filesystem.
- Note
This API handles the entire OTA operation, so if this API is being used then no other APIs from
esp_fs_ota
component should be called. If more information and control is needed during the FS OTA process, then one can useesp_fs_ota_begin
and subsequent APIs. If this API returns successfully, esp_restart() must be called to boot from the new firmware image.- Return
ESP_OK: OTA data updated, next reboot will use specified partition.
ESP_FAIL: For generic failure.
ESP_ERR_INVALID_ARG: Invalid argument
ESP_ERR_OTA_VALIDATE_FAILED: Invalid app image
ESP_ERR_NO_MEM: Cannot allocate memory for OTA operation.
ESP_ERR_FLASH_OP_TIMEOUT or ESP_ERR_FLASH_OP_FAIL: Flash write failed.
For other return codes, refer OTA documentation in esp-idf’s app_update component.
- Parameters
[in] ota_config
: pointer to esp_fs_ota_config_t structure.
-
esp_err_t
esp_fs_ota_begin
(esp_fs_ota_config_t *ota_config, esp_fs_ota_handle_t *handle)¶ Start FS OTA Firmware upgrade.
This function initializes ESP FS OTA context and open the firmware file. This function must be invoked first. If this function returns successfully, then
esp_fs_ota_perform
should be called to continue with the OTA process and there should be a call toesp_fs_ota_finish
on completion of OTA operation or on failure in subsequent operations.- Return
ESP_OK: FS OTA Firmware upgrade context initialised and file opened successful
ESP_FAIL: For generic failure.
ESP_ERR_INVALID_ARG: Invalid argument (missing/incorrect config, etc.)
For other return codes, refer documentation in app_update component and esp_http_client component in esp-idf.
- Parameters
[in] ota_config
: pointer to esp_fs_ota_config_t structure[out] handle
: pointer to an allocated data of typeesp_fs_ota_handle_t
which will be initialised in this function
-
esp_err_t
esp_fs_ota_perform
(esp_fs_ota_handle_t fs_ota_handle)¶ Read image data from file stream and write it to OTA partition.
This function reads image data from file stream and writes it to OTA partition. This function must be called only if esp_fs_ota_begin() returns successfully. This function must be called in a loop since it returns after every file read operation thus giving you the flexibility to stop OTA operation midway.
- Return
ESP_ERR_FS_OTA_IN_PROGRESS: OTA update is in progress, call this API again to continue.
ESP_OK: OTA update was successful
ESP_FAIL: OTA update failed
ESP_ERR_INVALID_ARG: Invalid argument
ESP_ERR_OTA_VALIDATE_FAILED: Invalid app image
ESP_ERR_NO_MEM: Cannot allocate memory for OTA operation.
ESP_ERR_FLASH_OP_TIMEOUT or ESP_ERR_FLASH_OP_FAIL: Flash write failed.
For other return codes, refer OTA documentation in esp-idf’s app_update component.
- Parameters
[in] fs_ota_handle
: pointer to esp_fs_ota_handle_t structure
-
esp_err_t
esp_fs_ota_finish
(esp_fs_ota_handle_t fs_ota_handle)¶ Clean-up FS OTA Firmware upgrade and close the file stream.
This function closes the file stream and frees the ESP FS OTA context. This function switches the boot partition to the OTA partition containing the new firmware image.
- Note
If this API returns successfully, esp_restart() must be called to boot from the new firmware image
- Return
ESP_OK: Clean-up successful
ESP_ERR_INVALID_STATE
ESP_ERR_INVALID_ARG: Invalid argument
ESP_ERR_OTA_VALIDATE_FAILED: Invalid app image
- Parameters
[in] fs_ota_handle
: pointer to esp_fs_ota_handle_t structure
-
esp_err_t
esp_fs_ota_get_img_desc
(esp_fs_ota_handle_t fs_ota_handle, esp_app_desc_t *new_app_info)¶ Reads app description from image header. The app description provides information like the “Firmware version” of the image.
- Note
This API can be called only after esp_fs_ota_begin() and before esp_fs_ota_perform(). Calling this API is not mandatory.
- Return
ESP_ERR_INVALID_ARG: Invalid arguments
ESP_FAIL: Failed to read image descriptor
ESP_OK: Successfully read image descriptor
- Parameters
[in] fs_ota_handle
: pointer to esp_fs_ota_handle_t structure[out] new_app_info
: pointer to an allocated esp_app_desc_t structure
-
int
esp_fs_ota_get_image_len_read
(esp_fs_ota_handle_t fs_ota_handle)¶
Structures¶
-
struct
esp_fs_ota_config_t
¶ ESP FS OTA configuration.
Macros¶
-
ESP_ERR_FS_OTA_BASE
¶
-
ESP_ERR_FS_OTA_IN_PROGRESS
¶
Type Definitions¶
-
typedef void *
esp_fs_ota_handle_t
¶
DuerOS Service¶
The DuerOS service allows voice interaction with DuerOS.
Application Example¶
Implementation of this API is demonstrated in the following example:
Header File¶
Functions¶
-
audio_service_handle_t
dueros_service_create
()¶ Create the dueros service.
- Return
NULL, Fail
Others, Success
-
service_state_t
dueros_service_state_get
()¶ Get dueros service state.
- Return
The state of service
-
esp_err_t
dueros_voice_upload
(audio_service_handle_t handle, void *buf, int len)¶ Upload voice to backend server.
- Return
ESP_OK ESP_FAIL
- Parameters
handle
: dueros service handlebuf
: Data bufferlen
: Size of buffer
-
esp_err_t
dueros_voice_cancel
(audio_service_handle_t handle)¶ Cancel the current session.
- Return
ESP_OK ESP_FAIL
- Parameters
handle
: dueros service handle
Display Service¶
The display service defines enumeration values for some common display patterns in display_pattern_t
, with which you can set the corresponding patterns of LEDs or LED bars.
The currently supported LED drivers are AW2013, WS2812, and IS31x.
Application Example¶
Implementation of this API is demonstrated in the following example:
Header File¶
Functions¶
-
display_service_handle_t
display_service_create
(display_service_config_t *cfg)¶
-
esp_err_t
display_service_set_pattern
(void *handle, int disp_pattern, int value)¶
-
esp_err_t
display_destroy
(display_service_handle_t handle)¶
Structures¶
-
struct
display_service_config_t
¶ Display service configurations.
Public Members
-
periph_service_config_t
based_cfg
¶ Peripheral service configuration
-
void *
instance
¶ Sub-instance
-
periph_service_config_t
Type Definitions¶
-
typedef struct display_service_impl *
display_service_handle_t
¶
Enumerations¶
-
enum
display_pattern_t
¶ Values:
-
DISPLAY_PATTERN_UNKNOWN
= 0¶
-
DISPLAY_PATTERN_WIFI_SETTING
= 1¶
-
DISPLAY_PATTERN_WIFI_CONNECTTING
= 2¶
-
DISPLAY_PATTERN_WIFI_CONNECTED
= 3¶
-
DISPLAY_PATTERN_WIFI_DISCONNECTED
= 4¶
-
DISPLAY_PATTERN_WIFI_SETTING_FINISHED
= 5¶
-
DISPLAY_PATTERN_BT_CONNECTTING
= 6¶
-
DISPLAY_PATTERN_BT_CONNECTED
= 7¶
-
DISPLAY_PATTERN_BT_DISCONNECTED
= 8¶
-
DISPLAY_PATTERN_RECORDING_START
= 9¶
-
DISPLAY_PATTERN_RECORDING_STOP
= 10¶
-
DISPLAY_PATTERN_RECOGNITION_START
= 11¶
-
DISPLAY_PATTERN_RECOGNITION_STOP
= 12¶
-
DISPLAY_PATTERN_WAKEUP_ON
= 13¶
-
DISPLAY_PATTERN_WAKEUP_FINISHED
= 14¶
-
DISPLAY_PATTERN_MUSIC_ON
= 15¶
-
DISPLAY_PATTERN_MUSIC_FINISHED
= 16¶
-
DISPLAY_PATTERN_VOLUME
= 17¶
-
DISPLAY_PATTERN_MUTE_ON
= 18¶
-
DISPLAY_PATTERN_MUTE_OFF
= 19¶
-
DISPLAY_PATTERN_TURN_ON
= 20¶
-
DISPLAY_PATTERN_TURN_OFF
= 21¶
-
DISPLAY_PATTERN_BATTERY_LOW
= 22¶
-
DISPLAY_PATTERN_BATTERY_CHARGING
= 23¶
-
DISPLAY_PATTERN_BATTERY_FULL
= 24¶
-
DISPLAY_PATTERN_POWERON_INIT
= 25¶
-
DISPLAY_PATTERN_WIFI_NO_CFG
= 26¶
-
DISPLAY_PATTERN_SPEECH_BEGIN
= 27¶
-
DISPLAY_PATTERN_SPEECH_OVER
= 28¶
-
DISPLAY_PATTERN_MAX
¶
-
Header File¶
Functions¶
-
void
aw2013_led_bar_task
(void *parameters)¶
-
esp_periph_handle_t
led_bar_aw2013_init
(void)¶ Initialize led bar instance.
- Return
NULL Error
others Success
-
esp_err_t
led_bar_aw2013_pattern
(void *handle, int pat, int value)¶ Set led bar display pattern.
- Return
ESP_OK
ESP_FAIL
- Parameters
handle
: led bar instancepat
: display patternvalue
: value of pattern
-
esp_err_t
led_bar_aw2013_set_blink_time
(void *handle, uint8_t time, int period)¶ Set blinking period and times.
- Return
ESP_OK
ESP_FAIL
- Parameters
handle
: led bar instancetime
: times of blinkperiod
: period of blink
-
void
led_bar_aw2013_deinit
(esp_periph_handle_t handle)¶ Destroy esp_periph_handle_t instance.
- Parameters
handle
: led bar instance
Header File¶
Functions¶
-
esp_periph_handle_t
led_bar_is31x_init
()¶ Initialize esp_periph_handle_t instance.
- Return
NULL, Fail
Others, Success
-
esp_err_t
led_bar_is31x_pattern
(void *handle, int pat, int value)¶ Set led bar display pattern.
- Return
ESP_OK
ESP_FAIL
- Parameters
handle
: led bar instancepat
: display patternvalue
: value of pattern
-
void
led_bar_is31x_deinit
(esp_periph_handle_t handle)¶ Destroy esp_periph_handle_t instance.
- Return
ESP_OK
ESP_FAIL
- Parameters
handle
: led bar instance
Header File¶
Functions¶
-
led_bar_ws2812_handle_t
led_bar_ws2812_init
(gpio_num_t gpio_num, int led_num)¶ Initialize led_bar_ws2812_handle_t instance.
- Return
led_bar_ws2812_handle_t
- Parameters
gpio_num
: The GPIO number of ws2812led_num
: The number of all ws2812
-
esp_err_t
led_bar_ws2812_pattern
(void *handle, int pat, int value)¶ Set ws2812 pattern.
- Return
ESP_OK, success
Others, fail
- Parameters
handle
: ws2812 indicator instancepat
: display patternvalue
: value of pattern
-
esp_err_t
led_bar_ws2812_deinit
(led_bar_ws2812_handle_t handle)¶ Destroy led_bar_ws2812_handle_t instance.
- Return
- Return
ESP_OK, success
Others, fail
- Parameters
handle
: ws2812 indicator instance
Type Definitions¶
-
typedef struct led_bar_ws2812_impl *
led_bar_ws2812_handle_t
¶
Header File¶
Functions¶
-
led_indicator_handle_t
led_indicator_init
(gpio_num_t num)¶ Initialize led_indicator_handle_t instance.
- Return
NULL, Fail
Others, Success
- Parameters
num
: led gpio number
-
esp_err_t
led_indicator_pattern
(void *handle, int pat, int value)¶ Set led indicator display pattern.
- Return
ESP_OK
ESP_FAIL
- Parameters
handle
: led indicator instancepat
: display patternvalue
: value of pattern
-
void
led_indicator_deinit
(led_indicator_handle_t handle)¶ Destroy led_indicator_handle_t instance.
- Return
ESP_OK
ESP_FAIL
- Parameters
handle
: led indicator instance
Type Definitions¶
-
typedef struct led_indicator_impl *
led_indicator_handle_t
¶
Battery Service¶
The battery service can monitor and manage battery voltage. You can access battery voltage and the events defined by battery_service_event_t
through callback functions.
Application Example¶
Implementation of this API is demonstrated in the following example:
Header File¶
Functions¶
-
periph_service_handle_t
battery_service_create
(battery_service_config_t *config)¶ Create the battery service instance.
- Return
NULL: Failed
Others: Success
- Parameters
config
: configuration of the battery service
-
esp_err_t
battery_service_vol_report_switch
(periph_service_handle_t handle, bool on_off)¶ Start or stop the battery voltage report.
- Return
ESP_OK: Success
ESP_ERR_INVALID_ARG: handle is NULL
- Parameters
[in] handle
: pointer to ‘periph_service_handle_t’ structure[in] on_off
: ‘true’ to start, ‘false’ to stop
-
esp_err_t
battery_service_set_vol_report_freq
(periph_service_handle_t handle, int freq)¶ Set voltage report freqency.
- Return
ESP_OK: Success
ESP_ERR_INVALID_ARG: handle is NULL
- Parameters
[in] handle
: pointer to ‘periph_service_handle_t’ structure[in] freq
: voltage report freqency
Structures¶
-
struct
battery_service_config_t
¶ Battery service configure.
Public Members
-
int
task_stack
¶ >0 Service task stack; =0 with out task created
-
int
task_prio
¶ Service task priority (based on freeRTOS priority)
-
int
task_core
¶ Service task running in core (0 or 1)
-
bool
extern_stack
¶ Task stack allocate on the extern ram
-
periph_service_cb
evt_cb
¶ Service callback function
-
void *
cb_ctx
¶ Callback context
-
vol_monitor_handle_t
vol_monitor
¶ Battery monitor
-
void *
charger_monitor
¶ Charger monitor. Not supported yet
-
int
Macros¶
-
BATTERY_SERVICE_DEFAULT_CONFIG
()¶
Enumerations¶
Header File¶
Functions¶
-
vol_monitor_handle_t
vol_monitor_create
(vol_monitor_param_t *config)¶ Create the voltage monitor instance.
- Return
NULL: Failed
Others: Success
- Parameters
[in] config
: pointer to ‘vol_monitor_param_t’ structure
-
esp_err_t
vol_monitor_destroy
(vol_monitor_handle_t handle)¶ Destroy the voltage monitor.
- Return
ESP_OK: Success
Others: Failed
- Parameters
[in] handle
: pointer to ‘vol_monitor_handle_t’ structure
-
esp_err_t
vol_monitor_set_event_cb
(vol_monitor_handle_t handle, vol_monitor_event_cb event_cb, void *user_ctx)¶ Set the event callback.
- Return
ESP_OK: Success
Others: Failed
- Parameters
[in] handle
: pointer to ‘vol_monitor_handle_t’ structure[in] event_cb
: callback used to handle the events of voltage monitor[in] user_ctx
: user’s data
-
esp_err_t
vol_monitor_start_freq_report
(vol_monitor_handle_t handle)¶ Start the voltage report with the configured frequency.
- Return
ESP_OK: Success
Others: Failed
- Parameters
[in] handle
: pointer to ‘vol_monitor_handle_t’ structure
-
esp_err_t
vol_monitor_stop_freq_report
(vol_monitor_handle_t handle)¶ Stop the voltage frequency report.
- Return
ESP_OK: Success
Others: Failed
- Parameters
[in] handle
: pointer to ‘vol_monitor_handle_t’ structure
-
esp_err_t
vol_monitor_set_report_freq
(vol_monitor_handle_t handle, int freq)¶ Set the voltage report frequency.
- Return
ESP_OK: Success
Others: Failed
- Parameters
[in] handle
: pointer to ‘vol_monitor_handle_t’ structure[in] freq
: voltage report freqency
Structures¶
-
struct
vol_monitor_param_t
¶ Battery adc configure.
Public Members
-
bool (*
init
)(void *)¶ Voltage read init
-
bool (*
deinit
)(void *)¶ Voltage read deinit
-
int (*
vol_get
)(void *)¶ Voltage read interface
-
void *
user_data
¶ Parameters for callbacks
-
int
read_freq
¶ Voltage read frequency, unit: s
-
int
report_freq
¶ Voltage report frequency, voltage will be report with a interval calculate by (
read_freq
*report_freq
)
-
int
vol_full_threshold
¶ Voltage threshold to report, unit: mV
-
int
vol_low_threshold
¶ Voltage threshold to report, unit: mV
-
bool (*
Type Definitions¶
-
typedef void *
vol_monitor_handle_t
¶ voltage monitor handle
-
typedef void (*
vol_monitor_event_cb
)(int msg_id, void *data, void *user_ctx)¶ callback define
Enumerations¶
Core Dump Upload Service¶
To investigate crashes in some sold devices, the backtrace is needed for analysis. The core dump upload service transmits the backtrace stored in the device partition over HTTP. To enable this feature, select ESP_COREDUMP_ENABLE_TO_FLASH
.
Application Example¶
Implementation of this API is demonstrated in the following example:
Header File¶
Functions¶
-
bool
coredump_need_upload
()¶ This function will check the reset code and determine whether to upload the coredump.
- Return
true: last reboot is a abnormal reset.
false
-
esp_err_t
coredump_upload
(periph_service_handle_t handle, char *url)¶ Upload the core dump image to the url. This function will block the current task until the upload process finished.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] handle
: the ‘periph_service_handle_t’[in] url
: server addr
-
periph_service_handle_t
coredump_upload_service_create
(coredump_upload_service_config_t *config)¶ Create the core dump upload service instance.
- Return
NULL: Failed
Others: Success
- Parameters
config
: configuration of the OTA service
Structures¶
-
struct
coredump_upload_service_config_t
¶ coredump service configuration parameters
Public Members
-
int
task_stack
¶ >0 Service task stack; =0 with out task created
-
int
task_prio
¶ Service task priority (based on freeRTOS priority)
-
int
task_core
¶ Service task running in core (0 or 1)
-
periph_service_cb
evt_cb
¶ Service callback function
-
void *
cb_ctx
¶ Callback context
-
bool (*
do_post
)(char *url, uint8_t *data, size_t len)¶ POST interface, users can override this to customize the http client. if left NULL, the service will use the default one
-
int
Macros¶
-
COREDUMP_UPLOAD_SERVICE_DEFAULT_CONFIG
()¶
Header File¶
Functions¶
-
periph_service_handle_t
periph_service_create
(periph_service_config_t *config)¶ brief Create peripheral service instance
- Return
NULL, Fail
Others, Success
- Parameters
[in] config
: Configuration of the peripheral service instance
-
esp_err_t
periph_service_destroy
(periph_service_handle_t handle)¶ brief Destroy peripheral service instance
- Return
ESP_OK
ESP_FAIL
ESP_ERR_INVALID_ARG
- Parameters
[in] handle
: The peripheral service instance
-
esp_err_t
periph_service_start
(periph_service_handle_t handle)¶ brief Start the specific peripheral service
- Return
ESP_OK
ESP_FAIL
ESP_ERR_INVALID_ARG
- Parameters
[in] handle
: The peripheral service instance
-
esp_err_t
periph_service_stop
(periph_service_handle_t handle)¶ brief Stop the specific peripheral service
- Return
ESP_OK
ESP_FAIL
ESP_ERR_INVALID_ARG
- Parameters
[in] handle
: The peripheral service instance
-
esp_err_t
periph_service_set_callback
(periph_service_handle_t handle, periph_service_cb cb, void *ctx)¶ brief Set the specific peripheral service callback function
- Return
ESP_OK
ESP_FAIL
ESP_ERR_INVALID_ARG
- Parameters
[in] handle
: The peripheral service instance[in] cb
: A pointer to service_callback[in] ctx
: A pointer to user context
-
esp_err_t
periph_service_callback
(periph_service_handle_t handle, periph_service_event_t *evt)¶ brief Called peripheral service by configurations
- Return
ESP_OK
ESP_FAIL
ESP_ERR_INVALID_ARG
- Parameters
[in] handle
: The peripheral service instance[in] evt
: A pointer to periph_service_event_t
-
esp_err_t
periph_service_set_data
(periph_service_handle_t handle, void *data)¶ brief Set user data to specific peripheral service instance
- Return
ESP_OK
ESP_FAIL
ESP_ERR_INVALID_ARG
- Parameters
[in] handle
: The peripheral service instance[in] data
: A pointer to user data
-
void *
periph_service_get_data
(periph_service_handle_t handle)¶ brief Get user data by specific peripheral service instance
- Return
A pointer to user data
- Parameters
[in] handle
: The peripheral service instance
-
esp_err_t
periph_service_ioctl
(periph_service_handle_t handle, void *ioctl_handle, int cmd, int value)¶ brief In/out control by peripheral service instance
- Return
ESP_OK
ESP_FAIL
ESP_ERR_INVALID_ARG
- Parameters
[in] handle
: The peripheral service instance[in] ioctl_handle
: Sub-instance handle[in] cmd
: Command of value[in] value
: Data of the command
Structures¶
-
struct
periph_service_event_t
¶ Peripheral service event informations.
-
struct
periph_service_config_t
¶ Peripheral service configurations.
Public Members
-
int
task_stack
¶ >0 Service task stack; =0 with out task created
-
int
task_prio
¶ Service task priority (based on freeRTOS priority)
-
int
task_core
¶ Service task running in core (0 or 1)
-
TaskFunction_t
task_func
¶ Service task function
-
bool
extern_stack
¶ Task stack allocate on the extern ram
-
periph_service_ctrl
service_start
¶ Start function
-
periph_service_ctrl
service_stop
¶ Stop function
-
periph_service_ctrl
service_destroy
¶ Destroy function
-
periph_service_io
service_ioctl
¶ In out control function
-
char *
service_name
¶ Name of peripheral service
-
void *
user_data
¶ User data
-
int
Type Definitions¶
-
typedef struct periph_service_impl *
periph_service_handle_t
¶
-
typedef esp_err_t (*
periph_service_ctrl
)(periph_service_handle_t handle)¶
-
typedef esp_err_t (*
periph_service_io
)(void *ioctl_handle, int cmd, int value)¶
-
typedef esp_err_t (*
periph_service_cb
)(periph_service_handle_t handle, periph_service_event_t *evt, void *ctx)¶
Enumerations¶
Header File¶
Functions¶
-
audio_service_handle_t
audio_service_create
(audio_service_config_t *config)¶ brief Create audio service instance
- Return
NULL, Fail
Others, Success
- Parameters
[in] config
: Configuration of the audio service instance
-
esp_err_t
audio_service_destroy
(audio_service_handle_t handle)¶ brief Destroy audio service instance
- Return
ESP_OK
ESP_FAIL
ESP_ERR_INVALID_ARG
- Parameters
[in] handle
: The audio service instance
-
esp_err_t
audio_service_start
(audio_service_handle_t handle)¶ brief Start the specific audio service
- Return
ESP_OK
ESP_FAIL
ESP_ERR_INVALID_ARG
- Parameters
[in] handle
: The audio service instance
-
esp_err_t
audio_service_stop
(audio_service_handle_t handle)¶ brief Stop the specific audio service
- Return
ESP_OK
ESP_FAIL
ESP_ERR_INVALID_ARG
- Parameters
[in] handle
: The audio service instance
-
esp_err_t
audio_service_set_callback
(audio_service_handle_t handle, service_callback cb, void *ctx)¶ brief Set the specific audio service callback function.
- Return
ESP_OK
ESP_FAIL
ESP_ERR_INVALID_ARG
- Parameters
[in] handle
: The audio service instance[in] cb
: A pointer to service_callback[in] ctx
: A pointer to user context
-
esp_err_t
audio_service_callback
(audio_service_handle_t handle, service_event_t *evt)¶ brief Called audio service by configurations
- Return
ESP_OK
ESP_FAIL
ESP_ERR_INVALID_ARG
- Parameters
[in] handle
: The audio service instance[in] evt
: A pointer to service_event_t
-
esp_err_t
audio_service_connect
(audio_service_handle_t handle)¶ brief Connect the specific audio service
- Return
ESP_OK
ESP_FAIL
ESP_ERR_INVALID_ARG
- Parameters
[in] handle
: The audio service instance
-
esp_err_t
audio_service_disconnect
(audio_service_handle_t handle)¶ brief Disconnect the specific audio service
- Return
ESP_OK
ESP_FAIL
ESP_ERR_INVALID_ARG
- Parameters
[in] handle
: The audio service instance
-
esp_err_t
audio_service_set_data
(audio_service_handle_t handle, void *data)¶ brief Set user data to specific audio service instance
- Return
ESP_OK
ESP_FAIL
ESP_ERR_INVALID_ARG
- Parameters
[in] handle
: The audio service instance[in] data
: A pointer to user data
-
void *
audio_service_get_data
(audio_service_handle_t handle)¶ brief Get user data by specific audio service instance
- Return
A pointer to user data
- Parameters
[in] handle
: The audio service instance
Structures¶
-
struct
service_event_t
¶ Audio service event informations.
-
struct
audio_service_config_t
¶ Audio service configurations.
Public Members
-
int
task_stack
¶ >0 Service task stack; =0 with out task created
-
int
task_prio
¶ Service task priority (based on freeRTOS priority)
-
int
task_core
¶ Service task running in core (0 or 1)
-
TaskFunction_t
task_func
¶ A pointer to TaskFunction_t for service task function
-
service_ctrl
service_start
¶ Start function
-
service_ctrl
service_stop
¶ Stop function
-
service_ctrl
service_connect
¶ Connect function
-
service_ctrl
service_disconnect
¶ Disconnect function
-
service_ctrl
service_destroy
¶ Destroy function
-
const char *
service_name
¶ Name of audio service
-
void *
user_data
¶ User context
-
int
Type Definitions¶
-
typedef struct audio_service_impl *
audio_service_handle_t
¶
-
typedef esp_err_t (*
service_ctrl
)(audio_service_handle_t handle)¶
-
typedef esp_err_t (*
service_callback
)(audio_service_handle_t handle, service_event_t *evt, void *ctx)¶
Enumerations¶
Speech Recognition¶
The ESP-ADF comes complete with speech recognition interface to recognize voice wakeup commands. Most of currently implemented wakeup commands are in Chinese with one command “Hi Jeson” in English.
Provided in this section functions also include automatic speech detection, also known as voice activity detection (VAD), and speech recording engine.
The Speech Recognition API is designed to easy integrate with existing Audio Framework to retrieve the audio stream from a microphone connected to the audio chip.
Speech Recognition Interface¶
Setting up the speech recognition application to detect a wakeup word may be done using series of Audio Elements linked into a pipeline shown below.

Sample Speech Recognition Pipeline¶
Configuration and use of particular elements is demonstrated in several examples linked to elsewhere in this documentation. What may need clarification is use of the Filter and the RAW stream. The filter is used to adjust the sample rate of the I2S stream to match the sample rate of the speech recognition model. The RAW stream is the way to feed the audio input to the model.
Application Example¶
The speech_recognition/wwe/main/main.c example demonstrates how to initialize the model, determine the number of samples and the sample rate of voice data to feed to the model, and detect the wakeup word.
Implementation of the speech recognition API is demonstrated in that example.
API Reference¶
For the latest API reference please refer to Espressif Speech recognition repository.
Voice Activity Detection¶
Voice activity detection (VAD) is a technique used in speech processing to detect the presence (or absence) of human speech. Detection of somebody speaking may be used to activate some processes, e.g. automatically switch on voice recording. It may be also used to deactivate processes, e.g. stop coding and transmission of silence packets to save on computation and network bandwidth.
Provided in this section API implements VAD functionality together with couple of options to configure sensitivity of speech detection, set sample rate or duration of audio samples.
Application Example¶
Implementation of the voice activity detection API is demonstrated in speech_recognition/vad example.
API Reference¶
For the latest API reference please refer to Espressif Speech recognition repository.
Recorder Engine¶
The Recorder Engine API is a set of functions to facilitate voice recording. The API is integrated with Voice Activity Detection, providing options to enable and disable VAD to control the incoming audio stream. The Recorder Engine also includes possibility to encode the audio stream using AMR or AMRWB formats.
API Reference¶
Header File¶
Functions¶
-
esp_err_t
rec_engine_create
(rec_config_t *cfg)¶ Create recorder engine according to parameters.
- Note
Sample rate is 16k, 1 channel, 16bits, by default. Upon completion of this function rec_open callback will be triggered.
- Return
0: Success
-1: Error
- Parameters
cfg
: See rec_config_t structure for additional details
-
int
rec_engine_data_read
(uint8_t *buffer, int buffer_size, int waiting_time)¶ Read voice data after REC_EVENT_VAD_START.
- Return
-2 : timeout of read
-1 : parameters invalid or task not running.
0 : last voice block.
others: voice block index.
- Parameters
buffer
: data pointerbuffer_size
: Size of buffer, must be equal to REC_ONE_BLOCK_SIZE.waiting_time
: Timeout for reading data. Default time of REC_ONE_BLOCK_SIZE is 100ms, larger than 100ms is recommended.
-
esp_err_t
rec_engine_detect_suspend
(rec_voice_suspend_t flag)¶ Suspend or enable voice detection by vad.
- Return
0: Success
-1: Error
- Parameters
flag
: REC_VOICE_SUSPEND_ON: Voice detection is suspended REC_VOICE_SUSPEND_OFF: Voice detection is not suspended
-
esp_err_t
rec_engine_trigger_start
(void)¶ Start recording by force.
- Return
0: Success
-1: Error
-
esp_err_t
rec_engine_trigger_stop
(void)¶ Stop recording by force.
- Return
0: Success
-1: Error
-
esp_err_t
rec_engine_destroy
(void)¶ Destroy the recorder engine.
- Note
Upon completion of this function rec_close callback will be triggered.
- Return
0: Success
-1: Error
-
esp_err_t
rec_engine_vad_enable
(bool vad_enable)¶ Disable or enable the VAD(voice activity detection).
- Note
Enable vad by default. Usage: Call this function before
rec_engine_trigger_start
to disable voice activity detection, Call this funciton afterrec_engine_trigger_stop
to enable voice activity detection. Even if disable voice activity detection, theREC_EVENT_VAD_START
andREC_EVENT_VAD_STOP
events still notified whenrec_engine_trigger_start
andrec_engine_trigger_stop
called.- Return
0: Success
-1: Error
- Parameters
vad_enable
: true is enable vad, false disable vad
-
esp_err_t
rec_engine_enc_enable
(bool enc_enable)¶ Enable the recoder encoding, or not.
- Note
support_encoding
must be set,rec_engine_enc_enable
can be used. Disable encoding by default.- Return
0: Success
-1: Error
- Parameters
enc_enable
: true is enable encoding, false is disable.
-
esp_err_t
rec_engine_enc_data_read
(uint8_t *buffer, int buffer_size, int waiting_time, int *out_size)¶ Read voice data after REC_EVENT_VAD_START.
- Note
support_encoding
andrec_engine_enc_enable
must be set.- Return
-2 : timeout of read
-1 : parameters invalid or not encoding mode.
0 : success.
others: voice block index.
- Parameters
buffer
: data pointerbuffer_size
: Size of buffer, must be equal to REC_ONE_BLOCK_SIZE.waiting_time
: Timeout for reading data.out_size
: Valid size of buffer.
-
esp_err_t
rec_engine_mute_enable
(bool mute_enable)¶ Enable the recoder mute, or not.
- Note
if enable mute, no data fill the buffer, so the
rec_engine_enc_data_read
andrec_engine_data_read
will be blocked.- Return
0: Success
-1: Error
- Parameters
mute_enable
: true is mute, false is not.
-
esp_err_t
rec_engine_get_wakeup_stat
(bool *wakeup_start_t)¶ Get recorder engine wakeup state.
- Return
0: Success
-1: Error
- Parameters
wakeup_start_t
: true is WAKEUP_START, false is not.
Structures¶
-
struct
rec_config_t
¶ recorder configuration parameters
Public Members
-
int
one_frame_duration_ms
¶ Duration of one frame (optional)
-
int
sensitivity
¶ For response accuracy rate sensitivity. Default 0: 90%, 1: 95%
-
int
vad_off_delay_ms
¶ Vad off delay to stop if no voice is detected
-
int
wakeup_time_ms
¶ Time of wakeup
-
bool
support_encoding
¶ Support encoding data
-
const char *
extension
¶ Encoding format.”amr” or “amrwb” support
-
int
task_core
¶ Recorder task running in core (0 or 1)
-
bool
enable_wwe
¶ Enable Wake Word Engine or not
-
rec_callback
evt_cb
¶ Recorder event callback function
-
void *
user_data
¶ Pointer to user data (optional)
-
int
Macros¶
-
REC_ONE_BLOCK_SIZE
¶
-
DEFAULT_REC_ENGINE_CONFIG
()¶
Type Definitions¶
-
typedef void (*
rec_callback
)(rec_event_type_t type, void *user_data)¶
-
typedef esp_err_t (*
rec_open
)(void **handle)¶
-
typedef esp_err_t (*
rec_fetch
)(void *handle, char *data, int data_size)¶
-
typedef esp_err_t (*
rec_close
)(void *handle)¶
Enumerations¶
Peripherals¶
There are several peripherals available in the ESP-ADF, ranging from buttons and LEDs to SD Card or Wi-Fi. The peripherals are implemented using common API that is then expanded with peripheral specific functionality. The following description covers common functionality.
ESP Peripherals¶
This library simplifies the management of peripherals, by pooling and monitoring in a single task, adding basic functions to send and receive events. And it also provides APIs to easily integrate new peripherals.
Note
Note that if you do not intend to integrate new peripherals into esp_peripherals, you are only interested in simple api esp_periph_init
, esp_periph_start
, esp_periph_stop
and esp_periph_destroy
. If you want to integrate new peripherals, please refer to Periph Button source code
Examples¶
Please refer to player/pipeline_http_mp3/main/play_http_mp3_example.c.
API Reference¶
Header File¶
Functions¶
-
esp_periph_set_handle_t
esp_periph_set_init
(esp_periph_config_t *config)¶ Initialize esp_peripheral sets, create empty peripherals list. Call this function before starting any peripherals (with
esp_periph_start
). This call will initialize the data needed for esp_peripherals to work, but does not actually create the task. Theevent_handle
is optional if you want to receive events from this callback function. The esp_peripherals task will send all events out to event_iface, can be listen by event_iface byesp_periph_get_event_iface
. Theuser_context
will sentesp_periph_event_handle_t
as *context parameter.- Return
The peripheral sets instance
- Parameters
[in] config
: The configurations
-
esp_err_t
esp_periph_set_destroy
(esp_periph_set_handle_t periph_set_handle)¶ This function will stop and kill the monitor task, calling all destroy callback functions of the peripheral (so you do not need to destroy the peripheral object manually). It will also remove all memory allocated to the peripherals list, so you need to call the
esp_periph_set_init
function again if you want to use it.- Return
ESP_OK
ESP_FAIL
- Parameters
periph_set_handle
: The esp_periph_set_handle_t instance
-
esp_err_t
esp_periph_set_stop_all
(esp_periph_set_handle_t periph_set_handle)¶ Stop monitoring all peripherals, the peripheral state is still kept. This funciton only temporary disables the peripheral.
- Return
ESP_OK
ESP_FAIL
- Parameters
periph_set_handle
: The esp_periph_set_handle_t instance
-
esp_periph_handle_t
esp_periph_set_get_by_id
(esp_periph_set_handle_t periph_set_handle, int periph_id)¶ Get the peripheral handle by Peripheral ID.
- Return
The esp_periph_handle_t
- Parameters
periph_set_handle
: The esp_periph_set_handle_t instance[in] periph_id
: as esp_periph_id_t, or any ID you use when callingesp_periph_create
-
audio_event_iface_handle_t
esp_periph_set_get_event_iface
(esp_periph_set_handle_t periph_set_handle)¶ Return the event_iface used by this esp_peripherals.
- Return
The audio event iface handle
- Parameters
periph_set_handle
: The esp_periph_set_handle_t instance
-
esp_err_t
esp_periph_set_register_callback
(esp_periph_set_handle_t periph_set_handle, esp_periph_event_handle_t cb, void *user_context)¶ Register peripheral sets event callback function.
- Return
ESP_OK
ESP_FAIL
- Parameters
periph_set_handle
: The esp_periph_set_handle_t instancecb
: The event handle callback functionuser_context
: The user context pointer
-
QueueHandle_t
esp_periph_set_get_queue
(esp_periph_set_handle_t periph_set_handle)¶ Peripheral is using event_iface to control the event, all events are send out to event_iface queue. This function will be useful in case we want to read events directly from the event_iface queue.
- Return
The queue handle
- Parameters
periph_set_handle
: The esp_periph_set_handle_t instance
-
esp_err_t
esp_periph_set_list_init
(esp_periph_set_handle_t periph_set_handle)¶ Call this function to initialize all the listed peripherals.
- Note
Work with no task peripheral set only
- Return
ESP_OK
ESP_FAIL
- Parameters
periph_set_handle
: The esp_periph_set_handle_t instance
-
esp_err_t
esp_periph_set_list_run
(esp_periph_set_handle_t periph_set_handle, audio_event_iface_msg_t msg)¶ Call this function to run all the listed peripherals.
- Note
Work with no task peripheral set only
- Return
ESP_OK
ESP_FAIL
- Parameters
periph_set_handle
: The esp_periph_set_handle_t instancemsg
: The audio_event_iface_msg_t handle message
-
esp_err_t
esp_periph_set_list_destroy
(esp_periph_set_handle_t periph_set_handle)¶ Call this function to destroy all the listed peripherals.
- Note
Work with no task peripheral set only
- Return
ESP_OK
ESP_FAIL
- Parameters
periph_set_handle
: The esp_periph_set_handle_t instance
-
esp_err_t
esp_periph_remove_from_set
(esp_periph_set_handle_t periph_set_handle, esp_periph_handle_t periph)¶ Call this function to remove periph from periph_set.
- Return
ESP_OK
ESP_FAIL
- Parameters
periph_set_handle
: The esp_periph_set_handle_t instanceperiph
: The esp_periph_handle_t instance
-
esp_err_t
esp_periph_set_change_waiting_time
(esp_periph_set_handle_t periph_set_handle, int time_ms)¶ Call this function to change periph_set waiting time.
- Return
ESP_OK
ESP_FAIL
- Parameters
periph_set_handle
: The esp_periph_set_handle_t instancetime_ms
: The waiting time
-
esp_periph_handle_t
esp_periph_create
(int periph_id, const char *tag)¶ Call this function to initialize a new peripheral.
- Return
The peripheral handle
- Parameters
[in] periph_id
: The periph identifier[in] tag
: The tag name, we named it easy to get in debug logs
-
esp_err_t
esp_periph_set_function
(esp_periph_handle_t periph, esp_periph_func init, esp_periph_run_func run, esp_periph_func destroy)¶ Each peripheral has a cycle of sequential operations from initialization, execution of commands to destroying the peripheral. These operations are represented by functions passed as call parameters to this function.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] periph
: The periph[in] init
: The initialize[in] run
: The run[in] destroy
: The destroy
-
esp_err_t
esp_periph_start
(esp_periph_set_handle_t periph_set_handle, esp_periph_handle_t periph)¶ Add the peripheral to peripherals list, enable and start monitor task (if task stack size > 0)
- Note
This peripheral must be first created by calling
esp_periph_create
- Return
ESP_OK on success
ESP_FAIL when any errors
- Parameters
[in] periph_set_handle
: The esp_periph_set_handle_t instance[in] periph
: The peripheral instance
-
esp_err_t
esp_periph_stop
(esp_periph_handle_t periph)¶ Stop monitoring the peripheral, the peripheral state is still kept. This funciton only temporary disables the peripheral.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] periph
: The periph
-
esp_err_t
esp_periph_send_cmd
(esp_periph_handle_t periph, int cmd, void *data, int data_len)¶ When this function is called, the command is passed to the event_iface command queue, and the
esp_periph_run_func
of this peripheral will be executed in the main peripheral task. This function can be called from any task, basically it only sends a queue to the main peripheral task.- Return
ESP_OK
ESP_FAIL
- Parameters
[in] periph
: The periph[in] cmd
: The commanddata
: The data[in] data_len
: The data length
-
esp_err_t
esp_periph_send_cmd_from_isr
(esp_periph_handle_t periph, int cmd, void *data, int data_len)¶ Similar to
esp_periph_send_cmd
, but it can be called in the hardware interrupt handle.- Return
ESP_OK
ESP_FAIL
- Parameters
[in] periph
: The periph[in] cmd
: The commanddata
: The data[in] data_len
: The data length
-
esp_err_t
esp_periph_send_event
(esp_periph_handle_t periph, int event_id, void *data, int data_len)¶ In addition to sending an event via event_iface, this function will dispatch the
event_handle
callback if the event_handle callback is provided atesp_periph_init
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] periph
: The peripheral[in] event_id
: The event identifierdata
: The data[in] data_len
: The data length
-
esp_err_t
esp_periph_start_timer
(esp_periph_handle_t periph, TickType_t interval_tick, timer_callback callback)¶ Each peripheral can initialize a timer, which is by default NULL. When this function is called, the timer for the peripheral is created and it invokes the callback function every interval tick.
- Note
You do not need to stop or destroy the timer, when the
esp_periph_destroy
function is called, it will stop and destroy allThis timer using FreeRTOS Timer, with autoreload = true
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] periph
: The peripheral[in] interval_tick
: The interval tick[in] callback
: The callback
-
esp_err_t
esp_periph_stop_timer
(esp_periph_handle_t periph)¶ Stop peripheral timer.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] periph
: The peripheral
-
esp_err_t
esp_periph_set_data
(esp_periph_handle_t periph, void *data)¶ Set the user data.
- Note
Make sure the
data
lifetime is sufficient, this function does not copy all data, it only stores the data pointer- Return
ESP_OK
ESP_FAIL
- Parameters
[in] periph
: The peripheraldata
: The data
-
void *
esp_periph_get_data
(esp_periph_handle_t periph)¶ Get the user data stored in the peripheral.
- Return
Peripheral data pointer
- Parameters
[in] periph
: The peripheral
-
esp_periph_state_t
esp_periph_get_state
(esp_periph_handle_t periph)¶ Get the current state of peripheral.
- Return
The peripharal working state
- Parameters
[in] periph
: The handle of peripheral
-
esp_periph_id_t
esp_periph_get_id
(esp_periph_handle_t periph)¶ Get Peripheral identifier.
- Return
The peripheral identifier
- Parameters
[in] periph
: The peripheral
-
esp_err_t
esp_periph_set_id
(esp_periph_handle_t periph, esp_periph_id_t periph_id)¶ Set Peripheral identifier.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] periph
: The peripheral[in] periph_id
: The peripheral identifier
-
esp_err_t
esp_periph_init
(esp_periph_handle_t periph)¶ Call this to execute
init
function of peripheral instance.- Return
ESP_OK
ESP_FAIL
- Parameters
periph
: The peripheral handle
-
esp_err_t
esp_periph_run
(esp_periph_handle_t periph)¶ Call this to execute
run
function of peripheral instance.- Return
ESP_OK
ESP_FAIL
- Parameters
periph
: The peripheral handle
-
esp_err_t
esp_periph_destroy
(esp_periph_handle_t periph)¶ Call this to execute
destroy
function of peripheral instance.- Return
ESP_OK
ESP_FAIL
- Parameters
periph
: The peripheral handle
-
esp_err_t
esp_periph_register_on_events
(esp_periph_handle_t periph, esp_periph_event_t *evts)¶ Rigster peripheral on event handle.
- Return
ESP_OK
ESP_FAIL
- Parameters
periph
: The peripheral handleevts
: The esp_periph_event_t handle
Structures¶
-
struct
esp_periph_config_t
¶ Common peripherals configurations.
-
struct
esp_periph_event
¶ peripheral events
Public Members
-
void *
user_ctx
¶ peripheral context data
-
esp_periph_event_handle_t
cb
¶ peripheral callback function
-
audio_event_iface_handle_t
iface
¶ peripheral event
-
void *
Macros¶
-
DEFAULT_ESP_PERIPH_STACK_SIZE
¶
-
DEFAULT_ESP_PERIPH_TASK_PRIO
¶
-
DEFAULT_ESP_PERIPH_TASK_CORE
¶
-
DEFAULT_ESP_PERIPH_SET_CONFIG
()¶
-
periph_tick_get
¶
Type Definitions¶
-
typedef struct esp_periph_sets *
esp_periph_set_handle_t
¶
-
typedef struct esp_periph *
esp_periph_handle_t
¶
-
typedef esp_err_t (*
esp_periph_func
)(esp_periph_handle_t periph)¶
-
typedef esp_err_t (*
esp_periph_run_func
)(esp_periph_handle_t periph, audio_event_iface_msg_t *msg)¶
-
typedef esp_err_t (*
esp_periph_event_handle_t
)(audio_event_iface_msg_t *event, void *context)¶
-
typedef void (*
timer_callback
)(xTimerHandle tmr)¶
-
typedef struct esp_periph_event
esp_periph_event_t
¶ peripheral events
Enumerations¶
-
enum
esp_periph_id_t
¶ Peripheral Identify, this must be unique for each peripheral added to the peripherals list.
Values:
-
PERIPH_ID_BUTTON
= AUDIO_ELEMENT_TYPE_PERIPH + 1¶
-
PERIPH_ID_TOUCH
= AUDIO_ELEMENT_TYPE_PERIPH + 2¶
-
PERIPH_ID_SDCARD
= AUDIO_ELEMENT_TYPE_PERIPH + 3¶
-
PERIPH_ID_WIFI
= AUDIO_ELEMENT_TYPE_PERIPH + 4¶
-
PERIPH_ID_FLASH
= AUDIO_ELEMENT_TYPE_PERIPH + 5¶
-
PERIPH_ID_AUXIN
= AUDIO_ELEMENT_TYPE_PERIPH + 6¶
-
PERIPH_ID_ADC
= AUDIO_ELEMENT_TYPE_PERIPH + 7¶
-
PERIPH_ID_CONSOLE
= AUDIO_ELEMENT_TYPE_PERIPH + 8¶
-
PERIPH_ID_BLUETOOTH
= AUDIO_ELEMENT_TYPE_PERIPH + 9¶
-
PERIPH_ID_LED
= AUDIO_ELEMENT_TYPE_PERIPH + 10¶
-
PERIPH_ID_SPIFFS
= AUDIO_ELEMENT_TYPE_PERIPH + 11¶
-
PERIPH_ID_ADC_BTN
= AUDIO_ELEMENT_TYPE_PERIPH + 12¶
-
PERIPH_ID_IS31FL3216
= AUDIO_ELEMENT_TYPE_PERIPH + 13¶
-
PERIPH_ID_GPIO_ISR
= AUDIO_ELEMENT_TYPE_PERIPH + 14¶
-
PERIPH_ID_WS2812
= AUDIO_ELEMENT_TYPE_PERIPH + 15¶
-
PERIPH_ID_AW2013
= AUDIO_ELEMENT_TYPE_PERIPH + 16¶
-
PERIPH_ID_LCD
= AUDIO_ELEMENT_TYPE_PERIPH + 17¶
-
The peripheral specific functionality is available by calling dedicated functions described below. Some peripherals are available on both ESP32-LyraT and ESP32-LyraTD-MSC development boards, some on a specific board only. The following table provides all implemented peripherals broken down by development board.
Wi-Fi Peripheral¶
The Wi-Fi Peripheral is used to configure Wi-Fi connections, provide APIs to control Wi-Fi connection configuration, as well as monitor the status of Wi-Fi networks.
Application Example¶
Implementation of this API is demonstrated in player/pipeline_http_mp3 example.
API Reference¶
Header File¶
Functions¶
-
esp_periph_handle_t
periph_wifi_init
(periph_wifi_cfg_t *config)¶ Create the wifi peripheral handle for esp_peripherals.
- Note
The handle was created by this function automatically destroy when
esp_periph_destroy
is called- Return
The esp peripheral handle
- Parameters
config
: The configuration
-
esp_err_t
periph_wifi_wait_for_connected
(esp_periph_handle_t periph, TickType_t tick_to_wait)¶ This function will block current thread (in
tick_to_wait
tick) and wait until ESP32 connected to the Wi-Fi network, and got ip.- Return
ESP_OK
ESP_FAIL
- Parameters
[in] periph
: The periph[in] tick_to_wait
: The tick to wait
-
periph_wifi_state_t
periph_wifi_is_connected
(esp_periph_handle_t periph)¶ Check the Wi-Fi connection status.
- Return
Wi-Fi network status
- Parameters
[in] periph
: The periph
-
esp_err_t
esp_wifi_set_listen_interval
(esp_periph_handle_t periph, int interval)¶ Set Wi-Fi listen interval for ESP32 station to receive beacon.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] periph
: The wifi periph[in] interval
: listen interval. units: AP beacon intervals(see BcnInt, default: 100ms)
-
esp_err_t
periph_wifi_config_start
(esp_periph_handle_t periph, periph_wifi_config_mode_t mode)¶ Start Wi-Fi network setup in
mode
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] periph
: The periph[in] mode
: The mode
-
esp_err_t
periph_wifi_config_wait_done
(esp_periph_handle_t periph, TickType_t tick_to_wait)¶ Wait for Wi-Fi setup done.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] periph
: The periph[in] tick_to_wait
: The tick to wait
Structures¶
-
struct
periph_wpa2_enterprise_cfg_t
¶ The WPA2 enterprise peripheral configuration.
Public Members
-
bool
diasble_wpa2_e
¶ Disable wpa2 enterprise
-
int
eap_method
¶ TLS: 0, PEAP: 1, TTLS: 2
-
char *
ca_pem_start
¶ binary wpa2 ca pem start
-
char *
ca_pem_end
¶ binary wpa2 ca pem end
-
char *
wpa2_e_cert_start
¶ binary wpa2 cert start
-
char *
wpa2_e_cert_end
¶ binary wpa2 cert end
-
char *
wpa2_e_key_start
¶ binary wpa2 key start
-
char *
wpa2_e_key_end
¶ binary wpa2 key end
-
const char *
eap_id
¶ Identity in phase 1 of EAP procedure
-
const char *
eap_username
¶ Username for EAP method (PEAP and TTLS)
-
const char *
eap_password
¶ Password for EAP method (PEAP and TTLS)
-
bool
-
struct
periph_wifi_cfg_t
¶ The Wi-Fi peripheral configuration.
Public Members
-
bool
disable_auto_reconnect
¶ Disable Wi-Fi auto reconnect
-
int
reconnect_timeout_ms
¶ The reconnect timeout after disconnected from Wi-Fi network
-
const char *
ssid
¶ SSID of target AP
-
const char *
password
¶ password of target AP
-
periph_wpa2_enterprise_cfg_t
wpa2_e_cfg
¶ wpa2 enterprise config
-
bool
Enumerations¶
-
enum
periph_wifi_state_t
¶ Peripheral Wi-Fi event id.
Values:
-
PERIPH_WIFI_UNCHANGE
= 0¶
-
PERIPH_WIFI_CONNECTING
¶
-
PERIPH_WIFI_CONNECTED
¶
-
PERIPH_WIFI_DISCONNECTED
¶
-
PERIPH_WIFI_SETTING
¶
-
PERIPH_WIFI_CONFIG_DONE
¶
-
PERIPH_WIFI_CONFIG_ERROR
¶
-
PERIPH_WIFI_ERROR
¶
-
-
enum
periph_wifi_config_mode_t
¶ Wi-Fi setup mode type.
Values:
-
WIFI_CONFIG_ESPTOUCH
¶ Using smartconfig with ESPTOUCH protocol
-
WIFI_CONFIG_AIRKISS
¶ Using smartconfig with AIRKISS protocol
-
WIFI_CONFIG_ESPTOUCH_AIRKISS
¶ Using smartconfig with ESPTOUCH_AIRKISS protocol
-
WIFI_CONFIG_WPS
¶ Using WPS (not support)
-
WIFI_CONFIG_BLUEFI
¶ Using BLUEFI
-
WIFI_CONFIG_WEB
¶ Using HTTP Server (not support)
-
SD Card Peripheral¶
If your board has a SD card connected, use this API to initialize, mount and unmount the card, see functions periph_sdcard_init()
, periph_sdcard_mount()
and periph_sdcard_unmount()
. The data reading / writing is implemented in a separate API described in FatFs Stream.
Application Examples¶
Implementation of this API is demonstrated in couple of examples:
API Reference¶
Header File¶
Functions¶
-
esp_periph_handle_t
periph_sdcard_init
(periph_sdcard_cfg_t *sdcard_config)¶ Create the sdcard peripheral handle for esp_peripherals.
- Note
The handle was created by this function automatically destroy when
esp_periph_destroy
is called- Return
The esp peripheral handle
- Parameters
sdcard_config
: The sdcard configuration
-
bool
periph_sdcard_is_mounted
(esp_periph_handle_t periph)¶ Check the sdcard is mounted or not.
- Return
SDCARD mounted state
- Parameters
[in] periph
: The periph
Structures¶
-
struct
periph_sdcard_cfg_t
¶ The SD Card Peripheral configuration.
Public Members
-
int
card_detect_pin
¶ Card detect gpio number
-
const char *
root
¶ Base path for vfs
-
periph_sdcard_mode_t
mode
¶ card mode
-
int
Enumerations¶
-
enum
periph_sdcard_event_id_t
¶ Peripheral sdcard event id.
Values:
-
SDCARD_STATUS_UNKNOWN
¶ No event
-
SDCARD_STATUS_CARD_DETECT_CHANGE
¶ Detect changes in the card_detect pin
-
SDCARD_STATUS_MOUNTED
¶ SDCARD mounted successfully
-
SDCARD_STATUS_UNMOUNTED
¶ SDCARD unmounted successfully
-
SDCARD_STATUS_MOUNT_ERROR
¶ SDCARD mount error
-
SDCARD_STATUS_UNMOUNT_ERROR
¶ SDCARD unmount error
-
Spiffs Peripheral¶
Use this API to initialize, mount and unmount spiffs partition, see functions periph_spiffs_init()
, periph_spiffs_mount()
and periph_spiffs_unmount()
. The data reading / writing is implemented in a separate API described in SPIFFS Stream.
Application Example¶
Implementation of this API is demonstrated in audio_processing/pipeline_spiffs_amr_resample example.
API Reference¶
Header File¶
Functions¶
-
esp_periph_handle_t
periph_spiffs_init
(periph_spiffs_cfg_t *spiffs_config)¶ Create the spiffs peripheral handle for esp_peripherals.
- Note
The handle created by this function will be automatically destroyed when
esp_periph_destroy
is called- Return
The esp peripheral handle
- Parameters
spiffs_config
: The spiffs configuration
-
bool
periph_spiffs_is_mounted
(esp_periph_handle_t periph)¶ Check if the SPIFFS is mounted or not.
- Return
SPIFFS mounted state
- Parameters
[in] periph
: The periph
Structures¶
-
struct
periph_spiffs_cfg_t
¶ The SPIFFS Peripheral configuration.
Public Members
-
const char *
root
¶ Base path for vfs
-
const char *
partition_label
¶ Optional, label of SPIFFS partition to use. If set to NULL, first partition with subtype=spiffs will be used.
-
size_t
max_files
¶ Maximum number of files that could be open at the same time.
-
bool
format_if_mount_failed
¶ If true, it will format the file system if it fails to mount.
-
const char *
Enumerations¶
-
enum
periph_spiffs_event_id_t
¶ Peripheral spiffs event id.
Values:
-
SPIFFS_STATUS_UNKNOWN
¶ No event
-
SPIFFS_STATUS_MOUNTED
¶ SPIFFS mounted successfully
-
SPIFFS_STATUS_UNMOUNTED
¶ SPIFFS unmounted successfully
-
SPIFFS_STATUS_MOUNT_ERROR
¶ SPIFFS mount error
-
SPIFFS_STATUS_UNMOUNT_ERROR
¶ SPIFFS unmount error
-
Console Peripheral¶
Console Peripheral is used to control the Audio application from the terminal screen. It provides 2 ways do execute command, one sends an event to esp_peripherals (for a command without parameters), another calls a callback function (need parameters). If there is a callback function, no event will be sent.
Please make sure that the lifetime of periph_console_cmd_t
must be ensured during console operation, periph_console_init()
only reference, does not make a copy.
Code example¶
Please refer to cli/main/console_example.c.
API Reference¶
Header File¶
Functions¶
-
esp_periph_handle_t
periph_console_init
(periph_console_cfg_t *config)¶ Initialize Console Peripheral.
- Return
The esp peripheral handle
- Parameters
config
: The configuration
Structures¶
-
struct
periph_console_cmd_t
¶ Command structure.
Public Members
-
const char *
cmd
¶ Name of command, must be unique
-
int
id
¶ Command ID will be sent together when the command is matched
-
const char *
help
¶ Explanation of the command
-
console_cmd_callback_t
func
¶ Function callback for the command
-
const char *
-
struct
periph_console_cfg_t
¶ Console Peripheral configuration.
Public Members
-
int
command_num
¶ Total number of commands
-
const periph_console_cmd_t *
commands
¶ Pointer to array of commands
-
int
task_stack
¶ Console task stack, using default if the value is zero
-
int
task_prio
¶ Console task priority (based on freeRTOS priority), using default if the value is zero
-
int
buffer_size
¶ Size of console input buffer
-
const char *
prompt_string
¶ Console prompt string, using default CONSOLE_PROMPT_STRING if the pointer is NULL
-
int
Macros¶
-
CONSOLE_DEFAULT_TASK_PRIO
¶
-
CONSOLE_DEFAULT_TASK_STACK
¶
-
CONSOLE_DEFAULT_BUFFER_SIZE
¶
-
CONSOLE_DEFAULT_PROMPT_STRING
¶
Type Definitions¶
-
typedef esp_err_t (*
console_cmd_callback_t
)(esp_periph_handle_t periph, int argc, char *argv[])¶
Touch Peripheral¶
Initialize ESP32 touchpad peripheral and retrieve information from the touch sensors.
Application Example¶
Implementation of this API is demonstrated in get-started/play_mp3_control example.
API Reference¶
Header File¶
Functions¶
-
esp_periph_handle_t
periph_touch_init
(periph_touch_cfg_t *config)¶ Create the touch peripheral handle for esp_peripherals.
- Note
The handle was created by this function automatically destroy when
esp_periph_destroy
is called- Return
The esp peripheral handle
- Parameters
config
: The configuration
Structures¶
-
struct
periph_touch_cfg_t
¶ The Touch peripheral configuration.
Public Members
-
int
touch_mask
¶ Touch pad mask using for this Touch peripheral, ex: TOUCH_PAD_SEL0 | TOUCH_PAD_SEL1
-
int
tap_threshold_percent
¶ Tap threshold percent, Tap event will be determined if the percentage value is less than the non-touch value
-
int
long_tap_time_ms
¶ Long tap duration in milliseconds, default is 2000ms, PERIPH_TOUCH_LONG_TAP will be occurred if TAP and time hold longer than this value
-
int
Enumerations¶
-
enum
esp_touch_pad_sel_t
¶ Touch pad selection.
Values:
-
TOUCH_PAD_SEL0
= BIT(0)¶
-
TOUCH_PAD_SEL1
= BIT(1)¶
-
TOUCH_PAD_SEL2
= BIT(2)¶
-
TOUCH_PAD_SEL3
= BIT(3)¶
-
TOUCH_PAD_SEL4
= BIT(4)¶
-
TOUCH_PAD_SEL5
= BIT(5)¶
-
TOUCH_PAD_SEL6
= BIT(6)¶
-
TOUCH_PAD_SEL7
= BIT(7)¶
-
TOUCH_PAD_SEL8
= BIT(8)¶
-
TOUCH_PAD_SEL9
= BIT(9)¶
-
-
enum
periph_touch_event_id_t
¶ Peripheral touch event id.
Values:
-
PERIPH_TOUCH_UNCHANGE
= 0¶ No event
-
PERIPH_TOUCH_TAP
¶ When touch pad is tapped
-
PERIPH_TOUCH_RELEASE
¶ When touch pad is released after tap
-
PERIPH_TOUCH_LONG_TAP
¶ When touch pad is tapped and held after
long_tap_time_ms
time
-
PERIPH_TOUCH_LONG_RELEASE
¶ When touch pad is released after long tap
-
LED Peripheral¶
Blink or fade a LED connected to a GPIO with configurable On and Off times.
Application Examples¶
Implementation of this API is demonstrated in couple of examples:
API Reference¶
Header File¶
Functions¶
-
esp_periph_handle_t
periph_led_init
(periph_led_cfg_t *config)¶ Create the LED peripheral handle for esp_peripherals.
- Note
The handle was created by this function automatically destroy when
esp_periph_destroy
is called- Return
The esp peripheral handle
- Parameters
config
: The configuration
-
esp_err_t
periph_led_blink
(esp_periph_handle_t periph, int gpio_num, int time_on_ms, int time_off_ms, bool fade, int loop, periph_led_idle_level_t level)¶ Bink LED Peripheral, this function will automatically configure the gpio_num to control the LED, with
time_on_ms
as the time (in milliseconds) switch from OFF to ON (or ON if fade is disabled), andtime_off_ms
as the time (in milliseconds) switch from ON to OFF (or OFF if fade is disabled). When switching from ON -> OFF and vice versa, the loop decreases once, and will turn off the effect when the loop is 0. With a loop value less than 0, the LED effect will loop endlessly. PERIPH_LED_BLINK_FINISH events will be sent at each end of loop.- Return
ESP_OK
ESP_FAIL
- Parameters
[in] periph
: The LED periph[in] gpio_num
: The gpio number[in] time_on_ms
: The time on milliseconds[in] time_off_ms
: The time off milliseconds[in] fade
: Fading enabled[in] loop
: Loop[in] level
: idle level
-
esp_err_t
periph_led_stop
(esp_periph_handle_t periph, int gpio_num)¶ Stop Blink the LED.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] periph
: The periph[in] gpio_num
: The gpio number
Structures¶
-
struct
periph_led_cfg_t
¶ The LED peripheral configuration.
Public Members
-
ledc_mode_t
led_speed_mode
¶ LEDC speed speed_mode, high-speed mode or low-speed mode
-
ledc_timer_bit_t
led_duty_resolution
¶ LEDC channel duty resolution
-
ledc_timer_t
led_timer_num
¶ Select the timer source of channel (0 - 3)
-
uint32_t
led_freq_hz
¶ LEDC timer frequency (Hz)
-
int
gpio_num
¶ Optional, < 0 invalid gpio number
-
ledc_mode_t
Enumerations¶
LED Controller Peripheral¶
This peripheral is applicable to IS31Fl3216 chip that is a light LED controller with an audio modulation mode. It can store data of 8 Frames with internal RAM to play small animations automatically.
You can also use it to control a number of LEDs connected to GPIOs. If you want to use the IS31Fl3216, see functions periph_is31fl3216_init()
, periph_is31fl3216_set_blink_pattern()
, periph_is31fl3216_set_duty()
, periph_is31fl3216_set_state()
.
Application Examples¶
Implementation of this API is demonstrated in checks/check_display_led example.
API Reference¶
Header File¶
Functions¶
-
esp_periph_handle_t
periph_is31fl3216_init
(periph_is31fl3216_cfg_t *is31fl3216_config)¶ Initializate the is31fl3216.
- Return
ESP_OK Success
ESP_FAIL Fail
- Parameters
is31fl3216_config
:
-
esp_err_t
periph_is31fl3216_set_state
(esp_periph_handle_t periph, periph_is31fl3216_state_t state)¶ Set the state of all the channels.
- Return
ESP_OK Success
ESP_FAIL Fail
- Parameters
periph
: The is31fl3216 handlestate
: The state of all channels
-
esp_err_t
periph_is31fl3216_set_blink_pattern
(esp_periph_handle_t periph, uint16_t blink_pattern)¶ Set the current enable channels.
- Return
ESP_OK Success
ESP_FAIL Fail
- Parameters
periph
: The is31fl3216 handleblink_pattern
: The bit pattern of enabled channels
-
esp_err_t
periph_is31fl3216_set_duty
(esp_periph_handle_t periph, uint8_t index, uint8_t value)¶ Set the duty of the channel.
- Return
ESP_OK Success
ESP_FAIL Fail
- Parameters
periph
: The is31fl3216 handleindex
: The channel numbervalue
: The value of the channel’s duty to be set
-
esp_err_t
periph_is31fl3216_set_duty_step
(esp_periph_handle_t periph, uint8_t step)¶ Set the duty step of flash.
- Return
ESP_OK Success
ESP_FAIL Fail
- Parameters
periph
: The is31fl3216 handlestep
: The step of flash
-
esp_err_t
periph_is31fl3216_set_interval
(esp_periph_handle_t periph, uint16_t interval_ms)¶ Set the internval time.
- Return
ESP_OK Success
ESP_FAIL Fail
- Parameters
periph
: The is31fl3216 handleinterval_ms
: Time of interval
-
esp_err_t
periph_is31fl3216_set_shift_mode
(esp_periph_handle_t periph, periph_is31_shift_mode_t mode)¶ Set the shift mode.
- Return
ESP_OK Success
ESP_FAIL Fail
- Parameters
periph
: The is31fl3216 handlemode
: Mode of periph_is31_shift_mode_t
-
esp_err_t
periph_is31fl3216_set_light_on_num
(esp_periph_handle_t periph, uint16_t light_on_num, uint16_t max_light_num)¶ Set the light on numbers.
- Return
ESP_OK Success
ESP_FAIL Fail
- Parameters
periph
: The is31fl3216 handlelight_on_num
: Enabled led numbermax_light_num
: Maximum led number
-
esp_err_t
periph_is31fl3216_set_act_time
(esp_periph_handle_t periph, uint16_t act_ms)¶ Set the action time.
- Return
ESP_OK Success
ESP_FAIL Fail
- Parameters
periph
: The is31fl3216 handleact_ms
: Action time, unit is millisecond, 0 is infinite
Structures¶
-
struct
periph_is31fl3216_cfg_t
¶ The configuration of is31fl3216.
Public Members
-
uint32_t
duty
[IS31FL3216_CH_NUM
]¶ An array of the is31fl3216’s duty
-
uint16_t
is31fl3216_pattern
¶ Current enable channel
-
periph_is31fl3216_state_t
state
¶ The state of all the channels
-
uint32_t
Macros¶
-
IS31FL3216_CH_NUM
¶
-
BLUE_LED_MAX_NUM
¶
Enumerations¶
Name of Peripheral |
ESP32-LyraT |
ESP32-LyraTD-MSC |
---|---|---|
Abstraction Layer¶
Ring Buffer¶
Ringbuffer is designed in addition to use as a data buffer, also used to connect Audio Elements. Each Element that requests data from the Ringbuffer will block the task until the data is available. Or block the task when writing data and the Buffer is full. Of course, we can stop this block at any time.

Ring Buffer used in Audio Pipeline¶
Application Example¶
In most of ESP-ADF examples connecting of Elements with Ringbuffers is done “behind the scenes” by a function audio_pipeline_link()
. To see this operation exposed check player/pipeline_sdcard_mp3_control example.
API Reference¶
Header File¶
Functions¶
-
ringbuf_handle_t
rb_create
(int block_size, int n_blocks)¶ Create ringbuffer with total size = block_size * n_blocks.
- Return
ringbuf_handle_t
- Parameters
[in] block_size
: Size of each block[in] n_blocks
: Number of blocks
-
esp_err_t
rb_destroy
(ringbuf_handle_t rb)¶ Cleanup and free all memory created by ringbuf_handle_t.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] rb
: The Ringbuffer handle
-
esp_err_t
rb_abort
(ringbuf_handle_t rb)¶ Abort waiting until there is space for reading or writing of the ringbuffer.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] rb
: The Ringbuffer handle
-
esp_err_t
rb_reset
(ringbuf_handle_t rb)¶ Reset ringbuffer, clear all values as initial state.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] rb
: The Ringbuffer handle
-
esp_err_t
rb_reset_is_done_write
(ringbuf_handle_t rb)¶ Reset is_done_write flag.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] rb
: The Ringbuffer handle
-
int
rb_bytes_available
(ringbuf_handle_t rb)¶ Get total bytes available of Ringbuffer.
- Return
total bytes available
- Parameters
[in] rb
: The Ringbuffer handle
-
int
rb_bytes_filled
(ringbuf_handle_t rb)¶ Get the number of bytes that have filled the ringbuffer.
- Return
The number of bytes that have filled the ringbuffer
- Parameters
[in] rb
: The Ringbuffer handle
-
int
rb_get_size
(ringbuf_handle_t rb)¶ Get total size of Ringbuffer (in bytes)
- Return
total size of Ringbuffer
- Parameters
[in] rb
: The Ringbuffer handle
-
int
rb_read
(ringbuf_handle_t rb, char *buf, int len, TickType_t ticks_to_wait)¶ Read from Ringbuffer to
buf
with len and waittick_to_wait
ticks until enough bytes to read if the ringbuffer bytes available is less thanlen
. Ifbuf
argument provided isNULL
, then ringbuffer do pseudo reads by simply advancing pointers.- Return
Number of bytes read
- Parameters
[in] rb
: The Ringbuffer handlebuf
: The buffer pointer to read out data[in] len
: The length request[in] ticks_to_wait
: The ticks to wait
-
int
rb_write
(ringbuf_handle_t rb, char *buf, int len, TickType_t ticks_to_wait)¶ Write to Ringbuffer from
buf
withlen
and waittick_to_wait
ticks until enough space to write if the ringbuffer space available is less thanlen
- Return
Number of bytes written
- Parameters
[in] rb
: The Ringbuffer handlebuf
: The buffer[in] len
: The length[in] ticks_to_wait
: The ticks to wait
-
esp_err_t
rb_done_write
(ringbuf_handle_t rb)¶ Set status of writing to ringbuffer is done.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] rb
: The Ringbuffer handle
-
esp_err_t
rb_unblock_reader
(ringbuf_handle_t rb)¶ Unblock from rb_read.
- Return
ESP_OK
ESP_FAIL
- Parameters
[in] rb
: The Ringbuffer handle
Macros¶
-
RB_OK
¶
-
RB_FAIL
¶
-
RB_DONE
¶
-
RB_ABORT
¶
-
RB_TIMEOUT
¶
Type Definitions¶
-
typedef struct ringbuf *
ringbuf_handle_t
¶
Audio HAL¶
Abstraction layer for audio board hardware, serves as an interface between the user application and the hardware driver for specific audio board like ESP32 LyraT.
The API provides data structures to configure sampling rates of ADC and DAC signal conversion, data bit widths, I2C stream parameters, and selection of signal channels connected to ADC and DAC. It also contains several specific functions to e.g. initialize the audio board, audio_hal_init()
, control the volume, audio_hal_get_volume()
and audio_hal_set_volume()
.
API Reference¶
Header File¶
Functions¶
-
audio_hal_handle_t
audio_hal_init
(audio_hal_codec_config_t *audio_hal_conf, audio_hal_func_t *audio_hal_func)¶ Initialize media codec driver.
- Note
If selected codec has already been installed, it’ll return the audio_hal handle.
- Return
int, 0success, othersfail
- Parameters
audio_hal_conf
: Configure structure audio_hal_config_taudio_hal_func
: Structure containing functions used to operate audio the codec chip
-
esp_err_t
audio_hal_deinit
(audio_hal_handle_t audio_hal)¶ Uninitialize media codec driver.
- Return
int, 0success, othersfail
- Parameters
audio_hal
: reference function pointer for selected audio codec
-
esp_err_t
audio_hal_ctrl_codec
(audio_hal_handle_t audio_hal, audio_hal_codec_mode_t mode, audio_hal_ctrl_t audio_hal_ctrl)¶ Start/stop codec driver.
- Return
int, 0success, othersfail
- Parameters
audio_hal
: reference function pointer for selected audio codecmode
: select media hal codec mode either encode/decode/or both to start from audio_hal_codec_mode_taudio_hal_ctrl
: select start stop state for specific mode
-
esp_err_t
audio_hal_codec_iface_config
(audio_hal_handle_t audio_hal, audio_hal_codec_mode_t mode, audio_hal_codec_i2s_iface_t *iface)¶ Set codec I2S interface samples rate & bit width and format either I2S or PCM/DSP.
- Return
0 Success
-1 Error
- Parameters
audio_hal
: reference function pointer for selected audio codecmode
: select media hal codec mode either encode/decode/or both to start from audio_hal_codec_mode_tiface
: I2S sample rate (ex: 16000, 44100), I2S bit width (16, 24, 32),I2s format (I2S, PCM, DSP).
-
esp_err_t
audio_hal_set_mute
(audio_hal_handle_t audio_hal, bool mute)¶ Set voice mute. Enables or disables DAC mute of a codec.
- Note
audio_hal_get_volume
will still give a non-zero number in mute state. It will be set to that number when speaker is unmuted.- Return
int, 0success, othersfail
- Parameters
audio_hal
: reference function pointer for selected audio codecmute
: true/false. If true speaker will be muted and if false speaker will be unmuted.
-
esp_err_t
audio_hal_set_volume
(audio_hal_handle_t audio_hal, int volume)¶ Set voice volume.
- Note
if volume is 0, mute is enabled,range is 0-100.
- Return
int, 0success, othersfail
- Parameters
audio_hal
: reference function pointer for selected audio codecvolume
: value of volume in percent(%)
-
esp_err_t
audio_hal_get_volume
(audio_hal_handle_t audio_hal, int *volume)¶ get voice volume.
- Note
if volume is 0, mute is enabled, range is 0-100.
- Return
int, 0success, othersfail
- Parameters
audio_hal
: reference function pointer for selected audio codecvolume
: value of volume in percent returned(%)
-
esp_err_t
audio_hal_enable_pa
(audio_hal_handle_t audio_hal, bool enable)¶ Enables or disables PA.
- Return
int, 0success, othersfail
- Parameters
audio_hal
: reference function pointer for selected audio codecenable
: true/false.
Structures¶
-
struct
audio_hal_codec_i2s_iface_t
¶ I2s interface configuration for audio codec chip.
Public Members
-
audio_hal_iface_mode_t
mode
¶ audio codec chip mode
-
audio_hal_iface_format_t
fmt
¶ I2S interface format
-
audio_hal_iface_samples_t
samples
¶ I2S interface samples per second
-
audio_hal_iface_bits_t
bits
¶ i2s interface number of bits per sample
-
audio_hal_iface_mode_t
-
struct
audio_hal_codec_config_t
¶ Configure media hal for initialization of audio codec chip.
Public Members
-
audio_hal_adc_input_t
adc_input
¶ set adc channel
-
audio_hal_dac_output_t
dac_output
¶ set dac channel
-
audio_hal_codec_mode_t
codec_mode
¶ select codec mode: adc, dac or both
-
audio_hal_codec_i2s_iface_t
i2s_iface
¶ set I2S interface configuration
-
audio_hal_adc_input_t
-
struct
audio_hal
¶ Configuration of functions and variables used to operate audio codec chip.
Public Members
-
esp_err_t (*
audio_codec_initialize
)(audio_hal_codec_config_t *codec_cfg)¶ initialize codec
-
esp_err_t (*
audio_codec_deinitialize
)(void)¶ deinitialize codec
-
esp_err_t (*
audio_codec_ctrl
)(audio_hal_codec_mode_t mode, audio_hal_ctrl_t ctrl_state)¶ control codec mode and state
-
esp_err_t (*
audio_codec_config_iface
)(audio_hal_codec_mode_t mode, audio_hal_codec_i2s_iface_t *iface)¶ configure i2s interface
-
esp_err_t (*
audio_codec_set_mute
)(bool mute)¶ set codec mute
-
esp_err_t (*
audio_codec_set_volume
)(int volume)¶ set codec volume
-
esp_err_t (*
audio_codec_get_volume
)(int *volume)¶ get codec volume
-
esp_err_t (*
audio_codec_enable_pa
)(bool enable)¶ enable pa
-
xSemaphoreHandle
audio_hal_lock
¶ semaphore of codec
-
void *
handle
¶ handle of audio codec
-
esp_err_t (*
Macros¶
-
AUDIO_HAL_VOL_DEFAULT
¶
Type Definitions¶
Enumerations¶
-
enum
audio_hal_codec_mode_t
¶ Select media hal codec mode.
Values:
-
AUDIO_HAL_CODEC_MODE_ENCODE
= 1¶ select adc
-
AUDIO_HAL_CODEC_MODE_DECODE
¶ select dac
-
AUDIO_HAL_CODEC_MODE_BOTH
¶ select both adc and dac
-
AUDIO_HAL_CODEC_MODE_LINE_IN
¶ set adc channel
-
-
enum
audio_hal_adc_input_t
¶ Select adc channel for input mic signal.
Values:
-
AUDIO_HAL_ADC_INPUT_LINE1
= 0x00¶ mic input to adc channel 1
-
AUDIO_HAL_ADC_INPUT_LINE2
¶ mic input to adc channel 2
-
AUDIO_HAL_ADC_INPUT_ALL
¶ mic input to both channels of adc
-
AUDIO_HAL_ADC_INPUT_DIFFERENCE
¶ mic input to adc difference channel
-
-
enum
audio_hal_dac_output_t
¶ Select channel for dac output.
Values:
-
AUDIO_HAL_DAC_OUTPUT_LINE1
= 0x00¶ dac output signal to channel 1
-
AUDIO_HAL_DAC_OUTPUT_LINE2
¶ dac output signal to channel 2
-
AUDIO_HAL_DAC_OUTPUT_ALL
¶ dac output signal to both channels
-
-
enum
audio_hal_ctrl_t
¶ Select operating mode i.e. start or stop for audio codec chip.
Values:
-
AUDIO_HAL_CTRL_STOP
= 0x00¶ set stop mode
-
AUDIO_HAL_CTRL_START
= 0x01¶ set start mode
-
-
enum
audio_hal_iface_mode_t
¶ Select I2S interface operating mode i.e. master or slave for audio codec chip.
Values:
-
AUDIO_HAL_MODE_SLAVE
= 0x00¶ set slave mode
-
AUDIO_HAL_MODE_MASTER
= 0x01¶ set master mode
-
-
enum
audio_hal_iface_samples_t
¶ Select I2S interface samples per second.
Values:
-
AUDIO_HAL_08K_SAMPLES
¶ set to 8k samples per second
-
AUDIO_HAL_11K_SAMPLES
¶ set to 11.025k samples per second
-
AUDIO_HAL_16K_SAMPLES
¶ set to 16k samples in per second
-
AUDIO_HAL_22K_SAMPLES
¶ set to 22.050k samples per second
-
AUDIO_HAL_24K_SAMPLES
¶ set to 24k samples in per second
-
AUDIO_HAL_32K_SAMPLES
¶ set to 32k samples in per second
-
AUDIO_HAL_44K_SAMPLES
¶ set to 44.1k samples per second
-
AUDIO_HAL_48K_SAMPLES
¶ set to 48k samples per second
-
ES8388 Driver¶
Driver for ES8388 codec chip used in ESP32 LyraT audio board.
API Reference¶
Header File¶
Functions¶
-
esp_err_t
es8388_init
(audio_hal_codec_config_t *cfg)¶ Initialize ES8388 codec chip.
- Return
ESP_OK
ESP_FAIL
- Parameters
cfg
: configuration of ES8388
-
esp_err_t
es8388_deinit
(void)¶ Deinitialize ES8388 codec chip.
- Return
ESP_OK
ESP_FAIL
-
esp_err_t
es8388_config_fmt
(es_module_t mod, es_i2s_fmt_t cfg)¶ Configure ES8388 I2S format.
- Return
ESP_OK
ESP_FAIL
- Parameters
mod
: set ADC or DAC or bothcfg
: ES8388 I2S format
-
esp_err_t
es8388_i2s_config_clock
(es_i2s_clock_t cfg)¶ Configure I2s clock in MSATER mode.
- Return
ESP_OK
ESP_FAIL
- Parameters
cfg
: set bits clock and WS clock
-
esp_err_t
es8388_set_bits_per_sample
(es_module_t mode, es_bits_length_t bit_per_sample)¶ Configure ES8388 data sample bits.
- Return
ESP_OK
ESP_FAIL
- Parameters
mode
: set ADC or DAC or bothbit_per_sample
: bit number of per sample
-
esp_err_t
es8388_start
(es_module_t mode)¶ Start ES8388 codec chip.
- Return
ESP_OK
ESP_FAIL
- Parameters
mode
: set ADC or DAC or both
-
esp_err_t
es8388_stop
(es_module_t mode)¶ Stop ES8388 codec chip.
- Return
ESP_OK
ESP_FAIL
- Parameters
mode
: set ADC or DAC or both
-
esp_err_t
es8388_set_voice_volume
(int volume)¶ Set voice volume.
- Return
ESP_OK
ESP_FAIL
- Parameters
volume
: voice volume (0~100)
-
esp_err_t
es8388_get_voice_volume
(int *volume)¶ Get voice volume.
- Return
ESP_OK
ESP_FAIL
- Parameters
[out] *volume
: voice volume (0~100)
-
esp_err_t
es8388_set_voice_mute
(bool enable)¶ Configure ES8388 DAC mute or not. Basically you can use this function to mute the output or unmute.
- Return
ESP_FAIL Parameter error
ESP_OK Success
- Parameters
enable
: enable(1) or disable(0)
-
esp_err_t
es8388_get_voice_mute
(void)¶ Get ES8388 DAC mute status.
- Return
ESP_FAIL Parameter error
ESP_OK Success
-
esp_err_t
es8388_set_mic_gain
(es_mic_gain_t gain)¶ Set ES8388 mic gain.
- Return
ESP_FAIL Parameter error
ESP_OK Success
- Parameters
gain
: db of mic gain
-
esp_err_t
es8388_config_adc_input
(es_adc_input_t input)¶ Set ES8388 adc input mode.
- Return
ESP_FAIL Parameter error
ESP_OK Success
- Parameters
input
: adc input mode
-
esp_err_t
es8388_config_dac_output
(es_dac_output_t output)¶ Set ES8388 dac output mode.
- Return
ESP_FAIL Parameter error
ESP_OK Success
- Parameters
output
: dac output mode
-
esp_err_t
es8388_write_reg
(uint8_t reg_add, uint8_t data)¶ Write ES8388 register.
- Return
ESP_FAIL Parameter error
ESP_OK Success
- Parameters
reg_add
: address of registerdata
: data of register
-
void
es8388_read_all
()¶ Print all ES8388 registers.
- Return
void
-
esp_err_t
es8388_config_i2s
(audio_hal_codec_mode_t mode, audio_hal_codec_i2s_iface_t *iface)¶ Configure ES8388 codec mode and I2S interface.
- Return
ESP_FAIL Parameter error
ESP_OK Success
- Parameters
mode
: codec modeiface
: I2S config
-
esp_err_t
es8388_ctrl_state
(audio_hal_codec_mode_t mode, audio_hal_ctrl_t ctrl_state)¶ Control ES8388 codec chip.
- Return
ESP_FAIL Parameter error
ESP_OK Success
- Parameters
mode
: codec modectrl_state
: start or stop decode or encode progress
-
esp_err_t
es8388_pa_power
(bool enable)¶ Set ES8388 PA power.
- Return
ESP_ERR_INVALID_ARG
ESP_OK
- Parameters
enable
: true for enable PA power, false for disable PA power
Macros¶
-
ES8388_ADDR
¶ 0x22:CE=1;0x20:CE=0
-
ES8388_CONTROL1
¶
-
ES8388_CONTROL2
¶
-
ES8388_CHIPPOWER
¶
-
ES8388_ADCPOWER
¶
-
ES8388_DACPOWER
¶
-
ES8388_CHIPLOPOW1
¶
-
ES8388_CHIPLOPOW2
¶
-
ES8388_ANAVOLMANAG
¶
-
ES8388_MASTERMODE
¶
-
ES8388_ADCCONTROL1
¶
-
ES8388_ADCCONTROL2
¶
-
ES8388_ADCCONTROL3
¶
-
ES8388_ADCCONTROL4
¶
-
ES8388_ADCCONTROL5
¶
-
ES8388_ADCCONTROL6
¶
-
ES8388_ADCCONTROL7
¶
-
ES8388_ADCCONTROL8
¶
-
ES8388_ADCCONTROL9
¶
-
ES8388_ADCCONTROL10
¶
-
ES8388_ADCCONTROL11
¶
-
ES8388_ADCCONTROL12
¶
-
ES8388_ADCCONTROL13
¶
-
ES8388_ADCCONTROL14
¶
-
ES8388_DACCONTROL1
¶
-
ES8388_DACCONTROL2
¶
-
ES8388_DACCONTROL3
¶
-
ES8388_DACCONTROL4
¶
-
ES8388_DACCONTROL5
¶
-
ES8388_DACCONTROL6
¶
-
ES8388_DACCONTROL7
¶
-
ES8388_DACCONTROL8
¶
-
ES8388_DACCONTROL9
¶
-
ES8388_DACCONTROL10
¶
-
ES8388_DACCONTROL11
¶
-
ES8388_DACCONTROL12
¶
-
ES8388_DACCONTROL13
¶
-
ES8388_DACCONTROL14
¶
-
ES8388_DACCONTROL15
¶
-
ES8388_DACCONTROL16
¶
-
ES8388_DACCONTROL17
¶
-
ES8388_DACCONTROL18
¶
-
ES8388_DACCONTROL19
¶
-
ES8388_DACCONTROL20
¶
-
ES8388_DACCONTROL21
¶
-
ES8388_DACCONTROL22
¶
-
ES8388_DACCONTROL23
¶
-
ES8388_DACCONTROL24
¶
-
ES8388_DACCONTROL25
¶
-
ES8388_DACCONTROL26
¶
-
ES8388_DACCONTROL27
¶
-
ES8388_DACCONTROL28
¶
-
ES8388_DACCONTROL29
¶
-
ES8388_DACCONTROL30
¶
ES8374 Driver¶
Driver for ES8374 codec chip.
API Reference¶
Header File¶
Functions¶
-
esp_err_t
es8374_codec_init
(audio_hal_codec_config_t *cfg)¶ Initialize ES8374 codec chip.
- Return
ESP_OK
ESP_FAIL
- Parameters
cfg
: configuration of ES8374
-
esp_err_t
es8374_codec_deinit
(void)¶ Deinitialize ES8374 codec chip.
- Return
ESP_OK
ESP_FAIL
-
esp_err_t
es8374_config_fmt
(es_module_t mode, es_i2s_fmt_t fmt)¶ Configure ES8374 I2S format.
- Return
ESP_OK
ESP_FAIL
- Parameters
mode
: set ADC or DAC or bothfmt
: ES8374 I2S format
-
esp_err_t
es8374_i2s_config_clock
(es_i2s_clock_t cfg)¶ Configure I2S clock in MSATER mode.
- Return
ESP_OK
ESP_FAIL
- Parameters
cfg
: set bits clock and WS clock
-
esp_err_t
es8374_set_bits_per_sample
(es_module_t mode, es_bits_length_t bit_per_sample)¶ Configure ES8374 data sample bits.
- Return
ESP_OK
ESP_FAIL
- Parameters
mode
: set ADC or DAC or bothbit_per_sample
: bit number of per sample
-
esp_err_t
es8374_start
(es_module_t mode)¶ Start ES8374 codec chip.
- Return
ESP_OK
ESP_FAIL
- Parameters
mode
: set ADC or DAC or both
-
esp_err_t
es8374_stop
(es_module_t mode)¶ Stop ES8374 codec chip.
- Return
ESP_OK
ESP_FAIL
- Parameters
mode
: set ADC or DAC or both
-
esp_err_t
es8374_codec_set_voice_volume
(int volume)¶ Set voice volume.
- Return
ESP_OK
ESP_FAIL
- Parameters
volume
: voice volume (0~100)
-
esp_err_t
es8374_codec_get_voice_volume
(int *volume)¶ Get voice volume.
- Return
ESP_OK
ESP_FAIL
- Parameters
[out] *volume
: voice volume (0~100)
-
esp_err_t
es8374_set_voice_mute
(bool enable)¶ Mute or unmute ES8374 DAC. Basically you can use this function to mute or unmute the output.
- Return
ESP_FAIL Parameter error
ESP_OK Success
- Parameters
enable
: mute(1) or unmute(0)
-
esp_err_t
es8374_get_voice_mute
(void)¶ Get ES8374 DAC mute status.
- Return
ESP_FAIL
ESP_OK
-
esp_err_t
es8374_set_mic_gain
(es_mic_gain_t gain)¶ Set ES8374 mic gain.
- Return
ESP_FAIL Parameter error
ESP_OK Success
- Parameters
gain
: db of mic gain
-
esp_err_t
es8374_config_adc_input
(es_adc_input_t input)¶ Set ES8374 ADC input mode.
- Return
ESP_FAIL Parameter error
ESP_OK Success
- Parameters
input
: adc input mode
-
esp_err_t
es8374_config_dac_output
(es_dac_output_t output)¶ Set ES8374 DAC output mode.
- Return
ESP_FAIL Parameter error
ESP_OK Success
- Parameters
output
: dac output mode
-
esp_err_t
es8374_write_reg
(uint8_t reg_add, uint8_t data)¶ Write ES8374 register.
- Return
ESP_FAIL Parameter error
ESP_OK Success
- Parameters
reg_add
: address of registerdata
: data of register
-
void
es8374_read_all
()¶ Print all ES8374 registers.
- Return
void
-
esp_err_t
es8374_codec_config_i2s
(audio_hal_codec_mode_t mode, audio_hal_codec_i2s_iface_t *iface)¶ Configure ES8374 codec mode and I2S interface.
- Return
ESP_FAIL Parameter error
ESP_OK Success
- Parameters
mode
: codec modeiface
: I2S config
-
esp_err_t
es8374_codec_ctrl_state
(audio_hal_codec_mode_t mode, audio_hal_ctrl_t ctrl_state)¶ Control ES8374 codec chip.
- Return
ESP_FAIL Parameter error
ESP_OK Success
- Parameters
mode
: codec modectrl_state
: start or stop decode or encode progress
-
esp_err_t
es8374_pa_power
(bool enable)¶ Set ES8374 PA power.
- Return
ESP_ERR_INVALID_ARG
ESP_OK
- Parameters
enable
: true for enable PA power, false for disable PA power
Macros¶
-
ES8374_ADDR
¶
ZL38063 Driver¶
Driver for ZL38063 codec chip used in ESP32-LyraTD-MSC audio board.
API Reference¶
Header File¶
Functions¶
-
esp_err_t
zl38063_codec_init
(audio_hal_codec_config_t *cfg)¶ Initialize ZL38063 chip.
- Return
ESP_OK
ESP_FAIL
- Parameters
cfg
: configuration of ZL38063
-
esp_err_t
zl38063_codec_deinit
(void)¶ Deinitialize ZL38063 chip.
- Return
ESP_OK
ESP_FAIL
-
esp_err_t
zl38063_codec_ctrl_state
(audio_hal_codec_mode_t mode, audio_hal_ctrl_t ctrl_state)¶ Control ZL38063 chip.
The functions zl38063_ctrl_state and zl38063_config_i2s are not used by this driver. They are kept here to maintain the uniformity and convenience of the interface of the ADF project. These settings for zl38063 are burned in firmware and configuration files. Default i2s configuration: 48000Hz, 16bit, Left-Right channels. Use resampling to be compatible with different file types.
- Return
ESP_FAIL Parameter error
ESP_OK Success
- Parameters
mode
: codec modectrl_state
: start or stop decode or encode progress
-
esp_err_t
zl38063_codec_config_i2s
(audio_hal_codec_mode_t mode, audio_hal_codec_i2s_iface_t *iface)¶ Configure ZL38063 codec mode and I2S interface.
- Return
ESP_FAIL Parameter error
ESP_OK Success
- Parameters
mode
: codec modeiface
: I2S config
-
esp_err_t
zl38063_codec_set_voice_mute
(bool mute)¶ mute or unmute the codec
- Return
ESP_OK
ESP_FAIL
- Parameters
mute
: true, false
-
esp_err_t
zl38063_codec_set_voice_volume
(int volume)¶ Set voice volume.
- Return
ESP_OK
ESP_FAIL
- Parameters
volume
: voice volume (0~100)
-
esp_err_t
zl38063_codec_get_voice_volume
(int *volume)¶ Get voice volume.
- Return
ESP_OK
ESP_FAIL
- Parameters
[out] *volume
: voice volume (0~100)
Configuration Options¶
Compile-time configuration options specific to ESP-ADF.
Audio Recorder¶
AFE_MIC_NUM¶
Number of micphones used for AFE
Found in: Audio Recorder
Now only support 1 or 2 mic
ADF Features¶
ESP_DISPATCHER_DELEGATE_TASK_CORE¶
Delegation task core
Found in: ADF Features
Pinned delegate task to core 0 or core 1.
ESP_DISPATCHER_DELEGATE_TASK_PRIO¶
Delegate task’s prio
Found in: ADF Features
The delegate task’s prio.
ESP_DISPATCHER_DELEGATE_STACK_SIZE¶
Delegate task’s stack size
Found in: ADF Features
The delegate task’s stack is located in DRAM, modify this size to make sure all the needed operation can be run success in the it.
ADF Library Configuration¶
MEDIA_PROTOCOL_LIB_ENABLE¶
Enable Media Protocol Library
Found in: ADF Library Configuration
MEDIA_LIB_MEM_AUTO_TRACE¶
Support trace memory automatically after media_lib_sal init
Found in: ADF Library Configuration
MEDIA_LIB_MEM_TRACE_DEPTH¶
Memory trace stack depth
Found in: ADF Library Configuration
Set memory trace depth
MEDIA_LIB_MEM_TRACE_NUM¶
Memory trace number
Found in: ADF Library Configuration
Set memory trace number
MEDIA_LIB_MEM_TRACE_MODULE¶
Trace for module memory usage
Found in: ADF Library Configuration
MEDIA_LIB_MEM_TRACE_LEAKAGE¶
Trace for memory leakage
Found in: ADF Library Configuration
MEDIA_LIB_MEM_TRACE_SAVE_HISTORY¶
Trace to save memory history
Found in: ADF Library Configuration
MEDIA_LIB_MEM_SAVE_CACHE_SIZE¶
Cache buffer size to store save history
Found in: ADF Library Configuration
Set cache size for memory history
MEDIA_LIB_MEM_TRACE_SAVE_PATH¶
Memory trace save path
Found in: ADF Library Configuration
Set memory trace save path
RECORD_ENGINE_MODE¶
Choose recorder engine functionality
Found in: ADF Library Configuration
Recorder engine have VAD, WWE and AMR encoding functionality. AMR encoding enabled, the binary size increase 144kB. WWE enabled, the binary size increase 103kB.
- Available options:
REC_ENG_ENABLE_VAD_ONLY
REC_ENG_ENABLE_VAD_WWE
REC_ENG_ENABLE_VAD_WWE_AMR
Audio Codec Device Configuration¶
CODEC_ES8311_SUPPORT¶
Support ES8311 Codec Chip
Found in: Component config > Audio Codec Device Configuration
Enable this option to support codec ES8311.
CODEC_ES7210_SUPPORT¶
Support ES7210 Codec Chip
Found in: Component config > Audio Codec Device Configuration
Enable this option to support codec ES7210.
CODEC_ES7243_SUPPORT¶
Support ES7243 Codec Chip
Found in: Component config > Audio Codec Device Configuration
Enable this option to support codec ES7243.
CODEC_ES7243E_SUPPORT¶
Support ES7243E Codec Chip
Found in: Component config > Audio Codec Device Configuration
Enable this option to support codec ES7243E.
CODEC_ES8156_SUPPORT¶
Support ES8156 Codec Chip
Found in: Component config > Audio Codec Device Configuration
Enable this option to support codec ES8156.
CODEC_ES8374_SUPPORT¶
Support ES8374 Codec Chip
Found in: Component config > Audio Codec Device Configuration
Enable this option to support codec ES8374.
CODEC_ES8388_SUPPORT¶
Support ES8388 Codec Chip
Found in: Component config > Audio Codec Device Configuration
Enable this option to support codec ES8388.
CODEC_TAS5805M_SUPPORT¶
Support TAS5805M Codec Chip
Found in: Component config > Audio Codec Device Configuration
Enable this option to support codec TAS5805M.
CODEC_ZL38063_SUPPORT¶
Support ZL38063 Codec Chip
Found in: Component config > Audio Codec Device Configuration
Enable this option to support codec ZL38063. ZL38063 firmware only support xtensa, don’t enable for RISC-V IC.
Audio HAL¶
AUDIO_BOARD¶
Audio board
Found in: Audio HAL
Select an audio board to use with the ESP-ADF
- Available options:
AUDIO_BOARD_CUSTOM
ESP_LYRAT_V4_3_BOARD
ESP_LYRAT_V4_2_BOARD
ESP_LYRATD_MSC_V2_1_BOARD
ESP_LYRATD_MSC_V2_2_BOARD
ESP_LYRAT_MINI_V1_1_BOARD
ESP32_KORVO_DU1906_BOARD
ESP32_S2_KALUGA_1_V1_2_BOARD
ESP32_S3_KORVO2_V3_BOARD
ESP32_S3_KORVO2L_V1_BOARD
ESP32_S3_BOX_LITE_BOARD
ESP32_S3_BOX_BOARD
ESP32_C3_LYRA_V2_BOARD
ESP32_C6_DEVKIT_BOARD
ESP32_KORVO_DU1906_DAC¶
ESP32 KORVO DU1906 Board DAC chip
Found in: Audio HAL
Select DAC chip to use on ESP32_KORVO_DU1906 board
- Available options:
ESP32_KORVO_DU1906_DAC_TAS5805M
ESP32_KORVO_DU1906_DAC_ES7148
ESP32_KORVO_DU1906_ADC¶
ESP32 KORVO DU1906 Board ADC chip
Found in: Audio HAL
Select ADC chip to use on ESP32_KORVO_DU1906 board
- Available options:
ESP32_KORVO_DU1906_ADC_ES7243
Design Guide¶
The ESP32 is a powerful chip well positioned as a MCU of the audio projects. This section is intended to provide guidance on process of designing an audio project with the ESP32 inside.
Project Design¶
When designing a project with ability to process audio signals or audio data we typically consider a subset of the following components:
Input:
Analog signal input to connect e.g. a microphone
Storage media, e.g. microSD card with audio files to read
Wi-Fi interface to obtain an audio data stream from the internet
Bluetooth interface to obtain an audio data stream from e.g. a Bluetooth headset
I2S interface to obtain audio data stream from a codec chip
Ethernet interface to obtain an audio data stream from the internet
An internal chip’s flash memory with some audio samples to play
User Interface e.g. buttons or some other means to provide user input
Output:
Analog signal output to connect headphones or speakers
Storage media, e.g. microSD card to write some audio files, e.g. with recording
Wi-Fi interface to send out an audio data stream to the internet
Bluetooth interface to stream audio data to e.g. a Bluetooth headset
I2S interface to stream some data to a codec chip
Ethernet interface to stream an audio data stream to the internet
An internal chip’s flash memory to store some audio recording
User Interface e.g. a display, LEDs or some means of haptic feedback
Main Processing Unit:
A microcontroller or a computer with processing power to read the data from the input, process (e.g. encode / encode) and send to the output.
Project Options¶
The ESP chips (including ESP32, ESP32-S2, ESP32-S3) have all the above features or are able to support them (e.g. can drive Ethernet PHY). Considering the ESP chip cost is low, and availability of ESP-ADF software development platform, we are able to develop an audio project with minimum additional components at very low price.
Depending on the application, required functionality and performance, we may consider two project groups.
Minimum - having minimum additional components, assuming using on board I2S, or PDM interface as well as DAC, if no high qualify audio on the output is required.
Typical - with an external codec chip and a power amplifier, for high quality output audio and multiple input / output options.
There may be several variation between the above projects, by adding or removing features/components. Below are a couple of examples.
Project Minimum¶
With several peripherals on an ESP chip, I2S or PDM or DAC interfaces can be used to implement a minimum project. With the digital microphones, we could input voice signals and build a command voice control project minimum that could communicate with a cloud service.

Audio Project Example - Send Voice Commands to Cloud Service¶
With two on board DACs, if 8-bit width on the output is satisfactory, we may implement another project minimum - a device to play an internet connected radio.

Audio Project Example - Internet Connected Radio Player¶
Typical Project¶
When looking for better audio quality and more interfacing options we would use an external I2S codec to do all the analog input and output signal processing. The codec chip, depending on type, may provide additional functionality like audio input signal preamplifier, headphone output amplifier, multiple analog input and outputs, sound effects, etc. The I2S is considered as the industry standard for interfacing with audio codec chips, or in general for a high speed, continuous transfer of the audio data. To optimize performance of audio data processing, an additional memory may be required. For such cases, please consider using ESP32-WROVER-E that provides 8 MB PSRAM on a single module together with the ESP32 chip.

Typical Audio Project Example¶
The ESP-ADF is designed primarily to support projects with a codec chip. The ESP32 LyraT board is an example of such a project. The software interfacing with the board is done by Audio HAL and a driver. The codec chip used on the ESP32 LyraT is ES8388. Boards with a different codec chip may be supported by providing a different driver.
Design Considerations¶
Depending on the audio data format, that may be lossless, lossy or compressed, e.g. WAV, MP3 or FLAC and the quality expressed in sampling rate and bitrate, the project will require different resources: memory, storage space, input / output throughput and the processing power. The resources will also depend on the project type and features discussed in Project Design.
This section describes capacity and performance of ESP32 system resources that should be considered when designing an audio project to meet required data format, audio quality and functionality.
Memory¶
The spare internal Data-RAM is about 290kB with “hello_world” example. For audio system this may be insufficient, and therefore the ESP32 incorporates the ability to use up to 4MB of external SPI RAM (i.e. PSRAM) memory. The external memory is incorporated in the memory map and is, within certain restrictions, usable in the same way internal Data-RAM is.
Refer to External SPI-connected RAM section in IDF documenation for details, especially pay attention to its Restrictions section which is very important.
To be able to use the PSRAM, if installed on your board, it should be enabled in menucofig under Component config > ESP32-specific > SPI RAM config. The option CONFIG_SPIRAM_CACHE_WORKAROUND, set by default in the same menu, should be kept enabled.
Note
Bluetooth and Wi-Fi can not coexist without PSRAM because it will not leave enough memory for an audio application.
Optimization of Internal RAM and Use of PSRAM¶
Internal RAM is more valuable asset since there are some restrictions on PSRAM. Here are some tips for optimizing internal RAM.
If PSRAM is in use, set all the static buffer to minimum value in Component config > Wi-Fi; if PSRAM is not used then dynamic buffer should be selected to save memory. Refer to Wi-Fi Buffer Usage section in IDF documentation for details.
If PSRAM and BT are used, then CONFIG_BT_ALLOCATION_FROM_SPIRAM_FIRST and CONFIG_BT_BLE_DYNAMIC_ENV_MEMORY should be set as “yes” under Component config > Bluetooth > Bluedroid Enable, to allocate more of 40kB memory to PSRAM
If PSRAM and Wi-Fi are used, then CONFIG_WIFI_LWIP_ALLOCATION_FROM_SPIRAM_FIRST should be set as “yes” under Component config > ESP32-specific > SPI RAM config, to allocate some memory to PSRAM
Set CONFIG_WL_SECTOR_SIZE as 512 in Component config > Wear Levelling
Note
The smaller the size of sector be, the slower the Write / Read speed will be, and vice versa, but only 512 and 4096 are supported.
Call
char *buf = heap_caps_malloc(1024 * 10, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT)
instead ofmalloc(1024 * 10)
to use PSRAM, and callchar *buf = heap_caps_malloc(512, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT)
to use internal RAM.Not relying on
malloc()
to automatically allocate PSRAM allows to make a full control of the memory. By avoiding the use of the internal RAM by othermalloc()
calls, you can reserve more memory for high-efficiency usage and task stack since PSRAM cannot be used as task stack memory.The task stack will always be allocated at internal RAM. On the other hand you can use of the
xTaskCreateStatic()
function that allows to create tasks with stack on PSRAM (see options in PSRAM and FreeRTOS menuconfig), but pay attention to its help information.
Important
Don’t use ROM code in xTaskCreateStatic
task: The ROM code itself is linked in components/esp32/ld/esp32.rom.ld
. However, you also need to consider other pieces of code that call ROM functions, as well as the code that is not recompiled against the CONFIG_SPIRAM_CACHE_WORKAROUND patch, like the Wi-Fi and Bluetooth libraries. In general, we advise using this only in threads that do not call any IDF libraries (including libc), doing only calculations and using FreeRTOS primitives to talk to other threads.
Memory Usage by Component Overview¶
Below is a table that contains ESP-ADF components and their memory usage. Choose the components needed and find out how much internal RAM is left. The table is divided into two parts, when PSRAM is used or not. If PSRAM (external RAM) is in use, then some of the memory will be allocated at PSRAM automatically.
The initial spare internal RAM is 290kB.
Component |
Internal RAM Required |
|
---|---|---|
PSRAM not used |
With PSRAM |
|
Wi-Fi 1 |
50kB+ |
50kB+ |
Bluetooth |
140kB (50kB if only BLE needed) |
95kB (50kB if only BLE needed) |
Flash Card 2 |
12kB+ |
12kB+ |
I2S 3 |
Configurable, 8kB for reference |
Configurable, 8kB for reference |
RingBuffer 4 |
Configurable, 30kB for reference |
0kB, all moved into PSRAM |
Notes to the table above
According to the Wi-Fi menuconfig each Tx and Rx buffer occupies 1.6kB internal RAM. The value of 50kB RAM is assuming use of 5 Rx static buffers and 6 Tx static buffers. If PSRAM is not in use, then the “Type of WiFi Tx Buffer” option should be set as DYNAMIC in order to save RAM, in this case, the RAM usage will be far less than 50kB, but programmer should keep at least 50kB available for the Wi-Fi to be able to transmit the data. [Internal RAM only]
Taking ESP32-LyraT V4.3 as an example, depending on value of SDCARD_OPEN_FILE_NUM_MAX in audio_board/lyrat_v4_3/board_def.h, that is then used in
sdcard_mount()
function, the RAM needed will increase with a greater number of maximum open files. 12kB is the RAM needed with 5 max files and 512 bytes CONFIG_WL_SECTOR_SIZE. [Internal RAM only]Depending on configuration settings of the I2S stream, refer to audio_stream/include/i2s_stream.h and audio_stream/i2s_stream.c. [Internal RAM only]
Depending on configuration setting of the Ringbuffer, refer to DEFAULT_PIPELINE_RINGBUF_SIZE in audio_pipeline/include/audio_pipeline.h or user setting, if the buffer is created with e.g.
rb_create()
.
System Settings¶
The following settings are recommended to achieve a high Wi-Fi performance in an audio project.
Note
Use ESP32 modules and boards from reputable vendors that put attention to product design, component selection and product testing. This is to have confidence of receiving well designed boards with calibrated RF.
Set these following options in menuconfig.
Flash SPI mode as QIO
Flash SPI speed as 80MHz
CPU frequency as 240MHz
Set Default receive window size as 5 times greater than Maximum Segment Size in Component config > LWIP > TCP
If external antenna is used, then set PHY_RF_CAL_PARTIAL as PHY_RF_CAL_FULL in ‘’esp-idf/components/esp32/phy_init.c’’
Software Design¶
Espressif audio framework project.
Features¶
All of Streams and Codecs based on audio element.
All events based on queue.
Audio pipeline supports dynamic combination.
Audio pipeline supports multiple elements.
Pipeline Support functionality plug-in.
Audio common peripherals support work in the one task.
Support post-event mechanism in peripherals.
Support high level audio play API based on element and audio pipeline.
Audio high level interface supports dynamic adding of codec library.
Audio high level interface supports dynamic adding of input and output stream.
ESP audio supports multiple audio pipelines.
Design Components¶
Five basic components are - Audio Element, Audio Event, Audio Pipeline, ESP peripherals, ESP audio
Audio Element¶
Example¶
Please refer to audio_stream/fatfs_stream.c for an example of using an audio element.
Audio Event¶
Example¶
Please refer to player/pipeline_http_mp3/main/play_http_mp3_example.c for an example of using an audio event.
Audio Pipeline¶
Example¶
Please refer to player/pipeline_play_sdcard_music/main/play_sdcard_music_example.c for an example of linking elements into an audio pipeline.
Audio Peripheral¶
Example¶
ESP_LOGI(TAG, "[ 3 ] Start and wait for Wi-Fi network");
esp_periph_config_t periph_cfg = DEFAULT_ESP_PERIPH_SET_CONFIG();
esp_periph_set_handle_t set = esp_periph_set_init(&periph_cfg);
periph_wifi_cfg_t wifi_cfg = {
.ssid = CONFIG_WIFI_SSID,
.password = CONFIG_WIFI_PASSWORD,
};
esp_periph_handle_t wifi_handle = periph_wifi_init(&wifi_cfg);
esp_periph_start(set, wifi_handle);
periph_wifi_wait_for_connected(wifi_handle, portMAX_DELAY);
Audio Player¶
Example¶
Please refer to cli for an example of initializing esp_audio
as an audio player.
Development Boards¶
Below are getting started guides and hardware details of audio development boards designed by Espressif.
ESP32-LyraT-Mini V1.2 Getting Started Guide¶
This guide provides users with functional descriptions, configuration options for ESP32-LyraT-Mini V1.2 audio development board, as well as how to get started with the ESP32-LyraT board.
The ESP32-LyraT is a hardware platform designed for the dual-core ESP32 audio applications, e.g., Wi-Fi or BT audio speakers, speech-based remote controllers, connected smart-home appliances with one or more audio functionality, etc.
The ESP32-LyraT-Mini is a mono audio board. If you are looking for a stereo audio board, check ESP32-LyraT V4.3 Getting Started Guide.
What You Need¶
Speaker or headphones with a 3.5 mm jack. If you use a speaker, it is recommended to choose one no more than 3 watts, and JST PH 2.0 2-Pin plugs are needed. In case you do not have this type of plug it is also fine to use Dupont female jumper wires during development.
Two Micro-USB 2.0 cables, Type A to Micro B
PC loaded with Windows, Linux or Mac OS
Optional components
Micro SD-card
Li-ion Battery
If you like to start using this board right now, go directly to section Start Application Development.
Overview¶
The ESP32-LyraT-Mini V1.2 is an audio development board produced by Espressif built around ESP32. It is intended for audio applications, by providing hardware for audio processing and additional RAM on top of what is already on-board of the ESP32 chip. The specific hardware includes:
ESP32-WROVER-E module
Audio codec chip
ADC chip
Microphone on board
Audio output
1 x 3-watt speaker output
MicroSD card slot (1 line)
Eight keys
Two system LEDs
JTAG and UART test points
Integrated USB-UART Bridge Chip
Li-ion Battery-Charge Management
The block diagram below presents main components of the ESP32-LyraT-Mini and interconnections between components.

ESP32-LyraT-Mini Block Diagram¶
Components¶
The following list and figure describe key components, interfaces and controls of the ESP32-LyraT-Mini used in this guide. For detailed technical documentation of this board, please refer to ESP32-LyraT-Mini V1.2 Hardware Reference and ESP32-LyraT-Mini V1.2 schematic (PDF). The list below provides description starting from the picture’s top right corner and going clockwise.
- Audio Codec Chip
The audio codec chip, ES8311, is a low power mono audio codec. It consists of 1-channel ADC, 1-channel DAC, low noise pre-amplifier, headphone driver, digital sound effects, analog mixing and gain functions. It is interfaced with ESP32-WROVER-E Module over I2S and I2C buses to provide audio processing in hardware independently from the audio application.
- Audio Output
Output socket to connect headphones with a 3.5 mm stereo jack. (Please note that the board outputs a mono signal)
- Speaker Output
Output socket to connect a speaker. The 4-ohm and 3-watt speaker is recommended. The pins have a 2.00 mm / 0.08” pitch.

ESP32 LyraT-Mini V1.2 Board Layout Overview¶
- USB-UART Port
Functions as the communication interface between a PC and the ESP32.
- USB Power Port
Provides the power supply for the board.
- Standby / Charging LEDs
The Standby green LED indicates that power has been applied to the USB Power Port. The Charging red LED indicates that a battery connected to the Battery Socket is being charged.
- Power On Switch
Power on/off knob: toggling it to the top powers the board on; toggling it to the down powers the board off.
- Power On LED
Red LED indicating that Power On Switch is turned on.
- ESP32-WROVER-E Module
The ESP32-WROVER-E module contains ESP32 chip to provide Wi-Fi / Bluetooth connectivity and data processing power as well as integrates 4 MB external SPI flash and an additional 8 MB PSRAM for flexible data storage.
Start Application Development¶
Before powering up the ESP32-LyraT-Mini, please make sure that the board has been received in good condition with no obvious signs of damage.
Initial Setup¶
Prepare the board for loading of the first sample application:
Connect speaker to the Speaker Output. Connecting headphones to the Audio Output is an option.
Plug in the Micro-USB cables to the PC and to both USB ports of the ESP32-LyraT-Mini.
The Standby LED (green) should turn on. Assuming that a battery is not connected, the Charging LED (red) will blink every couple of seconds.
Toggle top the Power On Switch.
The red Power On LED should turn on.
If this is what you see on the LEDs, the board should be ready for application upload. Now prepare the PC by loading and configuring development tools what is discussed in the next section.
Develop Applications¶
Once the board is initially set up and checked, you can start preparing the development tools. The Section Installation Step by Step will walk you through the following steps:
Set up ESP-IDF to get a common development framework for the ESP32 (and ESP32-S2) chips in C language;
Get ESP-ADF to install the API specific to audio applications;
Setup Path to ESP-ADF to make the framework aware of the audio specific API;
Start a Project that will provide a sample audio application for the board;
Connect Your Device to prepare the application for loading;
Build the Project to finally run the application and play some music.
Revision History¶
Changed the integrated module to ESP32-WROVER-E from ESP32-WROVER-B.
Other Boards from LyraT Family¶
ESP32-LyraT-Mini V1.2 Hardware Reference¶
This guide provides functional descriptions and configuration options for ESP32-LyraT-Mini V1.2 audio development board. As an introduction to functionality and using the LyraT, please see ESP32-LyraT-Mini V1.2 Getting Started Guide.
In this Section
Overview¶
ESP32-LyraT is a hardware platform designed for the dual-core ESP32 audio applications, e.g., Wi-Fi or BT audio speakers, speech-based remote controllers, connected smart-home appliances with one or more audio functionality, etc.
The block diagram below presents main components of ESP32-LyraT-Mini.

ESP32-LyraT-Mini V1.2 Electrical Block Diagram¶
Functional Description¶
The following list and figure describe key components, interfaces, and controls of the ESP32-LyraT-Mini board. The list provides description starting from the picture’s top right corner and going clockwise.
- MicroSD Slot
The development board supports a MicroSD card in SPI/1-bit modes, and can store or play audio files in the MicroSD card. See MicroSD Card for pinout details.
- Microphone
On-board microphone connected to AINRP/AINRP of the Audio ADC Chip.
- System LEDs
Two general purpose LEDs (green and red) controlled by ESP32-WROVER-E Module to indicate certain operation states of the audio application using dedicated API.
- Audio Codec
The audio codec chip, ES8311, is a low power mono audio codec. It consists of 1-channel ADC, 1-channel DAC, low noise pre-amplifier, headphone driver, digital sound effects, analog mixing, and gain functions. It is interfaced with ESP32-WROVER-E Module over I2S and I2C buses to provide audio processing in hardware independently from the audio application.
- Audio Output
Output socket to connect headphones with a 3.5 mm stereo jack. One of the socket’s terminals is wired to ESP32 to provide jack insertion detection.
- ADC
The audio codec chip, ES7243, is a low power multi-bit delta-sigma audio ADC and DAC. In this board this chip is used as the microphone interface.
- PA
A power amplifier used to amplify the audio signal from the Audio Codec Chip for driving the speaker.
- Speaker Output
Output socket to connect a speaker. The 4-ohm and 3-watt speaker is recommended. The pins have a 2.00 mm / 0.08” pitch.
- Function Press Keys
Six press keys labeled Rec, Mode, Play, Set, Vol-, and Vol+. They are routed to ESP32-WROVER-E Module and intended for development and testing of a UI for audio applications using dedicated API.

ESP32 LyraT-Mini V1.2 Board Layout¶
- Boot/Reset Press Keys
Boot: holding down the Boot button and momentarily pressing the Reset button initiates the firmware upload mode. Then user can upload firmware through the serial port. Reset: pressing this button alone resets the system.
- Automatic Upload
A simple two transistor circuit to put ESP32 into firmware upload mode depending on the status of UART DTR and RTS signals. The signals are controlled by an external application to upload the firmware over the USB-UART interface.
- USB-UART Port
Functions as the communication interface between a PC and the ESP32 module.
- USB-UART Bridge
A single chip USB-UART bridge CP2102N provides up to 3 Mbps transfers rates.
- USB Power Port
Provides the power supply for the board.
- Standby/Charging LEDs
The Standby green LED indicates that power has been applied to the USB Power Port. The Charging red LED indicates that a battery connected to the Battery Socket is being charged.
- Battery Socket
Two-pin socket to connect a single cell Li-ion battery. The pins have a 2.00 mm / 0.08” pitch. The battery serves as an alternative power supply to the USB Power Port for charging the board. Make sure to use a Li-ion battery that has protection circuit and fuse. The recommended specifications of the battery: capacity > 1000 mAh, output voltage 3.7 V, input voltage 4.2 V – 5 V. Please verify if polarity on the battery plug matches polarity of the socket as marked on the board’s soldermask besides the socket.
- Battery Charger
Constant current and constant voltage linear charger for single cell lithium-ion batteries AP5056. Used for charging of a battery connected to the Battery Socket over the USB Power Port.
- Power Supervisor
Provides EN signal to enable ESP32 once power supply voltage stabilizes.
- Power On Switch
Power on/off knob: toggling it to the top powers the board on; toggling it to the down powers the board off.
Note
The Power On Switch does not affect / disconnect the Li-ion battery charging. More information, you can refer to ESP32-LyraT-Mini V1.2 schematic (PDF).
- Power On LED
Red LED indicating that Power On Switch is turned on.
- ESP32-WROVER-E Module
The ESP32-WROVER-E module contains ESP32 chip to provide Wi-Fi / Bluetooth connectivity and data processing power as well as integrates 4 MB external SPI flash and an additional 8 MB PSRAM for flexible data storage.
- UART Termininals
Serial port: provides access to the serial TX/RX signals between ESP32-WROVER-E Module and USB-UART Bridge Chip. See UART Test Point for pinout details.
- JTAG Termininals
Provides access to the JTAG interface of ESP32-WROVER-E Module. It may be used for debugging, application upload, as well as implementing several other functions, e.g., Application Level Tracing. See JTAG Test Point for pinout details.
Allocation of ESP32 Pins to Test Points¶
This section describes allocation of test points available on the ESP32-LyraT-Mini board.
The test points are bare through hole solder pads and have standard 2.54 mm / 0.1 inch pitch. User may need to populate them with pin headers or sockets for easy connection of external hardware.
JTAG Test Point¶
. |
ESP32 Pin |
JTAG Signal |
---|---|---|
1 |
MTDO / GPIO15 |
TDO |
2 |
MTCK / GPIO13 |
TCK |
3 |
MTDI / GPIO12 |
TDI |
4 |
MTMS / GPIO14 |
TMS |
UART Test Point¶
. |
ESP32 Pin |
Pin Description |
---|---|---|
1 |
RXD0 |
RX |
2 |
TXD0 |
TX |
3 |
GND |
GND |
4 |
n/a |
3.3 V |
MicroSD Card¶
Implemented on this board MicoSD card interface operates in SPI/1-bit mode. The board is able to support SPI/4-b it mode after populating couple of additional components on locations reserved on the PCB. See ESP32-LyraT-Mini V1.2 schematic (PDF) for additional information. Not populated components are marked (NC) on the schematic.
. |
ESP32 Pin |
MicroSD Signal |
---|---|---|
1 |
MTDI / GPIO12 |
– |
2 |
MTCK / GPIO13 |
– |
3 |
MTDO / GPIO15 |
CMD |
4 |
MTMS / GPIO14 |
CLK |
5 |
GPIO2 |
DATA0 |
6 |
GPIO4 |
– |
7 |
GPIO34 |
CD |
GPIO Allocation Summary¶
The table below provides allocation of GPIOs exposed on terminals of ESP32-WROVER-E Module to control specific components or functions of the board.
Pin 1 |
Pin Name |
Keys |
MicroSD |
Other |
||
---|---|---|---|---|---|---|
3 |
EN |
EN_KEY |
||||
4 |
S_VP |
I2S_DATA |
||||
5 |
S_VN |
REC, MODE, PLAY, SET, VOL-, VOL+ |
||||
6 |
IO34 |
CD |
||||
7 |
IO35 |
I2S0_ASDOUT |
||||
8 |
IO32 |
I2S1_SCLK |
||||
9 |
IO33 |
I2S1_LRCK |
||||
10 |
IO25 |
I2S0_LRCK |
||||
11 |
IO26 |
I2S0_DSDIN |
||||
12 |
IO27 |
Blue_LED |
||||
13 |
IO14 |
CLK |
||||
14 |
IO12 |
NC (DATA2) |
||||
16 |
IO13 |
NC (DATA3) |
||||
17 |
SD2 |
|||||
18 |
SD3 |
|||||
19 |
CMD |
|||||
20 |
CLK |
|||||
21 |
SD0 |
|||||
22 |
SD1 |
|||||
23 |
IO15 |
CMD |
||||
24 |
IO2 |
IO2_KEY |
DATA0 |
|||
25 |
IO0 |
I2S0_MCLK |
I2S1_MCLK |
IO0_KEY |
||
26 |
IO4 |
NC (DATA1) |
||||
27 |
NC (IO16) |
|||||
28 |
NC (IO17) |
|||||
29 |
IO5 |
I2S0_SCLK |
||||
30 |
IO18 |
I2C_SDA |
I2C_SDA |
|||
31 |
IO19 |
PJ_DET 2 |
||||
33 |
IO21 |
PA_CTRL 3 |
||||
34 |
RXD0 |
RXD0 4 |
||||
35 |
TXD0 |
TXD0 4 |
||||
36 |
IO22 |
Green_LED |
||||
37 |
IO23 |
I2C_SCK |
I2C_SCL |
Pin - ESP32-WROVER-E module pin number, GND and power supply pins are not listed
PJ_DET - phone jack insertion detect signal
PA_CTRL - NS4150 power amplifier chip control signal
RXD0, TXD0 - serial communication signals connected to TXD and RXD pins of CP2102N USB-UART bridge
NC - not connected
Notes on Power Distribution¶
The ESP32-LyraT-Mini board provides some basic features to isolate noise from digital components by providing separate power distribution for audio and digital subsystems.
Power Supply over USB and from Battery¶
There are two ways to power the development board: 5 V USB Power Port or 3.7 V optional battery. The optional battery is preferable for applications where a cleaner power supply is required.

ESP32-LyraT-Mini V1.2 - Dedicated USB Power Supply Socket¶

ESP32-LyraT-Mini V1.2 - Power Supply from a Battery¶
Independent Audio and Digital Power Supply¶
The board features independent power supplies to the audio components and the ESP32 module. This should reduce noise in the audio signal from digital components and improve overall performance of the components.

ESP32-LyraT-Mini V1.2 - Digital Power Supply¶

ESP32-LyraT-Mini V1.2 - Audio Power Supply¶
Selecting of the Audio Output¶
The board provides a mono audio output signal on pins OUTN and OUTP of the ES8311 codec chip. The signal is routed to two outputs:
Power amplifier (PA) to drive an external speaker
Phone jack socket to drive external headphones
The board design assumes that selection between one of these outputs is implemented in software, as opposed to using traditional mechanical contacts in a phone jack socket, that would disconnect the speaker once a headphone jack is inserted.
Two digital IO signals are provided to implement selection between the speaker and the headphones:
PJ_DET - digital input signal to o detect when a headphone jack is inserted,
PA_CTRL - digital output signal to enable or disable the amplifier IC.
The application running on ESP32 may then enable or disable the PA with PA_CTRL basing on status of PJ_DET. Please see GPIO Allocation Summary for specific GPIO numbers allocated to these signals.
ESP32-LyraT V4.3 Getting Started Guide¶
This guide provides users with functional descriptions, configuration options for ESP32-LyraT V4.3 audio development board, as well as how to get started with the ESP32-LyraT board. Check section Other Versions of LyraT, if you have different version of this board.
The ESP32-LyraT is a hardware platform designed for the dual-core ESP32 audio applications, e.g., Wi-Fi or Bluetooth audio speakers, speech-based remote controllers, connected smart-home appliances with one or more audio functionality, etc.
The ESP32-LyraT is a stereo audio board. If you are looking for a mono audio board, intended for lower end applications, check ESP32-LyraT-Mini V1.2 Getting Started Guide.
What You Need¶
2 x Speaker or headphones with a 3.5 mm jack. If you use a speaker, it is recommended to choose one no more than 3 watts, and JST PH 2.0 2-Pin plugs are needed. In case you do not have this type of plug it is also fine to use Dupont female jumper wires during development.
2 x Micro-USB 2.0 cables, Type A to Micro B
1 × PC loaded with Windows, Linux or Mac OS
If you like to start using this board right now, go directly to section Start Application Development.
Overview¶
The ESP32-LyraT V4.3 is an audio development board produced by Espressif built around ESP32. It is intended for audio applications, by providing hardware for audio processing and additional RAM on top of what is already onboard of the ESP32 chip. The specific hardware includes:
ESP32-WROVER-E Module
Audio Codec Chip
Dual Microphones on board
Headphone output
2 x 3-watt Speaker output
Dual Auxiliary Input
MicroSD Card slot (1 line or 4 lines)
Six buttons (2 physical buttons and 4 touch buttons)
JTAG header
Integrated USB-UART Bridge Chip
Li-ion Battery-Charge Management
The block diagram below presents main components of the ESP32-LyraT and interconnections between components.

ESP32-LyraT Block Diagram¶
Components¶
The following list and figure describe key components, interfaces and controls of the ESP32-LyraT used in this guide. This covers just what is needed now. For detailed technical documentation of this board, please refer to ESP32-LyraT V4.3 Hardware Reference and ESP32 LyraT V4.3 schematic (PDF).
- ESP32-WROVER-E Module
The ESP32-WROVER-E module contains ESP32 chip to provide Wi-Fi / Bluetooth connectivity and data processing power as well as integrates 4 MB external SPI flash and an additional 8 MB PSRAM for flexible data storage.
- Headphone Output
Output socket to connect headphones with a 3.5 mm stereo jack.
Note
The socket may be used with mobile phone headsets and is compatible with OMPT standard headsets only. It does not work with CTIA headsets. Please refer to Phone connector (audio) on Wikipedia.

ESP32-LyraT V4.3 Board Layout Overview¶
- Left Speaker Output
Output socket to connect a speaker. The 4-ohm and 3-watt speaker is recommended. The pins have a 2.00 mm / 0.08” pitch.
- Right Speaker Output
Output socket to connect a speaker. The 4-ohm and 3-watt speaker is recommended. The pins have a 2.00 mm / 0.08” pitch.
- Boot/Reset Press Keys
Boot: holding down the Boot button and momentarily pressing the Reset button initiates the firmware upload mode. Then user can upload firmware through the serial port. Reset: pressing this button alone resets the system.
- Audio Codec Chip
The Audio Codec Chip, ES8388, is a low power stereo audio codec with a headphone amplifier. It consists of 2-channel ADC, 2-channel DAC, microphone amplifier, headphone amplifier, digital sound effects, analog mixing and gain functions. It is interfaced with ESP32-WROVER-E Module over I2S and I2S buses to provide audio processing in hardware independently from the audio application.
- USB-UART Port
Functions as the communication interface between a PC and the ESP32-WROVER-E Module.
- USB Power Port
Provides the power supply for the board.
- Standby / Charging LEDs
The Standby green LED indicates that power has been applied to the Micro USB Port. The Charging red LED indicates that a battery connected to the Battery Socket is being charged.
- Power Switch
Power on/off knob: toggling it to the left powers the board on; toggling it to the right powers the board off.
- Power On LED
Red LED indicating that Power On Switch is turned on.
Start Application Development¶
Before powering up the ESP32-LyraT, please make sure that the board has been received in good condition with no obvious signs of damage.
Initial Setup¶
Prepare the board for loading of the first sample application:
Connect speakers to the Right and Left Speaker Output. Connecting headphones to the Headphone Output is an option.
Plug in the Micro-USB cables to the PC and to both USB ports of the ESP32 LyraT.
The Standby LED (green) should turn on. Assuming that a battery is not connected, the Charging LED (red) will blink every couple of seconds.
Toggle left the Power On Switch.
The red Power On LED should turn on.
If this is what you see on the LEDs, the board should be ready for application upload. Now prepare the PC by loading and configuring development tools what is discussed in the next section.
Develop Applications¶
Once the board is initially set up and checked, you can start preparing the development tools. The Section Installation Step by Step will walk you through the following steps:
Set up ESP-IDF to get a common development framework for the ESP32 (and ESP32-S2) chips in C language;
Get ESP-ADF to install the API specific to audio applications;
Setup Path to ESP-ADF to make the framework aware of the audio specific API;
Start a Project that will provide a sample audio application for the board;
Connect Your Device to prepare the application for loading;
Build the Project to finally run the application and play some music.
Summary of Key Changes from LyraT V4.2¶
Changed the integrated module to ESP32-WROVER-E from ESP32-WROVER.
Removed Red LED indicator light.
Introduced headphone jack insert detection.
Replaced single Power Amplifier (PA) chip with two separate chips.
Updated power management design of several circuits: Battery Charging, ESP32, MicorSD, Codec Chip and PA.
Updated electrical implementation design of several circuits: UART, Codec Chip, Left and Right Microphones, AUX Input, Headphone Output, MicroSD, Push Buttons and Automatic Upload.
Other Versions of LyraT¶
Other Boards from LyraT Family¶
ESP32-LyraT V4.3 Hardware Reference¶
This guide provides functional descriptions, configuration options for ESP32-LyraT V4.3 audio development board. As an introduction to functionality and using the LyraT, please see ESP32-LyraT V4.3 Getting Started Guide. Check section Other Versions of LyraT if you have different version of the board.
In this Section
Overview¶
The ESP32-LyraT development board is a hardware platform designed for the dual-core ESP32 audio applications, e.g., Wi-Fi or BT audio speakers, speech-based remote controllers, smart-home appliances with audio functionality(ies), etc.
The block diagram below presents main components of the ESP32-LyraT.

ESP32-LyraT V4.3 Electrical Block Diagram¶
Functional Description¶
The following list and figure describe key components, interfaces and controls of the ESP32-LyraT board.
- ESP32-WROVER-E Module
The ESP32-WROVER-E module contains ESP32 chip to provide Wi-Fi / Bluetooth connectivity and data processing power as well as integrates 4 MB external SPI flash and an additional 8 MB PSRAM for flexible data storage.
- Green LED
A general purpose LED controlled by the ESP32-WROVER-E Module to indicate certain operation states of the audio application using dedicated API.
- Function DIP Switch
Used to configure function of GPIO12 to GPIO15 pins that are shared between devices, primarily between JTAG Header and MicroSD Card. By default, the MicroSD Card is enabled with all switches in OFF position. To enable the JTAG Header instead, switches in positions 3, 4, 5 and 6 should be put ON. If JTAG is not used and MicroSD Card is operated in the one-line mode, then GPIO12 and GPIO13 may be assigned to other functions. Please refer to ESP32 LyraT V4.3 schematic for more details.
- JTAG Header
Provides access to the JTAG interface of ESP32-WROVER-E Module. It may be used for debugging, application upload, as well as implementing several other functions, e.g., Application Level Tracing. See JTAG Header / JP7 for pinout details. Before using JTAG signals to the header, Function DIP Switch should be enabled. Please note that when JTAG is in operation, MicroSD Card cannot be used and should be disconnected because some of JTAG signals are shared by both devices.
- UART Header
Serial port: provides access to the serial TX/RX signals between ESP32-WROVER-E Module and USB-UART Bridge Chip.
- I2C Header
Provides access to the I2C interface. Both ESP32-WROVER-E Module and Audio Codec Chip are connected to this interface. See I2C Header / JP5 for pinout details.
- MicroSD Slot
The development board supports a MicroSD card in SPI/1-bit/4-bit modes, and can store or play audio files in the MicroSD card. Note that JTAG cannot be used and should be disconnected by setting Function DIP Switch when MicroSD Card is in operation, because some of signals are shared by both devices.
- I2S Header
Provides access to the I2S interface. Both ESP32-WROVER-E Module and Audio Codec Chip are connected to this interface. See I2S Header / JP4 for pinout details.
- Left Microphone
Onboard microphone connected to IN1 of the Audio Codec Chip.
- AUX Input
Auxiliary input socket connected to IN2 (left and right channel) of the Audio Codec Chip. Use a 3.5 mm stereo jack to connect to this socket.
- Headphone Output
Output socket to connect headphones with a 3.5 mm stereo jack.
Note
The socket may be used with mobile phone headsets and is compatible with OMPT standard headsets only. It does work with CTIA headsets. Please refer to Phone connector (audio) on Wikipedia.

ESP32-LyraT V4.3 Board Layout¶
- Right Microphone
Onboard microphone connected to IN1 of the Audio Codec Chip.
- Left Speaker Output
Output socket to connect a speaker. The 4-ohm and 3-watt speaker is recommended. The pins have a 2.00 mm / 0.08” pitch.
- Right Speaker Output
Output socket to connect a speaker. The 4-ohm and 3-watt speaker is recommended. The pins have a 2.00 mm / 0.08” pitch.
- PA Chip
A power amplifier used to amplify stereo audio signal from the Audio Codec Chip for driving two speakers.
- Boot/Reset Press Keys
Boot button: holding down the Boot button and momentarily pressing the Reset button to initiate the firmware download mode. Then you can download firmware through the serial port. Reset button: pressing this button alone resets the system.
- Touch Pad Buttons
Four touch pads labeled Play, Sel, Vol+ and Vol-. They are routed to ESP32-WROVER-E Module and intended for development and testing of a UI for audio applications using dedicated API.
- Audio Codec Chip
The Audio Codec Chip, ES8388, is a low power stereo audio codec with a headphone amplifier. It consists of 2-channel ADC, 2-channel DAC, microphone amplifier, headphone amplifier, digital sound effects, analog mixing and gain functions. It is interfaced with ESP32-WROVER-E Module over I2S and I2S buses to provide audio processing in hardware independently from the audio application.
- Automatic Upload
Install three jumpers on this header to enable automatic loading of application to the ESP32. Install all jumpers together on all three headers. Remove all jumpers after upload is complete.
- Function Press Keys
Two key labeled Rec and Mode. They are routed to ESP32-WROVER-E Module and intended for developing and testing a UI for audio applications using dedicated API.
- USB-UART Bridge Chip
A single chip USB-UART bridge provides up to 1 Mbps transfers rate.
- USB-UART Port
Functions as the communication interface between a PC and the ESP32 module.
- USB Power Port
Provides the power supply for the board.
- Standby / Charging LEDs
The Standby green LED indicates that power has been applied to the Micro USB Port. The Charging red LED indicates that a battery connected to the Battery Socket is being charged.
- Battery Socket
Two pins socket to connect a single cell Li-ion battery.
Note
Please verify if polarity on the battery plug matches polarity of the socket as marked on the board’s soldermask besides the socket.
- Battery Charger Chip
Constant current & constant voltage linear charger for single cell lithium-ion batteries AP5056. Used for charging of a battery connected to the Battery Socket over the Micro USB Port.
- Power On LED
Red LED indicating that Power On Switch is turned on.
Note
The Power On Switch does not affect / disconnect the Li-ion battery charging.
- Power Switch
Power on/off knob: toggling it to the left powers the board on; toggling it to the right powers the board off.
Hardware Setup Options¶
There are a couple of options to change the hardware configuration of the ESP32-LyraT board. The options are selectable with the Function DIP Switch.
DIP SW |
Position |
---|---|
1 |
OFF |
2 |
OFF |
3 |
OFF |
4 |
OFF |
5 |
OFF |
6 |
OFF |
7 |
OFF 1 |
8 |
n/a |
AUX Input detection may be enabled by toggling the DIP SW 7 ON. Note that the AUX Input signal pin should not be be plugged in when the system powers up. Otherwise the ESP32 may not be able to boot correctly.
In this mode:
JTAG functionality is not available
Vol- touch button is available for use with the API
DIP SW |
Position |
---|---|
1 |
ON |
2 |
ON |
3 |
OFF |
4 |
OFF |
5 |
OFF |
6 |
OFF |
7 |
OFF |
8 |
n/a |
In this mode:
JTAG functionality is not available
Vol- touch button is not available for use with the API
AUX Input detection from the API is not available
DIP SW |
Position |
---|---|
1 |
OFF |
2 |
OFF |
3 |
ON |
4 |
ON |
5 |
ON |
6 |
ON |
7 |
ON |
8 |
n/a |
In this mode:
MicroSD Card functionality is not available, remove the card from the slot
Vol- touch button is not available for use with the API
AUX Input detection from the API is not available
Entering of the ESP32 into upload mode may be done in two ways:
Manually by pressing both Boot and RST keys and then releasing first RST and then Boot key.
Automatically by software performing the upload. The software is using DTR and RTS signals of the serial interface to control states of EN, IO0 and IO2 pins of the ESP32. This functionality is enabled by installing jumpers in three headers JP23, JP24 and JP25. For details see ESP32 LyraT V4.3 schematic. Remove all jumpers after upload is complete.
Allocation of ESP32 Pins¶
Several pins ESP32 module are allocated to the on board hardware. Some of them, like GPIO0 or GPIO2, have multiple functions. Please refer to the table below or ESP32 LyraT V4.3 schematic for specific details.
GPIO Pin |
Type |
Function Definition |
---|---|---|
SENSOR_VP |
I |
Audio Rec (PB) |
SENSOR_VN |
I |
Audio Mode (PB) |
IO32 |
I/O |
Audio Set (TP) |
IO33 |
I/O |
Audio Play (TP) |
IO27 |
I/O |
Audio Vol+ (TP) |
IO13 |
I/O |
JTAG MTCK, MicroSD D3, Audio Vol- (TP) |
IO14 |
I/O |
JTAG MTMS, MicroSD CLK |
IO12 |
I/O |
JTAG MTDI, MicroSD D2, Aux signal detect |
IO15 |
I/O |
JTAG MTDO, MicroSD CMD |
IO2 |
I/O |
Automatic Upload, MicroSD D0 |
IO4 |
I/O |
MicroSD D1 |
IO34 |
I |
MicroSD insert detect |
IO0 |
I/O |
Automatic Upload, I2S MCLK |
IO5 |
I/O |
I2S SCLK |
IO25 |
I/O |
I2S LRCK |
IO26 |
I/O |
I2S DSDIN |
IO35 |
I |
I2S ASDOUT |
IO19 |
I/O |
Headphone jack insert detect |
IO22 |
I/O |
Green LED indicator |
IO21 |
I/O |
PA Enable output |
IO18 |
I/O |
I2C SDA |
IO23 |
I/O |
I2C SCL |
(TP) - touch pad
(PB) - push button
Pinout of Extension Headers¶
There are several pin headers available to connect external components, check the state of particular signal bus or debug operation of ESP32. Note that some signals are shared, see section Allocation of ESP32 Pins for details.
Header Pin |
|
---|---|
1 |
3.3V |
2 |
TX |
3 |
RX |
4 |
GND |
I2C Header Pin |
ESP32 Pin |
|
---|---|---|
1 |
MCLK |
GPI0 |
2 |
SCLK |
GPIO5 |
1 |
LRCK |
GPIO25 |
2 |
DSDIN |
GPIO26 |
3 |
ASDOUT |
GPIO35 |
3 |
GND |
GND |
I2C Header Pin |
ESP32 Pin |
|
---|---|---|
1 |
SCL |
GPIO23 |
2 |
SDA |
GPIO18 |
3 |
GND |
GND |
ESP32 Pin |
JTAG Signal |
|
---|---|---|
1 |
MTDO / GPIO15 |
TDO |
2 |
MTCK / GPIO13 |
TCK |
3 |
MTDI / GPIO12 |
TDI |
4 |
MTMS / GPIO14 |
TMS |
Notes of Power Distribution¶
The board features quite extensive power distribution system. It provides independent power supplies to all critical components. This should reduce noise in the audio signal from digital components and improve overall performance of the components.
The main power supply is 5V and provided by a USB. The secondary power supply is 3.7V and provided by an optional battery. The USB power itself is fed with a dedicated cable, separate from a USB cable used for an application upload. To further reduce noise from the USB, the battery may be used instead of the USB.

ESP32 LyraT V4.3 - Power Supply Separation¶
ESP32 Module
To provide enough current the ESP32, the development board adopts LD1117S33CTR LDO capable to supply the maximum output current of 800mA.

ESP32 LyraT V4.3 - Dedicated LDO for the ESP32 Module¶
MicroSD Card and Audio Codec
Two separate LDOs are provided for the MicorSD Card and the Audio Codec. Both circuits have similar design that includes an inductor and double decoupling capacitors on both the input and output of the LDO.

ESP32 LyraT V4.3 - Dedicated LDO for the MicroSD Card¶
The audio amplifier unit features two NS4150 that require a large power supply for driving external speakers with the maximum output power of 3W. The power is supplied directly to both PAs from the battery or the USB. The development board adds a set of LC circuits at the front of the PA power supply, where L uses 1.5A magnetic beads and C uses 10uF aluminum electrolytic capacitors, to effectively filter out power crosstalk.

ESP32 LyraT V4.3 - Power Supply for the PAs¶
Selecting of the Audio Output¶
The development board uses two mono Class D amplifier ICs, model number NS4150 with maximum output power of 3W and operating voltage from 3.0V to 5.25V.
The audio input source is the digital-to-analog converter (DAC) output of the ES8388. Audio output supports two external speakers.
An optional audio output is a pair of headphones feed from the same DACs as the amplifier ICs.
To switch between using headphones and speakers, the board provides a digital input signal to detect when a headphone jack is inserted and a digital output signal to enable or disable the amplifier ICs. In other words selection between speakers and headphones is under software control instead of using mechanical contacts that would disconnect speakers once a headphone jack is inserted.
Other Versions of LyraT¶
ESP32-LyraT V4.2 Getting Started Guide¶
This guide provides users with functional descriptions, configuration options for ESP32-LyraT V4.2 audio development board, as well as how to get started with the ESP32-LyraT board.
The ESP32-LyraT development board is a hardware platform designed for the dual-core ESP32 audio applications, e.g., Wi-Fi or BT audio speakers, speech-based remote controllers, smart-home appliances with audio functionality(ies), etc.
If you like to start using this board right now, go directly to section Start Application Development.
What You Need¶
2 × Speaker or headphones with a 3.5 mm jack. If you use a speaker, it is recommended to choose one no more than 3 watts, and JST PH 2.0 2-Pin plugs are needed. In case you do not have this type of plug it is also fine to use Dupont female jumper wires during development.
2 x Micro-USB 2.0 cables, Type A to Micro B
1 × PC loaded with Windows, Linux or Mac OS
Overview¶
The ESP32-LyraT V4.2 is an audio development board produced by Espressif built around ESP32. It is intended for audio applications, by providing hardware for audio processing and additional RAM on top of what is already onboard of the ESP32 chip. The specific hardware includes:
ESP32-WROVER Module
Audio Codec Chip
Dual Microphones on board
Headphone input
2 x 3-watt Speaker output
Dual Auxiliary Input
MicroSD Card slot (1 line or 4 lines)
Six buttons (2 physical buttons and 4 touch buttons)
JTAG header
Integrated USB-UART Bridge Chip
Li-ion Battery-Charge Management
The block diagram below presents main components of the ESP32-LyraT and interconnections between components.

ESP32-LyraT Block Diagram¶
Functional Description¶
The following list and figure describe key components, interfaces and controls of the ESP32-LyraT board.
- ESP32-WROVER Module
The ESP32-WROVER module contains ESP32 chip to provide Wi-Fi / BT connectivity and data processing power as well as integrates 32 Mbit SPI flash and 32 Mbit PSRAM for flexible data storage.
- Green and Red LEDs
Two general purpose LEDs controlled by ESP32-WROVER Module to indicate certain operation states of the audio application using dedicated API.
- Function DIP Switch
Used to configure function of GPIO12 to GPIO15 pins that are shared between devices, primarily between JTAG Header and MicroSD Card. By default, the MicroSD Card is enabled with all switches in OFF position. To enable the JTAG Header instead, switches in positions 3, 4, 5 and 6 should be put ON. If JTAG is not used and MicroSD Card is operated in the one-line mode, then GPIO12 and GPIO13 may be assigned to other functions. Please refer to ESP32 LyraT V4.2 schematic for more details.
- JTAG Header
Provides access to the JTAG interface of ESP32-WROVER Module. It may be used for debugging, application upload, as well as implementing several other functions, e.g., Application Level Tracing. See JTAG Header / JP7 for pinout details. Before using JTAG signals to the header, Function DIP Switch should be enabled. Please note that when JTAG is in operation, MicroSD Card cannot be used and should be disconnected because some of JTAG signals are shared by both devices.
- UART Header
Serial port: provides access to the serial TX/RX signals between ESP32-WROVER Module and USB-UART Bridge Chip.
- I2C Header
Provides access to the I2C interface. Both ESP32-WROVER Module and Audio Codec Chip are connected to this interface. See I2C Header / JP5 for pinout details.
- MicroSD Card
The development board supports a MicroSD card in SPI/1-bit/4-bit modes, and can store or play audio files in the MicroSD card. See MicroSD Card / J5 for pinout details. Note that JTAG cannot be used and should be disconnected by setting Function DIP Switch when MicroSD Card is in operation, because some of signals are shared by both devices.
- I2S Header
Provides access to the I2S interface. Both ESP32-WROVER Module and Audio Codec Chip are connected to this interface. See I2S Header / JP4 for pinout details.
- Left Microphone
Onboard microphone connected to IN1 of the Audio Codec Chip.
- AUX Input
Auxiliary input socket connected to IN2 (left and right channel) of the Audio Codec Chip. Use a 3.5 mm stereo jack to connect to this socket.
- Headphone Output
Output socket to connect headphones with a 3.5 mm stereo jack.

ESP32-LyraT V4.2 Board Layout¶
- Right Microphone
Onboard microphone connected to IN1 of the Audio Codec Chip.
- Left Speaker Output
Output socket to connect a speaker. The 4-ohm and 3-watt speaker is recommended. The pins have a 2.00 mm / 0.08” pitch.
- Right Speaker Output
Output socket to connect a speaker. The 4-ohm and 3-watt speaker is recommended. The pins have a 2.00 mm / 0.08” pitch.
- PA Chip
A power amplifier used to amplify stereo audio signal from the Audio Codec Chip for driving two speakers.
- Boot/Reset Press Keys
Boot: holding down the Boot button and momentarily pressing the Reset button initiates the firmware upload mode. Then user can upload firmware through the serial port. Reset: pressing this button alone resets the system.
- Touch Pad Buttons
Four touch pads labeled Play, Sel, Vol+ and Vol-. They are routed to ESP32-WROVER Module and intended for development and testing of a UI for audio applications using dedicated API.
- Audio Codec Chip
The Audio Codec Chip, ES8388, is a low power stereo audio codec with a headphone amplifier. It consists of 2-channel ADC, 2-channel DAC, microphone amplifier, headphone amplifier, digital sound effects, analog mixing and gain functions. It is interfaced with ESP32-WROVER Module over I2S and I2S buses to provide audio processing in hardware independently from the audio application.
- EN Header
Install a jumper on this header to enable automatic loading of application to the ESP32. Install or remove jumpers together on both IO0 and EN headers.
- IO0 Header
Install a jumper on this header to enable automatic loading of application to the ESP32. Install or remove jumpers together on both IO0 and EN headers.
- Function Press Keys
Two key labeled Rec and Mode. They are routed to ESP32-WROVER Module and intended for developing and testing a UI for audio applications using dedicated API.
- USB-UART Bridge Chip
A single chip USB-UART bridge provides up to 1 Mbps transfers rate.
- USB-UART Port
Functions as the communication interface between a PC and the ESP32 module.
- USB Power Port
Provides the power supply for the board.
- Standby / Charging LEDs
The Standby green LED indicates that power has been applied to the Micro USB Port. The Charging red LED indicates that a battery connected to the Battery Socket is being charged.
- Battery Charger Chip
Constant current & constant voltage linear charger for single cell lithium-ion batteries AP5056. Used for charging of a battery connected to the Battery Socket over the Micro USB Port.
- Power On Switch
Power on/off knob: toggling it to the left powers the board on; toggling it to the right powers the board off.
- Battery Socket
Two pins socket to connect a single cell Li-ion battery.
- Power On LED
Red LED indicating that Power On Switch is turned on.
Note
The Power On Switch does not affect / disconnect the Li-ion battery charging.
Hardware Setup Options¶
There are a couple of options to change the hardware configuration of the ESP32-LyraT board. The options are selectable with the Function DIP Switch.
DIP SW |
Position |
---|---|
1 |
OFF |
2 |
OFF |
3 |
OFF |
4 |
OFF |
5 |
OFF |
6 |
OFF |
7 |
OFF 1 |
8 |
n/a |
AUX Input detection may be enabled by toggling the DIP SW 7 ON
In this mode:
JTAG functionality is not available
Vol- touch button is available for use with the API
DIP SW |
Position |
---|---|
1 |
ON |
2 |
ON |
3 |
OFF |
4 |
OFF |
5 |
OFF |
6 |
OFF |
7 |
OFF |
8 |
n/a |
In this mode:
JTAG functionality is not available
Vol- touch button is not available for use with the API
AUX Input detection from the API is not available
DIP SW |
Position |
---|---|
1 |
OFF |
2 |
OFF |
3 |
ON |
4 |
ON |
5 |
ON |
6 |
ON |
7 |
ON |
8 |
n/a |
In this mode:
MicroSD Card functionality is not available, remove the card from the slot
Vol- touch button is not available for use with the API
AUX Input detection from the API is not available
Allocation of ESP32 Pins¶
Several pins / terminals of ESP32 modules are allocated to the on board hardware. Some of them, like GPIO0 or GPIO2, have multiple functions. Please refer to the tables below or ESP32 LyraT V4.2 schematic for specific details.
ESP32 Pin |
LED Color |
|
---|---|---|
1 |
GPIO19 |
Red LED |
2 |
GPIO22 |
Green LED |
ESP32 Pin |
Touch Pad Function |
|
---|---|---|
1 |
GPIO33 |
Play |
2 |
GPIO32 |
Set |
3 |
GPIO13 |
Vol- 1 |
4 |
GPIO27 |
Vol+ |
Vol- function is not available if JTAG is used. It is also not available for the MicroSD Card configured to operate in 4-wire mode.
ESP32 Pin |
MicroSD Signal |
|
---|---|---|
1 |
MTDI / GPIO12 |
DATA2 |
2 |
MTCK / GPIO13 |
CD / DATA3 |
3 |
MTDO / GPIO15 |
CMD |
4 |
MTMS / GPIO14 |
CLK |
5 |
GPIO2 |
DATA0 |
6 |
GPIO4 |
DATA1 |
7 |
GPIO21 |
CD |
Header Pin |
|
---|---|
1 |
3.3V |
2 |
TX |
3 |
RX |
4 |
GND |
ESP32 Pin |
Header Pin |
|
---|---|---|
1 |
n/a |
EN_Auto |
2 |
EN |
EN |
ESP32 Pin |
Header Pin |
|
---|---|---|
1 |
n/a |
IO0_Auto |
2 |
GPIO0 |
IO0 |
I2C Header Pin |
ESP32 Pin |
|
---|---|---|
1 |
MCLK |
GPI0 |
2 |
SCLK |
GPIO5 |
1 |
LRCK |
GPIO25 |
2 |
DSDIN |
GPIO26 |
3 |
ASDOUT |
GPIO35 |
3 |
GND |
GND |
I2C Header Pin |
ESP32 Pin |
|
---|---|---|
1 |
SCL |
GPIO23 |
2 |
SDA |
GPIO18 |
3 |
GND |
GND |
ESP32 Pin |
JTAG Signal |
|
---|---|---|
1 |
MTDO / GPIO15 |
TDO |
2 |
MTCK / GPIO13 |
TCK |
3 |
MTDI / GPIO12 |
TDI |
4 |
MTMS / GPIO14 |
TMS |
Switch OFF |
Switch ON |
|
---|---|---|
1 |
GPIO12 not allocated |
MicroSD Card 4-wire |
2 |
Touch Vol- enabled |
MicroSD Card 4-wire |
3 |
MicroSD Card |
JTAG |
4 |
MicroSD Card |
JTAG |
5 |
MicroSD Card |
JTAG |
6 |
MicroSD Card |
JTAG |
7 |
MicroSD Card 4-wire |
AUX IN detect 1 |
8 |
not used |
not used |
The AUX Input signal pin should not be be plugged in when the system powers up. Otherwise the ESP32 may not be able to boot correctly.
Start Application Development¶
Before powering up the ESP32-LyraT, please make sure that the board has been received in good condition with no obvious signs of damage.
Initial Setup¶
Prepare the board for loading of the first sample application:
Install jumpers on IO0 and EN headers to enable automatic application upload. If there are no jumpers then upload may be triggered using Boot / RST buttons.
Connect speakers to the Right and Left Speaker Output.Connecting headphones to the Headphone Output is an option.
Plug in the Micro-USB cables to the PC and to both USB ports of the ESP32 LyraT.
The Standby LED (green) should turn on. Assuming that a battery is not connected, the Charging LED will blink every couple of seconds.
Toggle left the Power On Switch.
The red Power On LED should turn on.
If this is what you see on the LEDs, the board should be ready for application upload. Now prepare the PC by loading and configuring development tools what is discussed in the next section.
Develop Applications¶
Once the board is initially set up and checked, you can start preparing the development tools. The Section Installation Step by Step will walk you through the following steps:
Set up ESP-IDF to get a common development framework for the ESP32 (and ESP32-S2) chips in C language;
Get ESP-ADF to install the API specific to audio applications;
Setup Path to ESP-ADF to make the framework aware of the audio specific API;
Start a Project that will provide a sample audio application for the board;
Connect Your Device to prepare the application for loading;
Build the Project to finally run the application and play some music.
ESP32-LyraT V4 Getting Started Guide¶
This guide provide users with functional descriptions, configuration options for ESP32-LyraT V4 audio development board, as well as how to get started with ESP32-LyraT board.
The ESP32-LyraT development board is a hardware platform specifically designed for the dual-core ESP32 audio applications, e.g., Wi-Fi or BT audio speakers, speech-based remote controllers, smart-home appliances with audio functionality(ies), etc.
If you like to start using this board right now, go directly to section Start Application Development.
What You Need¶
2 × Speaker or headphones with a 3.5 mm jack. If you use a speaker, it is recommended to choose one no more than 3 watts, and JST PH 2.0 2-Pin plugs are needed. In case you do not have this type of plug it is also fine to use Dupont female jumper wires during development.
1 × Micro USB 2.0 Cable, Type A to Micro B
1 × PC loaded with Windows, Linux or Mac OS
Overview¶
The ESP32-LyraT V4 is an audio development board produced by Espressif built around ESP32. It is intended for audio applications, by providing hardware for audio processing and additional RAM on top of what is already onboard of the ESP32 chip. The specific hardware includes:
ESP32-WROVER Module
Audio Codec Chip
Dual Microphones on board
Headphone input
2 x 3 Watt Speaker output
Dual Auxiliary Input
MicroSD Card slot (1 line or 4 lines)
6 buttons (2 physical buttons and 4 touch buttons)
JTAG header
Integrated USB-UART Bridge Chip
Li-ion Battery-Charge Management
Block diagram below presents main components of the ESP32-LyraT and interconnections between components.

ESP32-LyraT block diagram¶
Functional Description¶
The following list and figure below describe key components, interfaces and controls of the ESP32-LyraT board.
- ESP32-WROVER Module
The ESP32-WROVER module contains ESP32 chip to provide Wi-Fi / BT connectivity and data processing power as well as integrates 32 Mbit SPI flash and 32 Mbit PSRAM for flexible data storage.
- Green and Red LEDs
Two general purpose LEDs controlled by ESP32-WROVER Module to indicate certain operation states of the audio application using dedicated API.
- Function DIP Switch
Used to configure function of GPIO12 to GPIO15 pins that are shared between devices, primarily between JTAG Header and MicroSD Card. By default MicroSD Card is enabled with all switches in OFF position. To enable JTAG Header instead, switches in positions 3, 4, 5 and 6 should be put ON. If JTAG is not used and MicroSD Card is operated in one-line mode, then GPIO12 and GPIO13 may be assigned to other functions. Please refer to ESP32 LyraT V4 schematic for more details.
- JTAG Header
Provides access to the JTAG interface of ESP32-WROVER Module. May be used for debugging, application upload, as well as implementing several other functions, e.g., Application Level Tracing. See JTAG Header / JP7 for pinout details. Before using JTAG signals to the header, Function DIP Switch should be enabled. Please note that when JTAG is in operation, MicroSD Card cannot be used and should be disconnected because some of JTAG signals are shared by both devices.
- UART Header
Serial port provides access to the serial TX/RX signals between ESP32-WROVER Module and USB-UART Bridge Chip.
- I2C Header
Provides access to the I2C interface. Both ESP32-WROVER Module and Audio Codec Chip are connected to this interface. See I2C Header / JP5 for pinout details.
- MicroSD Card
The development board supports a MicroSD card in SPI/1-bit/4-bit modes, and can store or play audio files in the MicroSD card. See MicroSD Card / J5 for pinout details. Note that JTAG cannot be used and should be disconnected by setting Function DIP Switch when MicroSD Card is in operation, because some of the signals are shared by both devices.
- I2S Header
Provides access to the I2S interface. Both ESP32-WROVER Module and Audio Codec Chip are connected to this interface. See I2S Header / JP4 for pinout details.
- Left Microphone
Onboard microphone connected to IN1 of the Audio Codec Chip.
- AUX Input
Auxiliary input socket connected to IN2 (left and right channels) of the Audio Codec Chip. Use a 3.5 mm stereo jack to connect to this socket.
- Headphone Output
Output socket to connect headphones with a 3.5 mm stereo jack.

ESP32 LyraT V4 board layout¶
- Right Microphone
Onboard microphone connected to IN1 of the Audio Codec Chip.
- Left Speaker Output
Output socket to connect a speaker. The 4-ohm and 3-watt speaker is recommended. The pins have a 2.00 mm / 0.08” pitch.
- Right Speaker Output
Output socket to connect a speaker. The 4-ohm and 3-watt speaker is recommended. The pins have a 2.00 mm / 0.08” pitch.
- PA Chip
A power amplifier used to amplify stereo audio signal from the Audio Codec Chip for driving two speakers.
- Boot/Reset Press Keys
Boot: holding down the Boot button and momentarily pressing the Reset button initiates the firmware upload mode. Then user can upload firmware through the serial port. Reset: pressing this button alone resets the system.
- Touch Pad Buttons
Four touch pads labeled Play, Sel, Vol+ and Vol-. They are routed to ESP32-WROVER Module and intended for development and testing of a UI for audio applications using dedicated API.
- Audio Codec Chip
The Audio Codec Chip, ES8388, is a low-power stereo audio codec with headphone amplifier. It consists of 2-channel ADC, 2-channel DAC, microphone amplifier, headphone amplifier, digital sound effects, analog mixing and gain functions. It is interfaced with ESP32-WROVER Module over I2S and I2S buses to provide audio processing in hardware independently from the audio application.
- Function Press Keys
Two key labeled Rec and Mode. They are routed to ESP32-WROVER Module and intended for developing and testing a UI for audio applications using dedicated API.
- USB-UART Bridge Chip
A single chip USB-UART bridge provides up to 1 Mbps transfer rate.
- Micro USB Port
USB interface. It functions as the power supply for the board and the communication interface between a PC and the ESP32 module.
- Standby / Charging LEDs
The Standby green LED indicates that power has been applied to the Micro USB Port. The Charging red LED indicates that a battery connected to the Battery Socket is being charged.
- Battery Charger Chip
Constant current & constant voltage linear charger for single cell lithium-ion batteries AP5056. Used for charging of a battery connected to the Battery Socket over the Micro USB Port.
- Power On Switch
Power on/off knob: toggling it to the left powers the board on; toggling it to the right powers the board off.
- Battery Socket
Two pins socket to connect a single cell Li-ion battery.
- Power On LED
Red LED indicating that Power On Switch is turned on.
Note
The Power On Switch does not affect / disconnect the Li-ion battery charging.
Hardware Setup Options¶
There are couple of options to change the hardware configuration of the ESP32-LyraT board. The options are selectable with the Function DIP Switch.
DIP SW |
Position |
---|---|
1 |
OFF |
2 |
OFF |
3 |
OFF |
4 |
OFF |
5 |
OFF |
6 |
OFF |
7 |
OFF 1 |
8 |
n/a |
AUX Input detection may be enabled by toggling the DIP SW 7 ON
In this mode:
JTAG functionality is not available
Vol- touch button is available for use with the API
DIP SW |
Position |
---|---|
1 |
ON |
2 |
ON |
3 |
OFF |
4 |
OFF |
5 |
OFF |
6 |
OFF |
7 |
OFF |
8 |
n/a |
In this mode:
JTAG functionality is not available
Vol- touch button is not available for use with the API
AUX Input detection from the API is not available
DIP SW |
Position |
---|---|
1 |
OFF |
2 |
OFF |
3 |
ON |
4 |
ON |
5 |
ON |
6 |
ON |
7 |
ON |
8 |
n/a |
In this mode:
MicroSD Card functionality is not available, remove the card from the slot
Vol- touch button is not available for use with the API
AUX Input detection from the API is not available
Allocation of ESP32 Pins¶
Several pins / terminals of ESP32 modules are allocated to the onboard hardware. Some of them, like GPIO0 or GPIO2, have multiple functions. Please refer to tables below or ESP32 LyraT V4 schematic for specific details.
ESP32 Pin |
LED Color |
|
---|---|---|
1 |
GPIO19 |
Red LED |
2 |
GPIO22 |
Green LED |
ESP32 Pin |
Touch Pad Function |
|
---|---|---|
1 |
GPIO33 |
Play |
2 |
GPIO32 |
Set |
3 |
GPIO13 |
Vol- 1 |
4 |
GPIO27 |
Vol+ |
Vol- function is not available if JTAG is used. It is also not available for the MicroSD Card configured to operate in 4-wire mode.
ESP32 Pin |
MicroSD Signal |
|
---|---|---|
1 |
MTDI / GPIO12 |
DATA2 |
2 |
MTCK / GPIO13 |
CD / DATA3 |
3 |
MTDO / GPIO15 |
CMD |
4 |
MTMS / GPIO14 |
CLK |
5 |
GPIO2 |
DATA0 |
6 |
GPIO4 |
DATA1 |
7 |
GPIO21 |
CD |
Header Pin |
|
---|---|
1 |
3.3V |
2 |
TX |
3 |
RX |
4 |
GND |
I2C Header Pin |
ESP32 Pin |
|
---|---|---|
1 |
MCLK |
GPI0 |
2 |
SCLK |
GPIO5 |
1 |
LRCK |
GPIO25 |
2 |
DSDIN |
GPIO26 |
3 |
ASDOUT |
GPIO35 |
3 |
GND |
GND |
I2C Header Pin |
ESP32 Pin |
|
---|---|---|
1 |
SCL |
GPIO23 |
2 |
SDA |
GPIO18 |
3 |
GND |
GND |
ESP32 Pin |
JTAG Signal |
|
---|---|---|
1 |
MTDO / GPIO15 |
TDO |
2 |
MTCK / GPIO13 |
TCK |
3 |
MTDI / GPIO12 |
TDI |
4 |
MTMS / GPIO14 |
TMS |
Switch OFF |
Switch ON |
|
---|---|---|
1 |
GPIO12 not allocated |
MicroSD Card 4-wire |
2 |
Touch Vol- enabled |
MicroSD Card 4-wire |
3 |
MicroSD Card |
JTAG |
4 |
MicroSD Card |
JTAG |
5 |
MicroSD Card |
JTAG |
6 |
MicroSD Card |
JTAG |
7 |
MicroSD Card 4-wire |
AUX IN detect 1 |
8 |
not used |
not used |
The AUX Input signal pin should not be plugged in when the system powers up. Otherwise the ESP32 may not be able to boot correctly.
Start Application Development¶
Before powering up the ESP32-LyraT, please make sure that the board has been received in good condition with no obvious signs of damage.
Initial Setup¶
Prepare the board for loading of the first sample application:
Connect speakers to the Right and Left Speaker Output. Optionally connect headphones to the Headphone Output.
Plug in the Micro-USB cable to the PC and to the Micro USB Port of the ESP32-LyraT.
The Standby LED (green) should turn on. Assuming that a battery is not connected, the Charging LED will momentarily blink every couple of seconds.
Toggle left the Power On Switch.
The red Power On LED should turn on.
If this is what you see on the LEDs, the board should be ready for application upload. Now prepare the PC by loading and configuring development tools what is discussed in the next section.
Develop Applications¶
Once the board is initially set up and checked, you can start preparing the development tools. The Section Installation Step by Step will walk you through the following steps:
Set up ESP-IDF to get a common development framework for the ESP32 (and ESP32-S2) chips in C language;
Get ESP-ADF to install the API specific to audio applications;
Setup Path to ESP-ADF to make the framework aware of the audio specific API;
Start a Project that will provide a sample audio application for the board;
Connect Your Device to prepare the application for loading;
Build the Project to finally run the application and play some music.
ESP32-LyraTD-MSC V2.2 Getting Started Guide¶
This guide provides users with functional descriptions, configuration options for ESP32-LyraTD-MSC V2.2 audio development board, as well as how to get started with the ESP32-LyraTD-MSC board.
The ESP32-LyraTD-MSC is a hardware platform designed for smart speakers and AI applications. It supports Acoustic Echo Cancellation (AEC), Automatic Speech Recognition (ASR), Wake-up Interrupt and Voice Interaction.
What You Need¶
2 x Speaker or headphones with a 3.5 mm jack. If you use a speaker, it is recommended to choose one no more than 3 watts, and JST PH 2.0 2-Pin plugs are needed. In case you do not have this type of plug it is also fine to use Dupont female jumper wires during development.
2 x Micro-USB 2.0 cables, Type A to Micro B
1 × PC loaded with Windows, Linux or Mac OS
If you like to start using this board right now, go directly to section Start Application Development.
Overview¶
The ESP32-LyraTD-MSC V2.2 is an audio development board produced by Espressif built around ESP32. It is intended for smart speakers and AI applications, by providing hardware for digital signal processing, microphone array and additional RAM on top of what is already onboard of the ESP32 chip.
This audio development board consists of two parts: the upper board (B), which provides a three-microphone array, function keys and LED lights; and the lower board (A), which integrates ESP32-WROVER-E, a MicroSemi Digital Signal Processing (DSP) chip, and a power management module.

ESP32-LyraTD-MSC Side View¶
The specific hardware includes:
ESP32-WROVER-E Module
DSP (Digital Signal Processing) chip
Three digital Microphones that support far-field voice pick-up
2 x 3-watt Speaker output
Headphone output
MicroSD Card slot (1 line or 4 lines)
Individually controlled Twelve LEDs distributed in a circle on the board’s edge
Six Function Buttons that may be assigned user functions
Several interface ports: I2S, I2C, SPI and JTAG
Integrated USB-UART Bridge Chip
Li-ion Battery-Charge Management
The block diagram below presents main components of the ESP32-LyraTD-MSC and interconnections between components.

ESP32-LyraTD-MSC Block Diagram¶
Components¶
The following list and figure describe key components, interfaces and controls of the ESP32-LyraTD-MSC used in this guide. This covers just what is needed now. For additional details please refer to schematics provided in Related Documents.
- ESP32-WROVER-E Module
The ESP32-WROVER-E module contains ESP32 chip to provide Wi-Fi / Bluetooth connectivity and data processing power as well as integrates 4 MB external SPI flash and an additional 8 MB PSRAM for flexible data storage.
- DSP Chip
The Digital Signal Processing chip ZL38063 is used for Automatic Speech Recognition (ASR) applications. It captures audio data from an external microphone array and outputs audio signals through its Digital-to-Analog-Converter (DAC) port.
- Headphone Output
Output socket to connect headphones with a 3.5 mm stereo jack.
Note
The socket may be used with mobile phone headsets and is compatible with OMPT standard headsets only. It does not work with CTIA headsets. Please refer to Phone connector (audio) on Wikipedia.
- Left Speaker Output
Output socket to connect a speaker. The 4-ohm and 3-watt speaker is recommended. The pins have a 2.00 mm / 0.08” pitch.
- Right Speaker Output
Output socket to connect a speaker. The 4-ohm and 3-watt speaker is recommended. The pins have a 2.00 mm / 0.08” pitch.

ESP32-LyraTD-MSC V2.2 Lower Board (A) Components¶
- USB-UART Port
Functions as the communication interface between a PC and the ESP32-WROVER-E module.
- USB Power Port
Provides the power supply for the board.
- Standby / Charging LEDs
The Standby green LED indicates that power has been applied to the Micro USB Port. The Charging red LED indicates that a battery connected to the Battery Socket is being charged.
- Power Switch
Power on/off knob: toggling it right powers the board on; otherwise powers the board off.
- Power On LED
Red LED indicating that Power Switch is turned on.

ESP32-LyraTD-MSC V2.2 Upper Board (B) Components¶
- Boot/Reset Buttons
Boot: holding down the Boot button and momentarily pressing the Reset button initiates the firmware upload mode. Then user can upload firmware through the serial port.
Reset: pressing this button alone resets the system.
Start Application Development¶
Before powering up the ESP32-LyraTD-MSC, please make sure that the board has been received in good condition with no obvious signs of damage. Both the lower A and the upper B board of the ESP32-LyraTD-MSC should be firmly connected together.
Initial Setup¶
Prepare the board for loading of the first sample application:
Connect speakers to the Right and Left Speaker Output. Connecting headphones to the Headphone Output is an option.
Plug in the Micro-USB cables to the PC and to both USB ports of the ESP32-LyraTD-MSC.
The Standby LED (green) should turn on. Assuming that a battery is not connected, the Charging LED (red) will blink every couple of seconds.
Toggle right the Power Switch.
The red Power On LED should turn on.
If this is what you see on the LEDs, the board should be ready for application upload. Now prepare the PC by loading and configuring development tools what is discussed in the next section.
Develop Applications¶
Once the board is initially set up and checked, you can start preparing the development tools. The Section Installation Step by Step will walk you through the following steps:
Set up ESP-IDF to get a common development framework for the ESP32 (and ESP32-S2) chips in C language;
Get ESP-ADF to install the API specific to audio applications;
Setup Path to ESP-ADF to make the framework aware of the audio specific API;
Start a Project that will provide a sample audio application for the board;
Connect Your Device to prepare the application for loading;
Build the Project to finally run the application and play some music.
Revision History¶
Changed the integrated module to ESP32-WROVER-E from ESP32-WROVER-B.
Other Boards from LyraT Family¶
ESP32-Korvo-DU1906¶
This user guide provides information on ESP32-Korvo-DU1906.

ESP32-Korvo-DU1906 (click to enlarge)¶
The document consists of the following major sections:
Getting Started: Provides an overview of the ESP32-Korvo-DU1906 and hardware/software setup instructions to get started.
Start Application Development: Provides more detailed information about the ESP32-Korvo-DU1906’s application development process.
Related Documents: Gives links to related documentaiton.
Getting Started¶
The core component of ESP32-Korvo-DU1906 includes an ESP32-DU1906 Bluetooth/Wi-Fi audio module, which is able to realize noise reduction, acoustic echo cancellation (AEC), beam formation and detection. ESP32-Korvo-DU1906 integrates power management, Bluetooth/Wi-Fi audio module, Coder-Decoder (CODEC), power amplifier, and etc., supports various functions such as:
ADC
Microphone array
SD card
Functional buttons
Indicator lights
Battery constant-current/constant-voltage linear power management chip
USB-to-UART conversion
LCD connector
What You Need¶
1 x PC loaded with Windows, Mac OS and Linux (Linux Operating System is recommended)
1 x ESP32-Korvo-DU1906
2 x Micro USB cables
2 x Speaker (4 Ohm, 2.5 W)
Overview¶
The biggest advantage of this development board is the audio chip – ESP32-DU1906, the core processing module, is an powerful AI module integrating Wi-Fi+Bluetooth+Bluetooth Low Energy RF and voice/speech signal processing functions, which can be used in various fields. By providing the leading end-to-end audio solutions, high-efficient integrated AI service capabilities, and an on-device AIOT platform which integrates ends and devices, this board is able to largely reduce the threshold for AI access.
DU1906 is a voice processing flagship chip launched by Baidu. This chip has a highly integrated algorithm, which can solve the industrial needs of real-time processing of far-field array signals, and high-precision voice wake-up and real-time monitoring with ultra-low error occurs simultaneously on this single one chip.
The block diagram below presents main components of the ESP32-Korvo-DU1906 and interconnections between components.

ESP32-Korvo-DU1906 Block Diagram (click to enlarge)¶
Description of Components¶
The following list and figure describe key components, interfaces and controls of the ESP32-Korvo-DU1906 used in this guide. This covers just what is needed now. For additional details please refer to schematics provided in Related Documents.

ESP32-Korvo-DU1906 Components (click to enlarge)¶
Key Componenet |
Description |
---|---|
ESP32-DU1906 |
This is a powerful, general-purpose, Wi-Fi/Bluetooth audio communication module, targeting a wide variety of applications ranging from low-power sensor networks to the most demanding tasks, such as voice encoding/decoding, music streaming and running voice assistant client SDK. |
DIP Connector for SPI LCD |
ESP32-Korvo-DU1906 has a 2.54 mm pitch connector to connect SPI LCD. |
Audio ADC (Audio Analog-to-Digital Converter) |
ESP32-Korvo-DU1906 includes two ES7243 high-efficiency ADCs, with one for the collection of Audio PA outputs, and another for the collection of Line-in outputs. Both ADCs can be used for AEC. |
Line-in/out Connector (Earphone Jacks) |
The two earphone jacks are used to connect to Line-out outputs of Audio DAC and Line-in inputs of Audio ADC respectively. When a device is plugged in the Line-out earphone jack of Audio DAC, the Audio PA on the ESP32-Korvo-DU1906 will be turned off. |
Speaker Connector |
Output sockets to connect two 4-ohm speakers to provide stereo sound via digital Audio PA. |
Audio DAC (Audio Digital-to-Analog Converter) |
ES7148 Stereo DAC is able to convert digital signals into analog audio outputs. |
Audio PA (Digital Audio Power Amplifier) |
TAS5805M is a high-efficiency stereo closed-loop D-type amplifier with low power dissipation and rich sound. It can convert audio digital signals into high-power analog audio outputs and transmit them to external speakers for playback. When the Line-out earphone jack of the audio DAC plugged into the device, the Digital Audio PA on the ESP32-Korvo-DU1906 will be turned off. |
Battery Connector |
Connect a battery. |
Battery Charger |
AP5056, a constant-current/constant-voltage linear power management chip, can be used for charging management to a single lithium-ion battery. |
PWR Slide Switch |
Power switch for the board, turn on/off the power supply. |
USB to UART |
CP2102N supports USB-to-UART conversion for easy download and debugging of software. |
DBG USB (Debugging USB) |
USB communication between PC and ESP32-DU1906 module. |
PWR USB (Power supply USB) |
Provide power supply for the whole system. It is recommended that the system be connected to an at least 5 V / 2 A power adapter for sufficient current supply. |
Charging LEDs |
Indicating battery state. When a battery is connected, BAT_CHRG LED will turn red (indicating the battery is charging), then BAT_STBY LED will turn green (indicating the charging is completed). If there is no battery connected, the BAT_CHRG and BAT_STBY LEDs will be red and green respectively by default. |
Power on LEDs |
Indicating power state. The two LEDs (SYS_3V3, SYS_5) will turn red when the board is powered on. |
Buttons |
ESP32-Korvo-DU1906 has four functional buttons, one Reset button and one Boot button. |
SD Card Slot |
Connect a standard TF card. |
ESP_I2C Connector/DSP_I2C Connnector |
Two sets of reserved I2C debugging interfaces for users to debug. |
Mic |
ESP32-Korvo-DU1906 has three on-board digital microphones. The pickup holes of the three microphones are distributed in equilateral pyramid shape with distances of 60 mm in between. Together with DSP, the Microphone Array is able to realize noise reduction, AEC, beam formation and detection. |
IR TX/RX (Infrared Transmitter/Receiver) |
ESP32-Korvo-DU1906 has one infrared transmitter and one infrared receiver, which can be used together with the remote control module of ESP32. |
FPC Connector for Mic |
ESP32-Korvo-DU1906 has two FPC connectors to connect the SPI LCD screen and external microphone arrays. |
RGB LED |
ESP32-Korvo-DU1906 has two RGB LEDs for users that can be configured as status behavior indicator. |
Slide Switch for Mic |
ESP32-Korvo-DU1906 has a reserved interface for an external Microphone Array sub-board. This switch needs to be toggled to OFF when using an external Microphone Array sub-board, and needs to be toggled to ON when using the on-board Microphone Array. |
Start Application Development¶
Before powering up the ESP32-Korvo-DU1906, please make sure that the board has been received in good condition with no obvious signs of damage.
Initial Setup¶
Prepare the board for loading of the first sample application:
Connect 4-ohm speakers to the two Speaker Connectors. Connecting earphones to the Line-out Connector is an option.
Plug in the Micro-USB cables to the PC and to both USB connectors of the ESP32-Korvo-DU1906.
Assuming that a battery is connected, the Charging LED (red) will keep the lights on.
Toggle left the PWR Slide Switch.
The red Power On LED should turn on.
If this is what you see on the LEDs, the board should be ready for application upload. Now prepare the PC by loading and configuring development tools what is discussed in the next section.
Develop Applications¶
Once the board is initially set up and checked, you can start preparing the development tools. The Section Development Boards will walk you through the following steps:
Set up ESP-IDF to get a common development framework for the ESP32 (and ESP32-S2) chips in C language;
Get ESP-ADF to install the API specific to audio applications;
Setup Path to ESP-ADF to make the framework aware of the audio specific API;
Start a Project that will provide a sample audio application for the board;
Connect Your Device to prepare the application for loading;
Build the Project to finally run the application and play some music.
Contents and Packaging¶
Retail orders¶
If you order one or several samples, each board will come in a plastic package or other package chosen by the retailer.
For retail orders, please go to https://www.espressif.com/zh-hans/products/devkits/esp32-korvo-du1906.
ESP32-S3-Korvo-2 V3.0¶
This user guide will help you get started with ESP32-S3-Korvo-2 V3.0 and will also provide more in-depth information.
The ESP32-S3-Korvo-2 is a multimedia development board based on the ESP32-S3 chip. It is equipped with a two-microphone array which is suitable for voice recognition and near/far-field voice wake-up applications. The board integrates multiple peripherals such as LCD, camera, and microSD card. It also supports JPEG video stream processing. With all of its outstanding features, the board is an ideal choice for the development of low-cost and low-power network-connected audio and video products.

ESP32-S3-Korvo-2 V3.0 with ESP32-S3-WROOM-1 module¶
This board mainly consists of the following parts:
Main board: ESP32-S3-Korvo-2
LCD extension board: ESP32-S3-Korvo-2-LCD
Camera
This document is mostly dedicated to the main board. For detailed information on other parts, click the links above.
The document consists of the following sections:
Getting started: Overview of the board and hardware/software setup instructions to get started.
Hardware Reference: More detailed information about the board’s hardware.
Hardware Revision Details: Hardware revision history, known issues, and links to user guides for previous versions (if any) of the board.
Related Documents: Links to related documentation.
Getting Started¶
This section provides a brief introduction of ESP32-S3-Korvo-2 V3.0, instructions on how to do the initial hardware setup and how to flash firmware onto it.
Description of Components¶

ESP32-S3-Korvo-2 V3.0 (click to enlarge)¶
The key components of the board are described in a clockwise direction.
Key Component |
Description |
---|---|
ESP32-S3-WROOM-1 Module |
The ESP32-S3-WROOM-1 is a powerful, generic Wi-Fi + Bluetooth LE MCU module that is built around the ESP32-S3 series of SoCs. On top of a rich set of peripherals, the acceleration for neural network computing and signal processing workloads provided by the SoC make the modules an ideal choice for a wide variety of application scenarios related to AI and Artificial Intelligence of Things (AIoT), such as wake word detection, speech commands recognition, face detection and recognition, smart home, smart appliances, smart control panel, smart speaker, etc. |
Left Microphone |
Onboard microphone connected to ADC. |
Audio ADC Chip |
ES7210 is a high-performance, low-power 4-channel audio analog-to-digital converter for microphone array applications. It is very suitable for music and speech applications. In addition, ES7210 can also be used to collect acoustic echo cancellation (AEC) echo reference signals. |
Audio Codec Chip |
The audio codec chip, ES8311, is a low-power mono audio codec. It consists of 1-channel ADC, 1-channel DAC, low noise pre-amplifier, headphone driver, digital sound effects, analog mixing, and gain functions. It is interfaced with ESP32-S3-WROOM-1 module over I2S and I2C buses to provide audio processing in hardware independently from the audio application. |
Audio PA Chip |
NS4150 is an EMI, 3 W mono Class D audio power amplifier, amplifying audio signals from audio codec chips to drive speakers. |
Right Microphone |
Onboard microphone connected to ADC. |
Speaker Output Port |
Output socket to connect a speaker. The 4-ohm and 3-watt speaker is recommended. The pins have a 2.00 mm/0.08” pitch. |
USB-to-UART Bridge Chip |
A single chip USB-UART bridge CP2102N provides up to 3 Mbps transfer rates for software download and debugging. |
USB-to-UART Port |
Functions as the communication interface between a PC and the ESP32-S3-WROOM-1 module. |
USB Power Port |
Provides power to the board. It is recommended to use at least 5V/2A power adapter to ensure a stable power supply. |
Battery Socket |
Two pins socket to connect a single cell Li-ion battery. |
Power Switch |
Power on/off knob: toggling it down powers the board on; toggling it up powers the board off. |
Battery Charger |
AP5056 is a constant current and constant voltage linear charger for single cell lithium-ion batteries. Used for charging of a battery connected to the Battery Socket over the Micro USB Port. |
Function Press Keys |
Six press keys labeled REC, MUTE, PLAY, SET, VOL- and VOL+. They are routed to ESP32-S3-WROOM-1 module and intended for development and testing of a UI for audio applications using a dedicated API. |
Boot/Reset Press Keys |
Boot: holding down the Boot key and momentarily pressing the Reset key initiates the firmware upload mode. Then you can upload firmware through the serial port.
Reset: pressing this button alone resets the system.
|
MicroSD Slot |
The development board supports a microSD card in 1-bit mode, and can store or play audio files in the microSD card. |
LCD Connector |
A FPC connector with 0.5 mm pitch to connect to the LCD extension board. |
System LEDs |
Two general-purpose LEDs (green and red) controlled by ESP32-S3-WROOM-1 module to indicate certain operation states of the audio application using dedicated API. |
Camera Connector |
An external camera module that can be connected to the development board with the connector to transmit images. |
Start Application Development¶
Before powering up your board, please make sure that it is in good condition with no obvious signs of damage.
1 x ESP32-S3-Korvo-2 V3.0
1 x Speaker
2 x USB 2.0 cable (Standard-A to Micro-B)
1 x Computer running Windows, Linux, or macOS
Note
Be sure to use an appropriate USB cable. Some cables are for charging only and do not provide the needed data lines nor work for programming the boards.
1 x MicroSD card
1 x Li-ion battery
Note
Be sure to use a Li-ion battery that has a built-in protection circuit.
Connect the speaker to the Speaker Output.
Plug in the USB cables to the PC and to both USB ports of the board.
The standby LED (green) should turn on. Assuming that a battery is not connected, the charging LED (red) will blink every couple of seconds.
Toggle the Power Switch.
The red Power On LED should turn on.
Please proceed to Get Started, where Section Installation Step by Step will quickly help you set up the development environment and then flash an application example onto your board.
Contents and Packaging¶
The main board and its accessories can be ordered separately. The accessories include:
LCD extension board: ESP32-S3-Korvo-2-LCD
Camera
Connectors:
20-pin FPC cable
Fasteners:
Copper standoffs (x8)
Screws (x4)
If you order a few samples, each board comes in an individual package in either antistatic bag or any packaging depending on your retailer.
For retail orders, please go to https://www.espressif.com/en/company/contact/buy-a-sample.
If you order in bulk, the boards come in large cardboard boxes.
For wholesale orders, please go to https://www.espressif.com/en/contact-us/sales-questions.
Hardware Reference¶
Block Diagram¶
The block diagram below shows the components of ESP32-S3-Korvo-2 V3.0 and their interconnections.

ESP32-S3-Korvo-2 V3.0 Electrical Block Diagram¶
Notes on Power Distribution¶
The main power supply is 5 V and provided by a USB. The secondary power supply is 3.7 V and provided by an optional battery. The USB power itself is fed with a dedicated cable, separating from a USB cable used for an application upload. To further reduce noise from the USB, the battery may be used instead of the USB.

ESP32-S3-Korvo-2 V3.0 - Dedicated USB Power Supply Socket¶

ESP32-S3-Korvo-2 V3.0 - Power Supply from a Battery¶
As shown in the figure below, if the USB power supply and battery power supply are connected at the same time with a high VBUS, an off-state Q14, and an automatic cut-off VBAT, the USB becomes the power supply for the system.

ESP32-S3-Korvo-2 V3.0 - Power Supply Options¶
ESP32-S3-Korvo-2 V3.0 features independent power supplies to the audio components and ESP module. This should reduce noise in the audio signal from digital components and improve overall performance of the components.

ESP32-S3-Korvo-2 V3.0 - Digital Power Supply¶

ESP32-S3-Korvo-2 V3.0 - Audio Power Supply¶
GPIO Allocation Summary¶
The table below provides allocation of GPIOs exposed on terminals of ESP32-S3-WROOM-1 module to control specific components or functions of the board.
Pin 1 |
Pin Name |
ES8311 |
ES7210 |
Camera |
LCD |
Keys |
MicroSD |
IO Expander |
Other |
---|---|---|---|---|---|---|---|---|---|
3 |
EN |
EN_KEY |
|||||||
4 |
IO4 |
DATA0 |
|||||||
5 |
IO5 |
REC, MUTE, PLAY, SET, VOL-, VOL+ |
|||||||
6 |
IO6 |
BAT_MEAS_ADC |
|||||||
7 |
IO7 |
CMD |
|||||||
8 |
IO15 |
CLK |
|||||||
9 |
IO16 |
I2S0_MCLK |
MCLK |
||||||
10 |
IO17 |
I2C_SDA |
I2C_SDA |
SIOD |
TP_I2C_SDA |
I2C_SDA |
|||
11 |
IO18 |
I2C_CLK |
I2C_CLK |
SIOC |
TP_I2C_CLK |
I2C_CLK |
|||
12 |
IO8 |
I2S0_DSDIN |
|||||||
13 |
IO19 |
ESP_USB_DM (Reserve) |
|||||||
14 |
IO20 |
ESP_USB_DP (Reserve) |
|||||||
15 |
IO3 |
D5 |
|||||||
16 |
IO46 |
NC |
|||||||
17 |
IO9 |
I2S0_SCLK |
SCLK |
||||||
18 |
IO10 |
SDOUT |
|||||||
19 |
IO11 |
PCLK |
|||||||
20 |
IO12 |
D6 |
|||||||
21 |
IO13 |
D2 |
|||||||
22 |
IO14 |
D4 |
|||||||
23 |
IO21 |
VSYNC |
|||||||
24 |
IO47 |
D3 |
|||||||
25 |
IO48 |
PA_CTRL |
|||||||
26 |
IO45 |
I2S0_LRCK |
LRCK |
||||||
27 |
IO0 |
LCD_SPI_SDA |
BOOT_KEY |
||||||
28 |
IO35 |
NC |
|||||||
29 |
IO36 |
NC |
|||||||
30 |
IO37 |
NC |
|||||||
31 |
IO38 |
HREF |
|||||||
32 |
IO39 |
D9 |
|||||||
33 |
IO40 |
XCLK |
|||||||
34 |
IO41 |
D8 |
|||||||
35 |
IO42 |
D7 |
|||||||
36 |
RXD0 |
ESP0_UART0_RX |
|||||||
37 |
TXD0 |
ESP0_UART0_TX |
|||||||
38 |
IO2 |
LCD_SPI_DC |
|||||||
39 |
IO1 |
LCD_SPI_CLK |
|||||||
41 |
EPAD |
- 1
Pin - ESP32-S3-WROOM-1 module pin number, GND and power supply pins are not listed.
The GPIOs allocated to the IO expander are further expanded to multiple GPIOs.
IO Expander Pin |
Pin Name |
LCD |
Other |
---|---|---|---|
4 |
P0 |
PA_CTRL |
|
5 |
P1 |
LCD_CTRL |
|
6 |
P2 |
LCD_RST |
|
7 |
P3 |
LCD_CS |
|
9 |
P4 |
TP_INT |
|
10 |
P5 |
PERI_PWR_ON |
|
11 |
P6 |
LED1 |
|
12 |
P7 |
LED2 |
Connector¶
No. |
Camera Signal |
ESP32-S3 Pin |
---|---|---|
1 |
SIOD |
GPIO17 |
2 |
SIOC |
GPIO18 |
3 |
D5 |
GPIO3 |
4 |
PCLK |
GPIO11 |
5 |
D6 |
GPIO12 |
6 |
D2 |
GPIO13 |
7 |
D4 |
GPIO14 |
8 |
VSYNC |
GPIO21 |
9 |
D3 |
GPIO47 |
10 |
HREF |
GPIO38 |
11 |
D9 |
GPIO39 |
12 |
XCLK |
GPIO40 |
13 |
D8 |
GPIO41 |
14 |
D7 |
GPIO42 |
No. |
LCD Signal |
ESP32-S3 Pin |
---|---|---|
1 |
TP_I2C_SDA |
GPIO17 |
2 |
TP_I2C_CLK |
GPIO18 |
3 |
LCD_SPI_SDA |
GPIO0 |
4 |
LCD_SPI_DC |
GPIO2 |
5 |
LCD_SPI_CLK |
GPIO1 |
No. |
LCD Signal |
IO Expander |
---|---|---|
1 |
ESP_LCD_CTRL |
P1 |
2 |
ESP_LCD_RST |
P2 |
3 |
ESP_LCD_CS |
P3 |
4 |
ESP_TP_INT |
P4 |
AEC Path¶
AEC path provides reference signals for AEC algorithm.
ESP32-S3-Korvo-2 provides two compatible echo reference signal source designs. One is Codec (ES8311) DAC output (DAC_AOUTLN/DAC_AOUTLP), the other is PA (NS4150) output (PA_OUTL+/PA_OUTL-). The former is the default and recommended selection. Resistors R132 and R140 marked NC (no component) in the figure below should not be installed.
The echo reference signal is collected by ADC_MIC3P/ADC_MIC3N of ADC (ES7210) and then sent back to ESP32-S3 for AEC algorithm.

ESP32-S3-Korvo-2 V3.0 - AEC Codec DAC Output (click to enlarge)¶

ESP32-S3-Korvo-2 V3.0 - AEC PA Output (click to enlarge)¶

ESP32-S3-Korvo-2 V3.0 - AEC Reference Signal Collection (click to enlarge)¶
Hardware Setup Options¶
Entering of the ESP board into upload mode may be done in two ways:
Manually by pressing both Boot and RST keys and then releasing first RST and then Boot key.
Automatically by software performing the upload. The software is using DTR and RTS signals of the serial interface to control states of EN and IO0 of the ESP board. For details see ESP32-S3-Korvo-2 V3.0 Schematic (PDF).
Allocation of ESP Pins to Test Points¶
This section describes the allocation of test points available on the ESP32-S3-Korvo-2 V3.0 board.
The test points are bare through hole solder pads and have a standard 2.54 mm/0.1” pitch. You may need to populate them with pin headers or sockets for easy connection of external hardware.
No. |
Codec Pin |
ESP32-S3 Pin |
---|---|---|
1 |
MCLK |
GPIO16 |
2 |
SCLK |
GPIO9 |
3 |
LRCK |
GPIO45 |
4 |
DSDIN |
GPIO8 |
5 |
ASDOUT |
– |
6 |
GND |
– |
No. |
ADC Pin |
ESP32-S3 Pin |
---|---|---|
1 |
MCLK |
GPIO16 |
2 |
SCLK |
GPIO9 |
3 |
LRCK |
GPIO45 |
4 |
SDOUT |
GPIO10 |
5 |
INT |
– |
6 |
GND |
– |
No. |
UART Pin |
---|---|
1 |
3.3V |
2 |
TXD |
3 |
RXD |
4 |
IO0 |
5 |
EN |
6 |
GND |
No. |
I2C Pin |
ESP32-S3 Pin |
---|---|---|
1 |
3.3V |
– |
2 |
CLK |
GPIO18 |
3 |
SDA |
GPIO17 |
4 |
GND |
– |
Hardware Revision Details¶
This is the first revision of this board released.
ESP32-S3-Korvo-2-LCD V1.0¶
This user guide will help you get started with the ESP32-S3-Korvo-2-LCD extension board and will also provide more in-depth information.
This extension board cannot be bought separately and is sold as part of the ESP32-S3-Korvo-2 V3.0 accessories.
ESP32-S3-Korvo-2-LCD extends the functionality of ESP32-S3-Korvo-2 V3.0 (referred to as main board below) by adding an LCD graphic display and capacitive touchpad.

ESP32-S3-Korvo-2-LCD V1.0¶
The document consists of the following major sections:
Getting started: Overview of the board and hardware/software setup instructions to get started.
Hardware Reference: More detailed information about the board’s hardware.
Related Documents: Links to related documentation.
Getting Started¶
This extension board adds a 2.4” LCD graphic display with the resolution of 320x240 and a 10-point capacitive touchpad. This display is connected to ESP32-S3 over the SPI bus.
Description of Components¶

ESP32-S3-Korvo-2-LCD V1.0 - front¶

ESP32-S3-Korvo-2-LCD V1.0 - back¶
The key components of the board are described in a clockwise direction. Reserved means that the functionality is available, but the current version of the board does not use it.
Key Component |
Description |
---|---|
LCD Display |
A 2.4” 320x240 SPI LCD display module; the display driver/controller is Ilitek ILI934. |
Home Key |
(Reserved) Returns to homepage or previous page. |
Signal Connector |
Connects the power, ground, and signal wires between the extension board and the main board with a FPC cable. |
LCD Connector |
Connects LCD display to the driver circuit of this board. |
TP Connector |
Connects LCD display to the touch circuit of this board. |
Start Application Development¶
Before powering up your board, please make sure that it is in good condition with no obvious signs of damage.
Main board: ESP32-S3-Korvo-2 V3.0
Extension board: ESP32-S3-Korvo-2-LCD V1.0
Two USB 2.0 cables (Standard-A to Micro-B)
Mounting copper standoffs and screws (for stable mounting)
A FPC cable (for connecting the main board and extension board)
Computer running Windows, Linux, or macOS
To mount your ESP32-S3-Korvo-2-LCD onto ESP32-S3-Korvo-2:
Connect the two boards with the FPC cable.
Install copper standoffs and screws for stable mounting.
See Section Software Setup of the main board user guide.
Hardware Reference¶
Block Diagram¶
The block diagram below shows the components of ESP32-S3-Korvo-2-LCD and their interconnections.

ESP32-S3-Korvo-2-LCD¶
Hardware Revision Details¶
Initial release.
ESP32-C3-Lyra V2.0¶
This user guide will help you get started with ESP32-C3-Lyra V2.0 and will also provide more in-depth information.
The document consists of the following sections:
Board Overview: Overview of the board hardware/software.
Start Application Development: How to set up hardware/software to develop applications.
Hardware Reference: More detailed information about the board’s hardware.
Hardware Revision Details: Hardware revision history, known issues, and links to user guides for previous versions (if any) of the board.
Ordering: How to buy the board.
Related Documents: Links to related documentation.
Board Overview¶
ESP32-C3-Lyra is an ESP32-C3-based audio development board produced by Espressif for controlling light with audio. The board has control over the microphone, speaker, and LED strip, perfectly matching customers’ product development needs for ultra-low-cost and high-performance audio broadcasters and rhythm light strips.

ESP32-C3-Lyra with ESP32-C3-WROOM-02 module¶
Feature List¶
The main features of the board are listed below:
Module Embedded: ESP32-C3-WROOM-02 module with a 4 MB external SPI flash
Audio: built-in ECM microphone, speaker power amplifier, speaker connector
LED Strip Connector: support for two types of connections, i.e., connections to addressable LED strips and RGB LED strips
Infrared Control: support for infrared (IR) transmitting and receiving
Keys: boot key, reset key, and six function keys (MODE, COLOR, PLAY/PAUSE, SET, VOL+/LM+, VOL-/LM-)
USB: 1 x USB Power Port, 1 x USB-to-UART Port
Power Supply: 5 V power supply over USB or 12 V DC power supply
Block Diagram¶
The block diagram below shows the components of ESP32-C3-Lyra and their interconnections.

ESP32-C3-Lyra Block Diagram (click to enlarge)¶
Description of Components¶

ESP32-C3-Lyra - front (click to enlarge)¶
The key components of the board are described in a clockwise direction.
Key Component |
Description |
---|---|
ESP32-C3-WROOM-02 Module |
It is a general-purpose Wi-Fi and Bluetooth LE module developed based on ESP32-C3, a 32-bit RISC-V single-core processor that operates at up to 160 MHz. The module has a rich set of peripherals and a high performance, making it an ideal choice for smart homes, industrial automation, health care, consumer electronics, etc. It integrates a 4 MB external SPI flash and an on-board PCB antenna. The ESP32-C3-WROOM-02U module is also compatible with this board, but it needs to connect to an external antenna. |
Speaker PA Chip |
NS4150 is an EMI, 3 W mono Class D audio power amplifier, amplifying audio signals from ESP32-C3 PDM_TX to drive speakers. |
Speaker Output Port |
Output socket to connect a speaker. The 4-ohm and 3-watt speaker is recommended. The pins have a 2.00 mm/0.08” pitch. |
Function Press Keys |
Six function press keys, including MODE, COLOR, PLAY/PAUSE, SET, VOL+/LM+, VOL-/LM-. They are routed to the ESP32-C3-WROOM-02 Module and intended for the development and testing of a UI for audio applications or LED strips using dedicated APIs. |
Boot/Reset Press Keys |
Boot: holding down the Boot key and momentarily pressing the Reset button initiates the firmware upload mode. Then you can upload firmware through the serial port. Reset: pressing this key alone resets the system. |
USB-to-UART Port |
Functions as the communication interface between the PC and the ESP32-C3-WROOM-02 module. |
USB-to-UART Bridge Chip |
The single-chip USB-UART bridge CP2102N provides up to 3 Mbps transfer rates for software download and debugging. |
USB Power Port |
Provides power to the board. It is recommended to use at least 5 V/2 A power adapters to ensure a stable power supply. |
System Power Switch |
System Power on/off knob. Toggling it to ON turns the 5 V system power on; toggling it to OFF turns the 5 V system power off. |
LED Strip Power Selection Switch |
Toggle this switch to select between a 5 V power supply over USB and a 12 V DC power supply for your LED strip according to the working voltage of the LED strip and the type of the power adapter you actually use. |
12 V DC Power Port |
Supports 12 V DC power adapters with a maximum current of 2 A. The DC power Jack contact have an outer diameter of 5.5 mm and an inner contact diameter of 2.5 mm. |
12 V to 5 V Buck Chip |
The 12 V to 5 V buck chip MP2313 is a high-efficiency synchronous step-down converter that operates at 1 A and 2 MHz. |
Addressable LED Strip Port |
It is a male pin header connector with 4 x 1 pins and a 2.54 mm pitch. It can connect to the addressable LED strip that is controlled with a single wire. It supports 5 V and 12 V LED strips, such as WS2811 and WS2812 LED. ESP32-C3 can send commands to control the LED strips over RMT or SPI. |
RGB LED Strip Port |
It is a male pin header connector with 4 x 1 pins and a 2.54 mm pitch. It can connect to regular RGB LED strips (non-addressable, individual wire per color) that operate at 5 V or 12 V. ESP32-C3 can output PWM waveform via this port to control the LED strips. |
System Power LED |
It turns red when System Power Switch is toggled to ON. |
IR Receiver |
IRM-H638T/TR2 is a miniature SMD type infrared remote control system receiver. The demodulated output signal can directly be decoded by ESP32-C3. |
IR Transmitter |
IR67-21C/TR8 is an infrared emitting diode. It is spectrally matched with silicon photodiode and phototransistor. |
Microphone |
On-board ECM microphone. Signals picked up by it are amplified via transistors and sent to the analog-to-digital converter (ADC) of ESP32-C3-WROOM-02. |
System LED |
It is an RGB LED, model WS2812C, controlled by the ESP32-C3-WROOM-02 via GPIO, which can be used to indicate the operating status of the audio application. |
Default Firmware and Function Test¶
Each ESP32-C3-Lyra comes with a pre-built default firmware that allows you to test its functions including LED control (LEDC), remote control transceiver (RMT), ADC, and pulse-density modulation (PDM_TX). This section describes how to test peripheral’s function with the pre-built firmware.
Note
The default firmware of ESP32-C3-Lyra sold in the Developing IoT Projects with ESP32-C3 Package II provides a musical rhythm light ring effect.
See Section Required Hardware and Optional Hardware for more information.
1 x ESP32-C3-Lyra
2 x USB 2.0 cable (Standard-A to Micro-B)
1 x Computer running Windows, Linux, or macOS
1 x 5 V RGB LED strip WS2812 (optional)
1 x Mobile phone or music player
1 x Speaker (optional)
Before powering up your board, please make sure that it is in good condition with no obvious signs of damage.
Connect the board to the 5 V power supply through the USB Power Port using a USB cable. After the board is powered up, you will notice that the System Power LED turns on, which means the board is powered up. If the LED is not on, please toggle the System Power Switch.
Toggle the LED Strip Power Selection Switch to the USB power side.
Connect the board to the computer through the USB-to-UART Port using a USB cable.
Note
If you are developing with ESP32-C3-Lyra provided in the Developing IoT Projects with ESP32-C3 Package II, please skip this step.
Press the Reset Press Key on the board.
The board automatically starts the flash test. The log shown on a PC connected to USB-to-UART Port is as follows:
Step1 Flash Test Start Step1 Flash Test OK
The board tests the Function Press Keys. Please press the key as the log prompts. For example, press VOL+ when you see the following log:
Step2 Keys Test Start Please press The Key: VOL+
The board tests the System LED. You will see the LED keep switching between red, blue, and green. Then, press the key
VOL+/LM+
to proceed to the next step.The board tests LEDC (PWM). If you connect an RGB LED strip to the RGB LED Strip Port, you will see the LEDs breathing. Then, press the key
VOL+/LM+
to proceed to the next step.The board tests ADC. If you play the 1 kHz sine audio signal close to the Microphone with the mobile phone or music player, the following log will be seen when the board detects the audio signal:
Step5 Adc Test Start Please play 1khz audio Step5 Adc Test OK
The board tests the PDM_TX function. Connect the speaker to the Speaker Output Port and you will hear the music played from flash.
Software Support¶
ESP-ADF is the development framework for ESP32-C3-Lyra. To see which version of ESP-ADF is supported for this board, please go to the section Hardware.
Below are other software repositories developed by Espressif that may help you experiment with the functions of ESP32-C3-Lyra.
ESP-IDF: development framework for Espressif SoCs based on FreeRTOS with a rich set of components, including LED control (LEDC), ADC, RMT, SPI etc.
Application examples for this board can be found at application example .
Start Application Development¶
This section provides instructions on how to do hardware and software setup and flash firmware onto the board to develop your own application.
Required Hardware¶
Hardware |
Qty |
Note |
---|---|---|
ESP32-C3-Lyra |
1 |
– |
USB 2.0 cables (Standard-A to Micro-B) |
2 |
One for USB power supply, the other for flashing firmware onto the board. Be sure to use an appropriate USB cable. Some cables are for charging only and do not provide the needed data lines nor work for programming the boards. |
Computer running Windows, Linux, or macOS |
1 |
– |
Speaker |
1 |
The 4-ohm 3-watt speaker is recommended. It should be fitted with JST PH 2.0 2-Pin plugs. In case you do not have this type of plug it is also fine to use Dupont female jumper wires during development. |
Optional Hardware¶
Hardware |
Qty |
Note |
---|---|---|
12 V DC adapter |
1 |
The maximum operating current of the adapter is 2 A. It provides power supply for 12 V LED strips. |
5 V or 12 V addressable LED strip/ring |
1 |
It is recommended to use WS2812/WS2811 LED strip (a female connector with 4 x 1 pins and a 2.54 mm pitch), or a WS2812 LED ring with 16 individually addressable RGB LEDs assembled (a female connector with 3 x 1 pins and a 2.54 mm pitch). This LED strip/ring should be connected to the Addressable LED Strip Port (JP2). |
5 V or 12 V RGB LED strip |
1 |
It should have a female connector with 4 x 1 pins and a 2.54 mm pitch. This LED strip should be connected to RGB LED Strip Port (JP1). |
Power Supply Options¶
There are two ways to provide power to the board:
USB Power Port (5 V)
12 V DC Power Port
Hardware Setup¶
Prepare the board for loading of the first sample application:
Connect the speaker to the Speaker Output Port.
(Optional) Connect the LED strip to the development board through the Addressable LED Strip Port or the RGB LED Port depending on the type of your LED strip.
Connect the power supply to the development board through the USB Power Port (5 V) or the 12 V DC Power Port accordingly to supply power for your LED strip.
(Optional) Toggle the LED Strip Power Selection Switch depending on the working voltage and current of your LED strip.
Note
If you toggle the switch to the wrong side, the light strip will work abnormally. Do not power the 5 V LED strip with the 12 V DC adapter. Otherwise, the light strip will be damaged.
Toggle the System Power Switch to ON. The red System Power LED should turn on.
Connect the board to the computer through the USB-to-UART Port using a USB cable.
Now the board is ready for software setup.
Software Setup¶
After hardware setup, you can proceed to Get Started to prepare development tools.
For more software information on developing applications, please go to Software Support.
Hardware Reference¶
This section provides more detailed information about the board’s hardware.
GPIO Allocation¶
The table provides the allocation of GPIOs exposed on terminals of the ESP32-C3-WROOM-02 module to control specific components or functions of the board.
Power Distribution¶
There are two ways to power the development board: 5 V USB Power Port or 12 V/2 A DC input.

ESP32-C3-Lyra - Dedicated USB Power Supply Socket¶

ESP32-C3-Lyra - Power Supply from 12 V DC Input¶
According to the working voltage and current of your LED strip, select a proper power adapter and the port, and toggle the LED Strip Power Selection Switch to the corresponding side to power up the LED strip.

LED Strip Power Selection Switch¶

12 V to 5 V Buck Power Circuit¶

System 3.3 V Power Circuit¶
Connector¶
No. |
Signal Name |
ESP32-C3 Pin |
---|---|---|
1 |
VCC_12V_5V |
– |
2 |
LED_G |
GPIO6 |
3 |
LED_R |
GPIO5 |
4 |
LED_B |
GPIO4 |
No. |
Signal Name |
ESP32-C3 Pin |
---|---|---|
1 |
VCC_12V_5V |
– |
2 |
DIN |
GPIO7 |
3 |
DIN |
GPIO7 |
4 |
GND |
– |
Pinout of Extension Headers¶
There are several pin headers available to connect external components, check the state of particular signal bus, or debug operation of ESP32-C3. Note that some signals are shared. See Section GPIO Allocation for details.
No. |
Signal Name |
ESP32-C3 Pin |
---|---|---|
1 |
VCC_3V3 |
– |
2 |
ESP_EN |
EN |
3 |
ESP_BOOT |
GPIO9 |
4 |
ESP_UART_RXD |
U0RXD |
5 |
ESP_UART_TXD |
U0TXD |
6 |
GND |
– |
No. |
Signal Name |
ESP32-C3 Pin |
---|---|---|
1 |
VCC_3V3 |
– |
2 |
I2C_CLK |
GPIO8 |
3 |
I2C_DATA |
GPIO9 |
4 |
GND |
– |
Hardware Revision Details¶
No previous revisions.
Ordering¶
If you order a few samples, each board comes in an individual package.
For retail orders, please go to the official website https://www.espressif.com/en/company/contact/buy-a-sample, or directly order in our Taobao shop https://world.taobao.com/item/677273363812.htm?spm=a21wu.12321156-tw.recommend-tpp.4.19a61924ZMaqpf.
For wholesale orders, please go to the official website https://www.espressif.com/en/contact-us/sales-questions.
ESP32-C3-Lyra¶
Audio Samples¶
Music files in this section are intended for testing of audio applications. The files are organized into different Formats and Sample Rates.
Formats¶
The tables below provides an audio file converted from ‘wav’ format into several other audio formats.
Long Samples¶
The audio track duration in this section is 3 minutes and 7 seconds.
Two Channel Audio¶
No |
Format |
Audio File |
Size [kB] |
---|---|---|---|
1 |
aac |
2,995 |
|
2 |
ac3 |
2,994 |
|
3 |
aiff |
33,002 |
|
4 |
flac |
22,406 |
|
5 |
m4a |
3,028 |
|
6 |
mp3 |
2,994 |
|
7 |
mp4 |
3,079 |
|
8 |
ogg |
2,612 |
|
9 |
opus |
2,598 |
|
10 |
ts |
5,510 |
|
11 |
wav |
32,229 |
|
12 |
wma |
3,227 |
Playlist containing all above files: ff-16b-2c-playlist.m3u
Single Channel Audio¶
No |
Format |
Audio File |
Size [kB] |
---|---|---|---|
1 |
aac |
1,650 |
|
2 |
ac3 |
2,193 |
|
3 |
aiff |
16,115 |
|
4 |
amr |
299 |
|
5 |
flac |
10,655 |
|
6 |
m4a |
1,628 |
|
7 |
mp3 |
1,463 |
|
8 |
ogg |
1,558 |
|
9 |
opus |
1,641 |
|
10 |
wav |
16,115 |
|
11 |
wma |
3,151 |
Playlist containing all above files: ff-16b-1c-playlist.m3u
Short Samples¶
If you need shorter audio files for testing, this section provides 16 seconds audio tracks.
Two Channel Audio¶
No |
Format |
Audio File |
Size [kB] |
---|---|---|---|
1 |
aac |
241 |
|
2 |
ac3 |
380 |
|
3 |
aiff |
2,792 |
|
4 |
flac |
1,336 |
|
5 |
m4a |
258 |
|
6 |
mp3 |
254 |
|
7 |
mp4 |
259 |
|
8 |
ogg |
229 |
|
9 |
opus |
219 |
|
10 |
ts |
286 |
|
11 |
wav |
2,792 |
|
12 |
wma |
276 |
Playlist containing all above files: gs-16b-2c-playlist.m3u
Single Channel Audio¶
No |
Format |
Audio File |
Size [kB] |
---|---|---|---|
1 |
amr |
25 |
|
2 |
aac |
137 |
|
3 |
ac3 |
190 |
|
4 |
aiff |
1,397 |
|
5 |
flac |
645 |
|
6 |
m4a |
258 |
|
7 |
mp3 |
127 |
|
8 |
ogg |
144 |
|
9 |
opus |
132 |
|
10 |
wav |
1,497 |
|
11 |
wma |
276 |
Playlist containing all above files: gs-16b-1c-playlist.m3u
Sample Rates¶
The files in this section have been prepared by converting a single audio file into different sampling rates defined in MPEG Layer III specification. Both mono and stereo versions of files are provided. The bit depth of files is 16 bits.
Sample Rate |
MPEG III |
Channels |
Bit Rate |
Size |
|
---|---|---|---|---|---|
Audio File |
[Hz] |
ver |
[kbit/s] |
[kB] |
|
8000 |
2.5 |
mono |
8 |
183 |
|
11025 |
2.5 |
mono |
16 |
366 |
|
12000 |
2.5 |
mono |
16 |
366 |
|
16000 |
2 |
mono |
24 |
548 |
|
22050 |
2 |
mono |
32 |
731 |
|
24000 |
2 |
mono |
32 |
731 |
|
32000 |
1 |
mono |
48 |
1,097 |
|
44100 |
1 |
mono |
64 |
1,462 |
|
8000 |
2.5 |
joint stereo |
24 |
549 |
|
11025 |
2.5 |
joint stereo |
32 |
731 |
|
12000 |
2.5 |
joint stereo |
32 |
731 |
|
16000 |
2 |
joint stereo |
48 |
1,097 |
|
22050 |
2 |
joint stereo |
64 |
1,462 |
|
24000 |
2 |
joint stereo |
64 |
1,462 |
|
32000 |
1 |
joint stereo |
96 |
2,194 |
|
44100 |
1 |
joint stereo |
128 |
2,924 |
Playlist containing all above files: ff-16b-mp3-playlist.m3u
Original music files: “Furious Freak” and “Galway”, Kevin MacLeod (incompetech.com), Licensed under Creative Commons: By Attribution 3.0, http://creativecommons.org/licenses/by/3.0/
Resources¶
Third party frameworks and libraries to develop audio applications with Espressif chips:
The JOSH operating system supports the ESP32 and can be used in scenarios such as intelligent voice interaction, smart home appliances, and smart gateways.
Third party audio development modules and boards that work with ESP-ADF:
ESP32-A1S Audio Module equipped CodeC audio decoding chip that supports music playback and recording, and 4MB PSRAM. The module application schematic is available in datasheet.
The esp32.com forum is a place to ask questions and find community resources. The forum has a section dedicated to ESP-ADF.
This ESP Audio Development Framework inherits from ESP IoT Development Framework and you can learn about it in ESP-IDF Programming Guide.
Check the Issues section on GitHub if you find a bug or have a feature request. Please check existing Issues before opening a new one.
If you’re interested in contributing to ESP Audio Development Framework, please check the Contributions Guide.
Several books have been written about ESP32 and they are listed on Espressif web site.
For additional ESP32 product related information, please refer to documentation Section of Espressif site.
To buy audio development boards, check list of distributors under Get Samples on Espressif web site.
Copyrights and Licenses¶
Software Copyrights¶
All original source code in this repository is Copyright (C) 2015-2018 Espressif Systems. This source code is licensed under the ESPRESSIF MIT License as described in the file LICENSE.
Additional third party copyrighted code is included under the following licenses:
mp3 library is Copyright (c) 2005-2008, The Android Open Source Project, and is licensed under the Apache License Version 2.0.
aac library is Copyright (c) 2005-2008, The Android Open Source Project, and is licensed under the Apache License Version 2.0.
amr library is Copyright (C) 2009 Martin Storsjo and is licensed under the Apache License Version 2.0.
opus library, Copyright 2001-2011 Xiph.Org, Skype Limited, Octasic,Jean-Marc Valin, Timothy B. Terriberry, CSIRO, Gregory Maxwell, Mark Borgerding, Erik de Castro Lopo, is licensed under 3-clause BSD license.
flac library, Copyright (C) 2011-2016 Xiph.Org Foundation, is licensed under Xiph.Org’s BSD-like license.
vorbis library, Copyright (c) 2002-2020 Xiph.org Foundation, is licensed under the 3-Clause BSD license.
aac-enc library is Copyright 2003-2010, VisualOn, and is licensed under the Apache License Version 2.0.
adpcm library is Copyright (C) 2020 aikiriao <samuraiaiki@gmail.com>.
jpeg-dec library is Copyright (C) 2019, ChaN.
Please refer to the COPYRIGHT in ESP-IDF Programming Guide
Where source code headers specify Copyright & License information, this information takes precedence over the summaries made here.
English-Chinese Glossary¶
This document lists terms that are used in Espressif Audio Development Framework Guide and other audio related documentation. Each term is followed by its Chinese equivalents and some have definitions.
- AAC
Chinese equivalent: AAC
Abbreviation for Advanced Audio Coding, an industry-standard audio compression format.
- acoustic
Chinese equivalent: 声学
- acoustic calibrator
Chinese equivalent: 声校准器
Also known as sound level calibrator.
- acoustic echo cancellation
Chinese equivalent: 声学回声消除
Spelled-out form of AEC.
- AEC
Chinese equivalent: AEC
Abbreviation for acoustic echo cancellation.
- Advanced Audio Distribution Profile
Chinese equivalent: 高级音频分发框架
Spelled-out form of A2DP.
- A2DP
Chinese equivalent: A2DP.
Abbreviation for Advanced Audio Distribution Profile.
- A2DP sink
Chinese equivalent: A2DP sink
- A2DP source
Chinese equivalent: A2DP source
- AFE
Chinese equivalent: AFE
Abbreviation for audio front end. Espressif audio front-end algorithm framework is developed by Espressif AI Lab to provide high-quality and stable audio data to the host.
- AirKiss
Chinese equivalent: AirKiss
AirKiss is a quick-connection technique provided by Weixin device platform for Wi-Fi devices to configure network connection.
- AMR
Chinese equivalent: AMR
Abbreviation for Adaptive Multi-Rate, an audio compression format optimized for speech coding.
- AMR-NB
Chinese equivalent: AMR-NB
Abbreviation for Adaptive Multi-Rate Narrowband, a narrowband speech audio coding standard developed based on Adaptive Multi-Rate encoding.
- AMR-WB
Chinese equivalent: AMR-WB
Abbreviation for Adaptive Multi-Rate Wideband, a wideband speech audio coding standard developed based on Adaptive Multi-Rate encoding.
- analog-to-digital converter
Chinese equivalent: 模拟数字转换器
Spelled-out form of ADC.
- ADC
Chinese equivalent: ADC
Abbreviation for analog-to-digital converter.
- audio codec
Chinese equivalent: 音频编码解码器
- audio forge
Chinese equivalent: 音频塑造
A combination of several audio backend processing techniques, including resample, downmix, automatic level control, equalizer and sonic. Users can enable or disable certain techniques as needed.
- audio gate
Chinese equivalent: 音频网关
Spelled-out form of AG.
- AG
Chinese equivalent: AG
Abbreviation for audio gate.
- audio front end
Chinese equivalent: 声学前端
Spelled-out form of AFE.
- audio passthru
Chinese equivalent: 音频透传
Also known as pipeline passthru. It is an audio technique that allows audio files to pass through a pipeline unaltered.
- audio pipeline
Chinese equivalent: 音频管道
Often used as “pipeline”. It is a chain of audio processing elements arranged in a particular order so that the output of each element is the input of the next.
- Audio Video Remote Control Profile
Chinese equivalent: 音视频远程控制规范
Spelled-out form of AVRCP.
- AVRCP
Chinese equivalent: AVRCP
Abbreviation for Audio Video Remote Control Profile.
- automatic gain control
Chinese equivalent: 自动增益控制
Spelled-out form of AGC.
- AGC
Chinese equivalent: AGC
Abbreviation for automatic gain control.
- automatic level control
Chinese equivalent: 自动电平控制
Spelled-out form of ALC.
- ALC
Chinese equivalent: ALC
Abbreviation for automatic level control.
- automatic speech recognition
Chinese equivalent: 自动语音识别
Spelled-out form of ASR.
- aux cable
Chinese equivalent: aux 音频线
Also known as auxiliary cable.
- ASR
Chinese equivalent: ASR
Abbreviation for automatic speech recognition.
- bandwidth
Chinese equivalent: 带宽
- Bass Frequency
Chinese equivalent: 低频
- BCLK
Chinese equivalent: BCLK
Abbreviation for base clock.
- BluFi
Chinese equivalent: BluFi
A Wi-Fi network configuration function via Bluetooth channel. See ESP-IDF Programming Guide for more information.
- cavity
Chinese equivalent: 腔体
- command word
Chinese equivalent: 命令词
- core dump
Chinese equivalent: 核心转储
- cutoff frequency
Chinese equivalent: 截止频率
- decoder
Chinese equivalent: 解码器
- digital media renderer
Chinese equivalent: 数字媒体渲染器
Spelled-out form of DMR.
- digital signal processor
Chinese equivalent: 数字信号处理器
Spelled-out form of DSP.
- DSP
Chinese equivalent: DSP
Abbreviation for digital signal processor or digital signal processing.
- digital-to-analog converter
Chinese equivalent: 数字模拟转换器
Spelled-out form of DAC.
- dispatcher
Chinese equivalent: 调度器
- distortion
Chinese equivalent: 失真
- DAC
Chinese equivalent: DAC
Abbreviation for digital-to-analog converter.
- Digital Living Network Alliance
Chinese equivalent: 数字生活网络联盟
Spelled-out form of DLNA.
- DLNA
Chinese equivalent: DLNA
Abbreviation for Digital Living Network Alliance.
- DMR
Chinese equivalent: DMR
Abbreviation for digital media renderer.
- downmix
Chinese equivalent: 向下混叠
An audio processing technique that mixes more audio streams to less output audio streams.
- DuerOS
Chinese equivalent: DuerOS
DuerOS is a conversational AI system developed by Baidu.
- echo
Chinese equivalent: 回声
A reflection of sound that arrives at the listener with a delay after the direct sound.
- echo reference signal
Chinese equivalent: 回声参考信号
- electret condenser microphone
Chinese equivalent: 驻极体麦克风
Spelled-out form of ECM.
- ECM
Chinese equivalent: ECM
Abbreviation for electret condenser microphone.
- element
Chinese equivalent: 元素
Also known as audio element. It is the basic building block for the application programmer developing with ADF. Every decoder, encoder, filter, input stream, or output stream is in fact an audio element.
- encoder
Chinese equivalent: 编码器
- equalizer
Chinese equivalent: 均衡器
- ESP VoIP
Chinese equivalent: ESP VoIP
ESP VoIP is a telephone client based on the standard SIP protocol, which can be used in some P2P or audio conference scenarios.
- fast Fourier transform
Chinese equivalent: 快速傅里叶变换
Spelled-out form of FFT.
- FFT
Chinese equivalent: FFT
Abbreviation for fast Fourier transform.
- FatFs
Chinese equivalent: FatFs
- FatFs stream
Chinese equivalent: FatFs 流
- FLAC
Chinese equivalent: FLAC
Abbreviation for Free Lossless Audio Codec, an audio coding format for lossless compression of digital audio.
- flexible pipeline
Chinese equivalent: 灵活管道
- FPS
Chinese equivalent: FPS
Abbreviation for frames per second.
- frames per second
Chinese equivalent: 每秒传输帧数
Spelled-out form of FPS.
- frequency response
Chinese equivalent: 频率响应
- full band
Chinese equivalent: 全频带
Spelled-out form of FB.
- FB
Chinese equivalent: FB
Abbreviation for full band.
- Hands-Free
Chinese equivalent: 免提
Spelled-out form of HF.
- HF
Chinese equivalent: HF
Abbreviation for Hands-Free.
- Hands-Free Audio Gateway
Chinese equivalent: 免提音频网关
Spelled-out form of HFP-AG.
- Hands-Free Profile
Chinese equivalent: 免提规范
- Hands-Free Unit
Chinese equivalent: 免提组件
- HFP
Chinese equivalent: HFP
Abbreviation for Hands-Free Profile.
- hardware abstraction layer
Chinese equivalent: 硬件抽象层
Spelled-out form of HAL.
- HAL
Chinese equivalent: HAL
Abbreviation for hardware abstraction layer.
- headset
Chinese equivalent: 耳机
- HFP-AG
Chinese equivalent: HFP-AG
Abbreviation for Hands-Free Audio Gateway.
- Hi-Fi speaker
Chinese equivalent: 高保真音箱
Also known as high-fidelity speaker.
- High Frequency
Chinese equivalent: 高频
- high-fidelity microphone
Chinese equivalent: 高保真麦克风
- HLS
Chinese equivalent: HLS
Abbreviation for HTTP Live Streaming.
- HTTP stream
Chinese equivalent: HTTP 流
- HTTP Live Streaming
Chinese equivalent: HTTP 直播流
Spelled-out form of HLS.
- I2S stream
Chinese equivalent: I2S 流
- insertion loss
Chinese equivalent: 插入损失
- Internet radio
Chinese equivalent: 网络电台
- Internet of Things
Chinese equivalent: 物联网
- IoT
Chinese equivalent: IoT
Abbreviation for Internet of Things.
- JPEG
Chinese equivalent: JPEG
A commonly used method of lossy compression for digital images. Same as JPG.
- JPG
Chinese equivalent: JPG
A commonly used method of lossy compression for digital images. Same as JPEG.
- Light and Versatile Graphics Library
Chinese equivalent: 轻量级多功能图形库
Spelled-out form of LVGL
- low-pass filter
Chinese equivalent: 低通滤波器
- LVGL
Chinese equivalent: LVGL
Abbreviation for Light and Versatile Graphics Library.
- M3U8
Chinese equivalent: M3U8
The Unicode version of M3U is M3U8, which uses UTF-8-encoded characters.
- M4A
Chinese equivalent: M4A
An audio encoding format for lossless compression of digital audio.
- mass production
Chinese equivalent: 量产
- maximum output power
Chinese equivalent: 最大输出功率
- MCLK
Chinese equivalent: MCLK
Abbreviation for master clock.
- mel-frequency cepstral coefficients
Chinese equivalent: 梅尔频率倒谱系数
Spelled-out form of MFCC.
- MFCC
Chinese equivalent: MFCC
Abbreviation for mel-frequency cepstral coefficients.
- microphone
Chinese equivalent: 麦克风
- mic
Chinese equivalent: 麦克风
Informal form for microphone.
- micro-electro-mechanical systems microphone
Chinese equivalent: 微型机型系统麦克风
Spelled-out form of MEMS mic.
- MEMS mic
Chinese equivalent: MEMS 麦克风
Abbreviation for micro-electro-mechanical systems microphone.
- microphone gain
Chinese equivalent: 麦克风增益
- microphone hole
Chinese equivalent: 麦克孔
- microSD card
Chinese equivalent: microSD 卡
- MP3
Chinese equivalent: MP3
- MP4
Chinese equivalent: MP4
- MultiNet
Chinese equivalent: MultiNet
MultiNet is a lightweight model specially designed based on CRNN and CTC for the implementation of multi-command recognition.
- multi-room
Chinese equivalent: 多房间
- Multi-Room Music
Chinese equivalent: Multi-Room Music
ESP Multi-Room Music is a Wi-Fi-based communication protocol to share music across multiple interconnected speakers. Under this protocol, those connected speakers form a Group. They can play music synchronously and are controlled together, which can easily achieve a theater-grade stereo surround sound system.
- narrowband
Chinese equivalent: 窄带
Spelled-out form of NB.
- NB
Chinese equivalent: NB
Abbreviation for narrowband.
- NimBLE
Chinese equivalent: NimBLE
An open-source Bluetooth Low Energy or Bluetooth Smart stack.
- noise criteria curve
Chinese equivalent: 噪声标准曲线
Also known as NC curve.
- noise rating curve
Chinese equivalent: 噪声评价曲线
Also known as NR curve.
- noise floor
Chinese equivalent: 本底噪声
- noise suppression
Chinese equivalent: 噪声抑制
Spelled-out form of NS.
- NS
Chinese equivalent: NS
Abbreviation for noise suppression.
- non-volatile storage
Chinese equivalent: 非易失性存储
Spelled-out form of NVS.
- NVS
Chinese equivalent: NVS
Abbreviation for non-volatile storage.
- OGG
Chinese equivalent: OGG
An audio compression format.
- OPUS
Chinese equivalent: OPUS
A lossy audio coding format.
- PCM
Chinese equivalent: PCM
Abbreviation for pulse-code modulation.
- pixel
Chinese equivalent: 像素
- playback
Chinese equivalent: 回放
It is a noun. The verb is “play back”.
- programmable gain amplifier
Chinese equivalent: 可编程增益放大器
Spelled-out form of PGA.
- PGA
Chinese equivalent: PGA
Abbreviation for programmable gain amplifier.
- protractor
Chinese equivalent: 量角尺
- pulse-code modulation
Chinese equivalent: 脉冲编码调制
Spelled-out form of PCM.
- raw stream
Chinese equivalent: 原始流
- resample
Chinese equivalent: 重采样
- resample filter
Chinese equivalent: 重采样过滤器
- resonant frequency
Chinese equivalent: 谐振频率
- reverberation
Chinese equivalent: 混响
- RGB
Chinese equivalent: RGB
The RGB color model is an additive color model in which the red, green, and blue primary colors of light are added together in various ways to reproduce a broad array of colors.
- ring buffer
Chinese equivalent: 环形缓冲区
- SBC
Chinese equivalent: SBC
Abbreviation for subband codec.
- SD card
Chinese equivalent: SD 卡
- Session Initiation Protocol
Chinese equivalent: 会话发起协议
Spelled-out form of SIP.
- signal-to-echo ratio
Chinese equivalent: 信回比
- signal-to-noise ratio
Chinese equivalent: 信噪比
Spelled-out form of SNR.
- SIP
Chinese equivalent: SIP
Abbreviation for Session Initiation Protocol.
- SNR
Chinese equivalent: SNR
Abbreviation for signal-to-noise ratio.
- SmartConfig
Chinese equivalent: SmartConfig
The SmartConfig TM is a provisioning technology developed by TI to connect a new Wi-Fi device to a Wi-Fi network. It uses a mobile app to broadcast the network credentials from a smartphone, or a tablet, to an un-provisioned Wi-Fi device.
- sonic
Chinese equivalent: 变声
An audio processing technique that modifies sound frequency and speed.
- sound card
Chinese equivalent: 声卡
Also known as audio card.
- sound level meter
Chinese equivalent: 分贝仪
Also known as sound pressure level meter.
- sound pickup hole
Chinese equivalent: 拾音孔
- sound pickup tube
Chinese equivalent: 拾音管道
- sound transmission loss
Chinese equivalent: 传声损失
Spelled-out form of STL.
- speech
Chinese equivalent: 语音
- speech recognition
Chinese equivalent: 语音识别
Spelled-out form of SR.
- SR
Chinese equivalent: SR
Abbreviation for speech recognition.
- SPI Flash File System
Chinese equivalent: SPI 闪存文件系统
Spelled-out form of SPIFFS.
- SPIFFS
Chinese equivalent: SPIFFS
Abbreviation for SPI Flash File System.
- SPIFFS stream
Chinese equivalent: SPIFFS 流
- subband codec
Chinese equivalent: 次频带编码
Spelled-out form of SBC.
- STL
Chinese equivalent: STL
Abbreviation for sound transmission loss.
- super wide band
Chinese equivalent: 超宽频带
Spelled-out form of SWB.
- SWB
Chinese equivalent: SWB
Abbreviation for super wide band.
- tape measure
Chinese equivalent: 卷尺
- text-to-speech
Chinese equivalent: 语音合成
Spelled-out form of TTS.
- TTS
Chinese equivalent: TTS
Abbreviation for text-to-speech.
- tolerance
Chinese equivalent: 公差
- tone
Chinese equivalent: 提示音
- total harmonic distortion
Chinese equivalent: 总谐波失真
Spelled-out form of THD.
- THD
Chinese equivalent: THD
Abbreviation for total harmonic distortion.
- voice activity detection
Chinese equivalent: 语音活动检测
Spelled-out form of VAD.
- VAD
Chinese equivalent: VAD
Abbreviation for voice activity detection.
- VoIP
Chinese equivalent: VoIP
Abbreviation for Voice over Internet Protocol.
- wake word
Chinese equivalent: 唤醒词
- wake word engine
Chinese equivalent: 唤醒词引擎
Spelled-out form of WWE.
- WakeNet
Chinese equivalent: WakeNet
WakeNet is a wake word engine built upon neural network for low-power embedded MCUs.
- wake-up
Chinese equivalent: 唤醒
It is a noun.
- wideband
Chinese equivalent: 宽带
Spelled-out form of WB.
- WB
Chinese equivalent: WB
Abbreviation for wideband.
- WWE
Chinese equivalent: WWE
Abbreviation for wake word engine.
- YUV
Chinese equivalent: YUV
A color model typically used as part of a color image pipeline.
About¶
This is documentation of ESP-ADF, the framework to develop audio applications for ESP32 chip by Espressif.
The ESP32 is 2.4 GHz Wi-Fi and Bluetooth combo, 32 bit dual core chip running up to 240 MHz, designed for mobile, wearable electronics, and Internet-of-Things (IoT) applications. It has several peripherals on board including I2S interfaces to easy integrate with dedicated audio chips. These hardware features together with the ESP-ADF software provide a powerful platform to implement audio applications including native wireless networking and powerful user interface.
The ESP-ADF provides a range of API components including Audio Streams, Codecs and Services organized in Audio Pipeline, all integrated with audio hardware through Media HAL and with Peripherals onboard of ESP32.

Espressif Audio Development Framework¶
The ESP-ADF also provides integration with Baidu DauerOS cloud services. A range of components is coming to provide integration with DeepBrain, Amazon, Google, Alibaba and Turing cloud services.
The ESP-ADF builds on well established, FreeRTOS based, Espressif IOT Development Framework ESP-IDF.